Matlab蚁群算法共41页

合集下载

MATLAB中的蚁群算法与粒子群优化联合优化实例分析

MATLAB中的蚁群算法与粒子群优化联合优化实例分析

MATLAB中的蚁群算法与粒子群优化联合优化实例分析引言:在现代科学技术的发展中,优化问题一直是一个关键的挑战。

为了解决这些问题,出现了许多优化算法。

其中,蚁群算法(Ant Colony Optimization,ACO)和粒子群优化算法(Particle Swarm Optimization,PSO)是两种被广泛应用的算法。

本文将通过示例分析,探讨如何将这两种优化算法结合使用以获得更好的优化结果。

1. 蚁群算法概述蚁群算法是一种启发式优化算法,灵感来源于蚂蚁寻找食物的行为。

蚂蚁在搜索食物的过程中,通过释放信息素与其他蚂蚁进行通信,从而引导整个群体向最优解靠近。

这种算法主要适用于组合优化问题,如旅行商问题(Traveling Salesman Problem,TSP)等。

2. 粒子群优化算法概述粒子群优化算法是一种仿生优化算法,灵感来源于鸟群觅食的行为。

在算法中,个体被模拟成鸟群中的粒子,并通过合作和竞争的方式搜索最优解。

粒子的位置代表可能的解,速度代表解的搜索方向和距离。

这种算法通常适用于连续优化问题。

3. 蚁群算法与粒子群优化算法的结合蚁群算法和粒子群优化算法有着不同的特点和适用范围,结合它们的优点可以提高优化结果的质量。

在下面的示例中,我们将探讨一个工程优化问题,通过联合使用这两种算法来获得较好的优化结果。

示例:电力系统优化在电力系统中,优化发电机组的负荷分配可以有效降低能源消耗和运行成本。

我们将使用蚁群算法和粒子群优化算法联合进行负荷分配的优化。

首先,我们需要建立一个能源消耗和运行成本的数学模型。

这个模型将考虑发电机组的负荷分配和相应的能源消耗和运行成本。

假设我们有n个发电机组,每个组的负荷分配为x1,x2,...,xn,则总的能源消耗为:E = f(x1) + f(x2) + ... + f(xn)其中f(x)是关于负荷分配的函数,代表了每个发电机组的能源消耗。

接下来,我们使用蚁群算法对发电机组的负荷分配进行优化。

Matlab蚁群算法

Matlab蚁群算法

实现蚂蚁移动和信息素挥发机制
蚂蚁移动
根据蚂蚁的移动规则和信息素值,让蚂 蚁在解空间中移动,并记录其路径。
VS
信息素挥发
模拟信息素的挥发过程,降低信息素值, 以反映信息的衰减。
迭代优化和结果
迭代优化
通过多次迭代,让蚂蚁不断寻找更好的解, 并逐渐逼近最优解。
结果输出
输出最终找到的最优解,以及算法的性能指 标,如收敛速度、最优解质量等。
05 Matlab蚁群算法的优缺点分析
优点分析
并行性
鲁棒性
全局搜索能力
易于实现
蚁群算法是一种自然启发的优 化算法,具有高度的并行性。 在Matlab中实现时,可以利用 多核处理器或GPU加速技术进 一步提高并行计算能力,从而
加快算法的收敛速度。
蚁群算法对初始参数设置不 敏感,具有较强的鲁棒性。 这意味着在Matlab实现时, 即使初始参数设置不当,算
法仍能找到较优解。
蚁群算法采用正反馈机制, 能够发现多条优质路径,具 有较强的全局搜索能力。这 有助于在Matlab中解决多峰、 离散、非线性等复杂优化问
题。
蚁群算法原理相对简单,实 现起来较为容易。在Matlab 中,可以利用现有的工具箱 或自行编写代码来实现该算
法。
缺点分析
01
计算量大
蚁群算法在解决大规模优化问题时,计算量较大,可能 导致算法运行时间较长。在Matlab实现中,可以通过优 化代码、采用并行计算等技术来降低计算量。
Matlab蚁群算法目录来自• 蚁群算法简介 • Matlab实现蚁群算法的步骤 • 蚁群算法的参数调整与优化 • Matlab蚁群算法的案例分析 • Matlab蚁群算法的优缺点分析
01 蚁群算法简介

双蚁群算法的matlab实现

双蚁群算法的matlab实现

双蚁群算法的matlab实现
双蚁群算法是一种基于蚁群优化算法的改进版本,它引入了两
种不同类型的蚂蚁来模拟现实世界中的竞争和合作关系。

在Matlab
中实现双蚁群算法可以分为以下几个步骤:
1. 定义问题,首先需要明确定义需要解决的优化问题,包括目
标函数、约束条件等。

2. 初始化参数,设置算法的参数,如蚂蚁数量、迭代次数、信
息素挥发系数、信息素更新系数等。

3. 初始化蚂蚁群,随机放置两种类型的蚂蚁在问题的解空间中,每只蚂蚁都有一个位置和一个解。

4. 更新信息素,根据蚂蚁搜索的路径更新信息素的浓度。

5. 蚂蚁搜索,根据信息素浓度和启发式规则,蚂蚁在解空间中
搜索最优解。

6. 评估解的质量,计算每个蚂蚁找到的解的质量,并更新最优
解。

7. 更新信息素,根据找到的最优解更新信息素的浓度。

8. 终止条件,根据预设的迭代次数或者其他终止条件判断算法是否结束。

在Matlab中实现双蚁群算法时,可以使用向量化操作和矩阵运算来提高计算效率。

同时,可以利用Matlab的绘图功能对算法的收敛过程和最优解的搜索路径进行可视化展示,以便更直观地理解算法的运行过程。

需要注意的是,双蚁群算法的实现涉及到许多细节和参数的调节,需要经过反复实验和调优才能得到较好的效果。

同时,也可以借助Matlab中丰富的工具箱和函数来加速算法的实现和调试过程。

总之,通过以上步骤和注意事项,可以在Matlab中实现双蚁群算法,并应用于解决各种优化问题。

蚁群算法matlab代码讲解

蚁群算法matlab代码讲解

蚁群算法matlab代码讲解蚁群算法(Ant Colony Algorithm)是模拟蚁群觅食行为而提出的一种优化算法。

它以蚁群觅食的方式来解决优化问题,比如旅行商问题、图着色问题等。

该算法模拟了蚂蚁在寻找食物时的行为,通过信息素的正反馈和启发式搜索来实现问题的最优解。

在蚁群算法中,首先需要初始化一组蚂蚁和问题的解空间。

每只蚂蚁沿着路径移动,通过信息素和启发式规则来选择下一步的移动方向。

当蚂蚁到达目标位置后,会根据路径的长度来更新信息素。

下面是一个用MATLAB实现蚁群算法的示例代码:```matlab% 参数设置num_ants = 50; % 蚂蚁数量num_iterations = 100; % 迭代次数alpha = 1; % 信息素重要程度因子beta = 5; % 启发式因子rho = 0.1; % 信息素蒸发率Q = 1; % 信息素增加强度因子pheromone = ones(num_cities, num_cities); % 初始化信息素矩阵% 初始化蚂蚁位置和路径ants = zeros(num_ants, num_cities);for i = 1:num_antsants(i, 1) = randi([1, num_cities]);end% 迭代计算for iter = 1:num_iterations% 更新每只蚂蚁的路径for i = 1:num_antsfor j = 2:num_cities% 根据信息素和启发式规则选择下一步移动方向next_city = choose_next_city(pheromone, ants(i, j-1), beta);ants(i, j) = next_city;endend% 计算每只蚂蚁的路径长度path_lengths = zeros(num_ants, 1);for i = 1:num_antspath_lengths(i) = calculate_path_length(ants(i, :), distances);end% 更新信息素矩阵pheromone = (1 - rho) * pheromone;for i = 1:num_antsfor j = 2:num_citiespheromone(ants(i, j-1), ants(i, j)) = pheromone(ants(i, j-1), ants(i, j)) + Q / path_lengths(i); endendend```上述代码中的参数可以根据具体问题进行调整。

matlab的蚂蚁算法的实现

matlab的蚂蚁算法的实现
city+1)) + Q / distances(positions(ant, city), positions(ant, city+1)); end deltaPheromones(positions(ant, numCities), positions(ant, 1)) = deltaPheromones(positions(ant, numCities), positions(ant,
matlab的蚂蚁算法的实现
在上述代码中,我们首先设置了一些参数,如蚂蚁数量、迭代次数、信息素和启发式信息 的重要程度等。然后,根据参数初始化了信息素矩阵,并进行了迭代优化过程。
在每次迭代中,我们先初始化蚂蚁的位置,然后根据信息素和启发式信息的重要程度,以 及当前城市和已访问城市的距离,计算每个城市被选择的概率。根据概率选择下一个城市, 直到完成整个路径的选择。然后,根据蚂蚁的路径更新信息素矩阵。重复迭代过程,直到达 到指定的迭代次数。
最后,输出最优路径和最优距离。
matlab的蚂蚁算法的实现
需要注意的是,上述代码只是一个简单的示例,实际应用中可能需要根据具体问题进行适 当的调整和扩展。蚂蚁算法的实现也可能因问题的复杂性和特点而有所不同。
Байду номын сангаас
matlab的蚂蚁算法的实现
以下是一个使用 MATLAB 实现蚂蚁算法的简单示例:
```matlab % 参数设置 numAnts = 10; % 蚂蚁数量 numIterations = 100; % 迭代次数 alpha = 1; % 信息素重要程度 beta = 5; % 启发式信息重要程度 rho = 0.5; % 信息素挥发率 Q = 1; % 信息素增量 numCities = 10; % 城市数量 distances = rand(numCities); % 城市之间的距离矩阵

matlab-蚁群算法-机器人路径优化问题

matlab-蚁群算法-机器人路径优化问题

matlab-蚁群算法-机器人路径优化问题4.1问题描述移动机器人路径规划是机器人学的一个重要研究领域。

它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。

机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。

4.2算法理论蚁群算法(AntColonyAlgorithm,ACA),最初是由意大利学者DorigoM.博士于1991年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。

该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。

但是算法本身性能的评价等算法理论研究方面进展较慢。

Dorigo提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。

次年Dorigo博士在文献[30]中给出改进模型(ACS),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。

Stützle与Hoo给出了最大-最小蚂蚁系统(MA某-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。

蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。

蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。

这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。

经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。

蚁群算法(ACA)及其Matlab实现

蚁群算法(ACA)及其Matlab实现

蚁群算法(ACA)及其Matlab实现1基本原理:本质上也是⼀种概率算法,通过⼤概率收敛到最佳值,和其他的智能算法很相似。

蚁群分泌的信息素存在正反馈,使得较佳的解具有⼤概率被选到,当全局都选⽤较佳的解,变可以得到整体的最优解。

2⼏个关键点:1)概率选择:受信息素浓度和启发函数影响,启发函数为距离的倒数2)信息素挥发考虑到信息素随时间的挥发,加⼊挥发因⼦3程序设计步骤:1初始化各个参数:包括各点的距离,信息素的初始浓度,蚂蚁数量,信息素挥发因⼦,信息素和启发函数的重要度因⼦,启发函数,最⼤迭代次数,路径记录表等等2迭代:对每个蚂蚁随机制定初始值,再根据概率选择,选择出每只蚂蚁的路径,确定每只蚂蚁的路径总长度,以及蚁群的最佳路径长度和平均长度,并对信息素进⾏更新。

3展⽰:展⽰出最佳路径,以及最佳路径对迭代的变化图4Matlab代码clc,clear %清空环境中的变量load data.txt %读⼊城市的坐标t0 = clock; %程序计时开始%%%%%%%%%%%%%%%%%%%%%初始化%%%%%%%%%%%%%%%%%city=data;n = size(city,1); %城市距离初始化D = zeros(n,n);for i = 1:nfor j = 1:nif i ~= jD(i,j) = sqrt(sum((city(i,:) - city(j,:)).^2));elseD(i,j) = 0; %设定的对⾓矩阵修正值endendendm=30; %蚂蚁数量alpha = 1; % 信息素重要程度因⼦beta = 5; % 启发函数重要程度因⼦v = 0.1; % 信息素挥发因⼦Q = 0.5; % 信息因⼦常系数H= 1./D; % 启发函数T= ones(n,n); % 信息素矩阵Table = zeros(m,n); % 路径记录表iter = 1; % 迭代次数初值iter_max = 50; % 最⼤迭代次数best_route = zeros(iter_max,n); % 各代最佳路径best_length = zeros(iter_max,1); % 各代最佳路径的长度%%while iter<=iter_max% 随机产⽣每只蚂蚁的起点城市start = zeros(m,1);for i = 1:mtemp = randperm(n);start(i) = temp(1);endTable(:,1) = start;city_index=1:n;for i = 1:m% 逐个城市路径选择for j = 2:ntabu = Table(i,1:(j - 1)); % 已访问的城市集合allow =city_index( ~ismember(city_index,tabu)); % 筛选出未访问的城市集合P = zeros(1,length(allow));% 计算相连城市的转移概率for k = 1:length(allow)P(k) = T(tabu(end),allow(k))^alpha * H(tabu(end),allow(k))^beta;endP = P/sum(P);% 轮盘赌法选择下⼀个访问城市Pc = cumsum(P); %参加说明2(程序底部)target_index = find(Pc >= rand);target = allow(target_index(1));Table(i,j) = target;endend% 计算各个蚂蚁的路径距离Length = zeros(m,1);for i = 1:mRoute = [Table(i,:) Table(i,1)];for j = 1:nLength(i) = Length(i) + D(Route(j),Route(j + 1));endend%对最优路线和距离更新if iter == 1[min_length,min_index] = min(Length);best_length(iter) = min_length;best_route(iter,:) = Table(min_index,:);else[min_length,min_index] = min(Length);if min_length<best_length(iter-1)best_length(iter)=min_length;best_route(iter,:)=Table(min_index,:);elsebest_length(iter)=best_length(iter-1);best_route(iter,:)=best_route(iter-1,:);endend% 更新信息素Delta_T= zeros(n,n);% 逐个蚂蚁计算for i = 1:m% 逐个城市计算Route = [Table(i,:) Table(i,1)];for j = 1:nDelta_T(Route(j),Route(j+1)) = Delta_T(Route(j),Route(j+1)) +D(Route(j),Route(j+1))* Q/Length(i); endendT= (1-v) * T + Delta_T;% 迭代次数加1,并清空路径记录表iter = iter + 1;Table = zeros(m,n);end%--------------------------------------------------------------------------%% 结果显⽰shortest_route=best_route(end,:); %选出最短的路径中的点short_length=best_length(end);Time_Cost=etime(clock,t0);disp(['最短距离:' num2str(short_length)]);disp(['最短路径:' num2str([shortest_route shortest_route(1)])]);disp(['程序执⾏时间:' num2str(Time_Cost) '秒']);%--------------------------------------------------------------------------%% 绘图figure(1)%采⽤连线图画起来plot([city(shortest_route,1);city(shortest_route(1),1)], [city(shortest_route,2);city(shortest_route(1),2)],'o-');for i = 1:size(city,1)%对每个城市进⾏标号text(city(i,1),city(i,2),[' ' num2str(i)]);endxlabel('城市位置横坐标')ylabel('城市位置纵坐标')title(['蚁群算法最优化路径(最短距离):' num2str(short_length) ''])figure(2)%画出收敛曲线plot(1:iter_max,best_length,'b')xlabel('迭代次数')ylabel('距离')title('迭代收敛曲线') 程序说明:采⽤蚁群算法求取TSP问题,共有34个城市,从txt⽂件加载数据:运⾏结果:。

蚁群算法及MATLAB程序(详细)

蚁群算法及MATLAB程序(详细)

蚁群算法介绍:(1)寻找最短路径的蚁群算法来源于蚂蚁寻食的行为。

蚁群寻找食物时会派出一些蚂蚁分头在四周游荡, 如果一只蚂蚁找到食物, 它就返回巢中通知同伴并沿途留下“ 信息素”(外激素pheromone)作为蚁群前往食物所在地的标记。

信息素会逐渐挥发,如果两只蚂蚁同时找到同一食物, 又采取不同路线回到巢中, 那么比较绕弯的一条路上信息素的气味会比较淡, 蚁群将倾向于沿另一条更近的路线前往食物所在地。

蚁群算法设计虚拟的“蚂蚁”, 让它们摸索不同路线, 并留下会随时间逐渐消失的虚拟“信息素”, 根 据“信息素较浓的路线更近”的原则, 即可选择出最佳路线.(2) 为了模拟实际蚂蚁的行为, 首先引进如下记号: 设m 是蚁群中蚂蚁的数, ij d (i,j=1,2,...,n)表示城市i 和城市j 之间的距离, i b t 表示t 时刻位于城市i 的蚂蚁的个数,则有 1ni i mb tij t表示t 时刻在城市,i j 连线上残留的信息素。

初始时刻,各条路径上的信息素相等,设0ij c c 为常数。

蚂蚁1,2,,k k m 在运动过程中,根据各条路径上的信息素决定转移方向。

k ij P t 表示在t 时刻蚂蚁k 由城市i 转移到城市j 的概率:,0,kij ij kik ikij kktabu kt t t P j tabu j tabu (1) 其中:ij n 为先验知识或称为能见度,在TSP 问题中为城市i 转移到城市j 的启发信息,一般地取1ij d ij n ,为在路径上残留信息的重要程度;为启发信息的重要程度;与实际蚁群不同,人工蚁群系统具有记忆能力,1,2,,k tabu k m 用以记录蚂蚁K 当前所走过的城市,称为禁忌表(下一步不充许选择的城市),集合k tabu 随着进化过程进行动态调整。

经过n 个时刻,所有蚂蚁完成了一次周游,此时应清空禁忌表,将当前蚂蚁所在的城市置入k tabu 中准备下一次周游,这时计算每一只蚂蚁走过的路程k L ,并保存最短路径min min min ,1,,k L L L k m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若MMAS收敛,通过始终选择信息素量最大的解 元素所构造的解将与算法找出的最优解相一致
信息素轨迹的限制
m a x 的选取
t
maxij (t)
i1
ti
1
f (sopt)
其 中 , f ( s o p t ) 为 对 于 一 个 具 体 问 题 的 最 优 解
边作为移动方向
蚁群系统全局更新规则
只有全局最优的蚂蚁才被允许释放信息素
目的:使蚂蚁的搜索主要集中在当前循环为止所找 出的最好路径的领域内
全局更新在所有蚂蚁都完成它们的路径之后执行, 使用下式对所建立的路径进行更新
( r ,s ) ( 1 ) ( r ,s ) ( r ,s )
(r,s) L1gb,
的增加
是精英蚂蚁的个数
L * 是所找出的最优解的路径长度 特点:
可以使蚂蚁系统找出更优的解 找到这些解的时间更短 精英蚂蚁过多会导致搜索早熟收敛
蚁群系统
蚁群系统(Ant Colony System, ACS)是由 Dorigo和Gambardella在2019年提出的
蚁群系统做了三个方面的改进:
改进的蚁群算法
Macro Dorigo
Gambardella
带精英策略的蚂蚁系统
带精英策略的蚂蚁系统(Ant System with elitist strategy, ASelite)是最早的改进蚂蚁系统
遗传算法的精英策略
传统的遗传算法可能会导致最适应个体的遗传信息丢失 精英策略的思想是保留住一代中的最适应个体
最大-最小蚂蚁系统
MMAS和AS主要有三个方面不同:
为了充分利用循环最优解和到目前为止找出的最优 解,在每次循环之后,只有一只蚂蚁进行信息素更 新。这只蚂蚁可能是找出当前循环中最优解的蚂蚁, 也可能是找出从实验开始以来最优解的蚂蚁
为避免搜索的停滞,在每个解的元素上的的信息素 轨迹量的值域范围被限制在 [min,max] 区间内
长度
局部更新规则可以有效地避免蚂蚁收敛到同一路径
最大-最小蚂蚁系统
蚁群算法将蚂蚁的搜索行为集中到最优解的 附近可以提高解的质量和收敛速度,从而改 进算法的性能。但这种搜索方式会使早熟收 敛行为更容易发生
最大-最小蚂蚁系统(Max-Min Ant System, MMAS)能将这种搜索方式和一种能够有效避 免早熟收敛的机制结合在一起,从而使算法 获得最优的性能
k ij
k 1
ikj L Q k,如 果 蚂 蚁 k在 本 次 循 环 中 经 过 路 径 (i,j)
0,否 则
i* j Q L *,如 果 边 (i,j)是 所 找 出 的 最 优 解 的 一 部 分
0,否 则
带精英策略的蚂蚁系统
上式中 * 表示精英蚂蚁引起的路径(i, j)上的信息素量
0,
如 果 (r,s)全 局 最 优 路 径 否 则
蚁群系统全局更新规则
为信息素挥发参数,0< <1
L g b 为到目前为止找出的全局最优路径
全局更新规则的另一个类型称为迭代最优
区别:使用 L i b 代替L g b ,L i b 为当前迭代(循环)中的最优路径 长度
这两种类型对蚁群系统性能的影响差别很小,全局最优 的性能要稍微好一些
状态转移规则为更好更合理地利用新路径和利用关于问 题的先验知识提供了方法
全局更新规则只应用于最优的蚂蚁路径上
在建立问题解决方案的过程中,应用局部信息素更新规 则
蚁群系统状态转移规则
一只位于节点r的蚂蚁通过应用下式给出的规则选 择下一个将要移动到的城市s
s a r g u m a llo a w x e d k { [( r ,u ) ] [( r ,u ) ] } ,如 果 q q 0 按 先 验 知 识 选 择 路 径 S ,否 则
将信息素轨迹初始化为 m a x
信息素轨迹更新
在MMAS中,只有一只蚂蚁用于在每次循环后更新 信息轨迹
经修改的轨迹更新规则如下:
ij(t1) ij(t)bestij
bestij 1f(sbest)
f ( s best ) 表示迭代最优解或全局最优解的值 在蚁群算法中主要使用全局最优解,而在MMAS中
蚁群系统局部更新规则
类似于蚁密和蚁量模型中的更新规则
蚂蚁应用下列局部更新规则对它们所经过的边进行 激素更新
(r,s) (1)(r,s) (r,s)
其 中 ,为 一 个 参 数 , 01
实验发现, 0 市的数量,L n
n
1
是n L由nn 最可近以的产邻生域好启的发结产果生,的其一中个n路是径城
蚂蚁系统中的精英策略
每次循环之后给予最优解以额外的信息素量 这样的解被称为全局最优解(global-best solution) 找出这个解的蚂蚁被称为精英蚂蚁(elitist ants)
带精英策略的蚂蚁系统
信息素根据下式进行更新
ij(t 1 ) ij(t)iji* j
m
其中 ij
则主要使用迭代最优解
信息素轨迹的限制
不管是选择迭代最优还是全局最优蚂蚁来进 行信息素更新,都可能导致搜索的停滞。
停滞现象发生的原因:在每个选择点上一个 选择的信息素轨迹量明显高于其他的选择。
避免停滞状态发生的方法:影响用来选择下 一解元素的概率,它直接依赖于信息素轨迹 和启发信息。通过限制信息素轨迹的影响, 可以很容易地避免各信息素轨迹之间的差异 过大。
其中,S根据下列公式得到
Pijk(t)
ij (t)is(ti)j (t)is (t),
sallowedk
jallowedk
0,
otherwise
蚁群系统状态转移规则
q是在[0,1]区间均匀分布的随机数 q0的大小决定了利用先验知识与探索新路径
之间的相对重要性。 上述状态转移规则被称为伪随机比例规则 特点:倾向于选择短的且有着大量信息素的
信息素轨迹的限制
MMAS对信息素轨迹的最小值和最大值分别施加
了 m i n 和 m a x 的限制,从而使得对所有信息素轨
迹 i j ( t ) ,有
m inij(t) m ax
MMAS收敛:在每个选择点上,其中一个解元素
上的轨迹量为 m a x ,而所有其他可选择的解元素上
的轨迹量为 m i n 。
相关文档
最新文档