人教版数学高二不等式知识点大整合
高中不等式全套知识点总结

高中不等式全套知识点总结一、不等式的基本概念1. 不等式定义不等式是指两个数量在大小上的关系,包含大于、小于、大于等于、小于等于四种关系。
一般用符号“>”表示大于,“<”表示小于,“≥”表示大于等于,“≤”表示小于等于。
2. 不等式的解不等式的解是指满足不等式关系的所有实数集合,解集可以是一个区间、一个集合或者一个无穷集合。
3. 不等式的性质(1)两个不等式如果左右两边分别相等,那么其关系也相等;(2)两个不等式如果相互交换左右两边,那么关系会相反;(3)不等式两边同时加或减同一个数,不等式关系不变;(4)不等式两边同时乘或除同一个正数,不等式关系不变;(5)不等式两边同时乘或除同一个负数,不等式关系反转。
二、一元一次不等式1. 线性不等式线性不等式的一般形式为 ax+b>c 或者ax+b≥c,其中a≠0。
2. 一次不等式的解法(1)基本不等式直接解法:按照不等式的性质逐步解题;(2)图像法:将不等式转化为直线或者直线段的图像,然后通过图像解题;(3)分情况讨论法:根据不等式的取值范围分情况进行讨论,再分别求解。
3. 一次不等式的应用(1)生活中常见的线性不等式问题,比如买苹果不超过20元;(2)工程建设中的线性不等式问题,比如某公式里的参数要求取值范围。
三、一元二次不等式1. 二次不等式定义二次不等式的一般形式为 ax²+bx+c>0 或者ax²+bx+c≥0,其中a≠0。
2. 一元二次不等式解法(1)解法一:配方法、图像法;(2)解法二:利用一元二次不等式的图像特点;3. 一元二次不等式的应用(1)生活中常见的二次不等式问题,比如某项业务的收入和支出之间的关系;(2)工程建设中的二次不等式问题,比如求最大值、最小值。
四、多项式不等式1. 多项式不等式的定义多项式不等式是指由多项式构成的不等式,一般形式为 f(x)>0 或者f(x)≥0。
2. 多项式不等式的解法(1)概念法:直接按照多项式不等式的定义和性质进行解题;(2)函数法:将多项式在坐标系中的图像出发,进行解题。
2024年人教版高二数学复习知识点总结

2024年人教版高二数学复习知识点总结第一章函数与方程1.1 函数与映射函数的定义、函数的性质、函数的四则运算、复合函数、反函数映射的定义、映射的性质、一一映射、单射、满射1.2 一元二次函数及其应用一元二次函数的定义、一元二次函数的图像、一元二次函数的性质、一元二次函数的解析式、一元二次函数的图像与解析式的关系、一元二次函数的最值、一元二次函数的应用1.3 不等式不等式的定义、解不等式、不等式的性质、不等式的运算、一元一次不等式、一元二次不等式1.4 线性规划线性规划的定义、线性规划中的常见问题、线性规划的解法、线性规划的应用第二章三角函数与解三角形2.1 三角函数三角函数的定义、三角函数的性质、三角函数的图像、三角函数的周期、三角函数的关系式2.2 平面向量平面向量的定义、平面向量的运算、平面向量的线性运算、平面向量的数量积、平面向量的夹角、平面向量的投影、平面向量的正交2.3 解三角形解直角三角形、解一般三角形、解等腰三角形、解等边三角形、解特殊三角形、解复合三角形第三章数列与数项级数3.1 数列的概念数列的定义、数列的性质、数列的通项、数列的分类、数列的极限3.2 数列的通项公式等差数列、等比数列、等差数列与等比数列的关系、通项公式的推导方法、通项公式的应用3.3 数列的求和部分和、数列的前n项和、无穷数列的求和、等差数列的求和、等比数列的求和、部分和公式的应用3.4 级数级数的定义、级数的性质、无穷级数的收敛性、级数的求和、级数的应用第四章导数与导数应用4.1 导数的基本概念导数的定义、导数的性质、导数的基本运算、导数与函数的图像关系4.2 导数的应用函数的单调性、函数的极值、函数的曲线与切线、函数的凹凸性、函数的拐点、函数的极限与导数4.3 高阶导数和隐函数高阶导数的定义、高阶导数的求法、高阶导数的性质、隐函数的导数、隐函数的高阶导数第五章积分与积分应用5.1 不定积分不定积分的定义、不定积分的性质、不定积分的基本公式、不定积分的线性运算5.2 定积分定积分的定义、定积分的性质、定积分的线性运算、定积分的几何意义、定积分的求法5.3 微分方程微分方程的定义、微分方程的解、一阶微分方程、二阶微分方程、线性微分方程、微分方程的应用5.4 积分应用反常积分、曲线长度、曲线面积、体积、几何应用、物理应用以上是____年人教版高二数学的复习知识点总结,共计____字。
高二数学不等式知识点

高二数学不等式知识点一、不等式的定义和性质不等式是用不等号连接的数学表达式,包括等于和不等于两种情况。
不等式的解是使得不等式成立的数的集合。
1. 不等式的基本性质- 对于任意实数a,b和c,有以下性质:- 自反性:a ≥ a,a ≤ a;- 对称性:如果a ≥ b,则b ≤ a,如果a > b,则b < a;- 传递性:如果a ≥ b,b ≥ c,则a ≥ c;- 加法性:如果a ≥ b,c ≥ d,则a + c ≥ b + d;- 乘法性:如果a ≥ b,c ≥ 0,则ac ≥ bc;如果c ≤ 0,则ac ≤ bc。
2. 不等式的解集表示法- 图形表示法:将不等式的解集表示在数轴上的一段区间;- 区间表示法:使用不等式的解表示出来的数的区间,如[a, b]表示包括a和b的闭区间;- 集合表示法:使用集合进行表示,如{x | x > 0}表示x大于0的数。
二、一元一次不等式一元一次不等式是指只含有一个未知量的线性不等式。
1. 不等式的解集表示- 当不等式是大于等于或小于等于形式时,解集可用区间表示;- 当不等式是大于或小于形式时,解集可用集合或图形表示。
2. 解一元一次不等式的基本步骤a) 将不等式化为标准形式,即将不等式移项并合并同类项;b) 判断不等式的方向,根据不等式的符号确定区间;c) 画出解集的图形表示或用集合表示出来。
三、一元二次不等式一元二次不等式是指含有一个未知量的二次式与0之间的关系。
1. 不等式的解集表示- 当不等式是大于等于或小于等于形式时,解集可用区间表示;- 当不等式是大于或小于形式时,解集可用集合或图形表示。
2. 解一元二次不等式的基本步骤a) 将不等式化为标准形式,即将不等式移项并合并同类项;b) 判断不等式的方向,根据二次项系数的正负情况确定区间;c) 画出解集的图形表示或用集合表示出来。
四、绝对值不等式绝对值不等式是指含有绝对值符号的不等式。
高二 不等式 知识点总结

高二不等式知识点总结在学习数学的过程中,不等式是一个重要的概念和知识点。
不等式是数学中比较两个表达式大小关系的一种工具。
高二阶段,不等式的学习进一步深入,包括绝对值不等式、一元二次不等式、二元一次不等式等等。
下面将对这些不等式的知识点进行总结。
一、绝对值不等式绝对值不等式是求解绝对值中包含不等号的方程或不等式。
通过对绝对值进行分情况讨论,可以得到不等式的解集。
例如,对于方程 |x - 3| > 2,我们可以将其分成两个情况讨论:当 x - 3 > 2 时,解得 x > 5;当 x - 3 < -2 时,解得 x < 1;综合两个情况,得到解集为 x < 1 或 x > 5。
二、一元二次不等式一元二次不等式是指形如 ax^2 + bx + c > 0 或 ax^2 + bx + c < 0的不等式。
求解一元二次不等式需要使用二次函数的图像和根的性质。
首先,根据二次函数的凹凸性和平移变换的性质,我们可以将一元二次不等式转化为关于根的不等式。
然后,根据一元二次函数的图像特征和判别式的值,可以求解不等式的解集。
例如,对于不等式 x^2 - 2x - 3 > 0,我们可以将其转化为 (x -3)(x + 1) > 0,然后根据一次因式的正负性质,得到解集为 x < -1或 x > 3。
三、二元一次不等式二元一次不等式是指包含两个未知数的一次不等式。
求解二元一次不等式需要使用平面直角坐标系进行图像分析。
首先,我们可以将二元一次不等式转化为关于 x 或 y 的不等式。
然后,通过绘制二元一次不等式的图像和区域判定法,可以确定不等式的解集。
例如,对于不等式 x + 2y > 4,我们可以将其转化为 y > -0.5x + 2,并绘制出直线 y = -0.5x + 2。
然后,通过判定直线上或下的点来确定解集。
总结:高二阶段学习的不等式主要包括绝对值不等式、一元二次不等式和二元一次不等式。
高二数学基本不等式知识点

高二数学基本不等式知识点一、不等式的基本性质在学习不等式之前,我们先来了解一下不等式的基本性质。
不等式具有以下性质:1. 若不等式两边同时加(减)一个相同的正(负)数,不等式的不等关系不变。
2. 若不等式两边同时乘(除)一个相同的正(负)数,不等式的不等关系不变。
但是需注意,当乘(除)以一个负数时,不等号方向需要颠倒。
3. 若不等式两边交换位置,不等号方向需要颠倒。
二、基本不等式1. 两个正数的不等式:若a > 0,b > 0,则a > b等价于a² > b²。
2. 两个负数的不等式:若a < 0,b < 0,则a > b等价于a² < b²。
3. 正负数的不等式:若a > 0,b < 0,则a > b等价于a² < b²。
4. 平方不等式:若x > 0,y > 0,则x < y等价于√x < √y。
同理,对于x < 0,y < 0的情况,不等号方向需要颠倒。
5. 两个正数与一个负数的不等式:若a > 0,b > 0,c < 0,则a > b等价于 -a < -b,a * c > b * c。
三、不等式的解集表示法当我们解不等式时,需要将解表示出来。
不等式的解集表示法有以下几种形式:1. 区间表示法:用数轴上的区间表示解集。
例:对于不等式x > 3,解集可以用开区间(3, +∞)表示。
2. 图形表示法:我们可以通过图形的方式表示解集。
例:对于不等式x ≤ -2,解集可以用沿x轴方向的线段表示。
3. 集合表示法:用集合的形式表示解集。
例:对于不等式2 < x ≤ 5,解集可以用集合表示为{x | 2 < x ≤ 5}。
四、不等式的应用不等式是数学中常见的工具,在现实生活中也有广泛的应用。
完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
高中不等式知识点总结(最新最全)

高中不等式知识点总结(最新最全)不等式的定义a^2+b^2≥2ab,通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。
总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
1.不等式的解法(1)同解不等式((1)与同解;(2)与同解,与同解;(3)与同解);2.一元一次不等式情况分别解之。
3.一元二次不等式或分及情况分别解之,还要注意的三种情况,即或或,最好联系二次函数的图象。
4.分式不等式分式不等式的等价变形:>0f(x)·g(x)>0,≥0。
5.简单的绝对值不等式解绝对值不等式常用以下等价变形:|x|0),|x|>ax2>a2x>a或x<-a(a>0)。
一般地有:|f(x)|g(x)f(x)>g(x)或f(x)6.指数不等式;;8.线性规划(1)平面区域一般地,二元一次不等式在平面直角坐标系中表示某一侧所有点组成的平面区域。
我们把直线画成虚线以表示区域不包括边界直线。
当我们在坐标系中画不等式所表示的平面区域时,此区域应包括边界直线,则把直线画成实线。
说明:由于直线同侧的所有点的坐标代入,得到实数符号都相同,所以只需在直线某一侧取一个特殊点,从的正负即可判断表示直线哪一侧的平面区域。
特别地,当时,通常把原点作为此特殊点。
(2)有关概念引例:设,式中变量满足条件,求的最大值和最小值。
由题意,变量所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域。
由图知,原点不在公共区域内,当时,,即点在直线:上,作一组平行于的直线:,,可知:当在的右上方时,直线上的点满足,即,而且,直线往右平移时,随之增大。
高中不等式知识点归纳总结

高中不等式知识点总结1. 不等式的定义和基本性质不等式是数学中用来表示大小关系的符号。
一般地,设a、b是实数,可以有以下四种不等式关系:•$ a < b $ :表示a小于b,即a严格小于b;•$ a > b $ :表示a大于b,即a严格大于b;•$ a b $ :表示a小于等于b,即a小于或等于b;•$ a b $ :表示a大于等于b,即a大于或等于b。
基本性质:•对于不等式的加减运算:若a小于等于b,则a+c小于等于b+c,a-c小于等于b-c(c为实数);•对于不等式的乘法运算:若a小于等于b且c大于0,则ac小于等于bc,若c小于0,则ac大于等于bc;•对于不等式的除法运算:若a小于等于b且c大于0,则a/c小于等于b/c,若c小于0,则a/c大于等于b/c(c不等于0)。
2. 一元一次不等式2.1 不等式的解集表示一元一次不等式的解集可以用数轴上的区间表示。
对于形如ax+b>0或ax+b<0的一元一次不等式,可以先求出方程的零点x=-b/a,再根据a的正负判断不等式的解集:•当a>0时,不等式的解集为x<−b/a或x>−b/a;•当a<0时,不等式的解集为x>−b/a或x<−b/a。
2.2 一元一次不等式的性质•当且仅当不等式两边同时加上(或减去)同一个正数时,不等号的方向不变;•当且仅当不等式两边同时乘以(或除以)同一个正数时,不等号的方向不变;•当且仅当不等式两边同时乘以(或除以)同一个负数时,不等号的方向改变。
3.1 不等式的解集表示一元二次不等式的解集可以用数轴上的区间表示。
对于形如ax2+bx+c>0或ax2+bx+c<0的一元二次不等式,可以先求出抛物线的顶点和判别式D的值,再根据D的正负判断不等式的解集。
•当a>0时,不等式的解集为抛物线顶点的左右两侧;•当a<0时,不等式的解集为抛物线顶点的外侧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 不等式一、不等式的基本性质为:① ;② ;③ ;④ ; ⑤ ;⑥ ; ⑦ ;⑧ ; 注意:特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。
二、均值不等式:两个数的算术平均数不小于它们的几何平均数。
若0,>b a ,则ab b a ≥+2(当且仅当b a =时取等号) 基本变形:①≥+b a ;≥+2)2(b a ;②2_____________222b a b a ab +≤≤≤+ ③若R b a ∈,,则ab b a 222≥+,222)2(2b a b a +≥+;④_________)2(_______2≤+≤b a 基本应用:①放缩,变形;②求函数最值:注意:①一正二定三取等;②积定和小,和定积大。
当p ab =(常数),当且仅当 时, ;当S b a =+(常数),当且仅当 时, ;常用的方法为:拆、凑、平方; 如:①函数)21(4294>--=x x x y 的最小值 。
②已知510<<x ,则)51(2x x y -=的最大值 。
③x x y 2cos sin =,)2,0(π∈x 的最大值 。
④若正数y x ,满足12=+y x ,则yx 11+的最小值 。
推广:①若0,,>c b a ,则33abc c b a ≥++(当且仅当c b a ==时取等号) 基本变形:≥++c b a ;≥++3)3(c b a ; ②若0,,,21>n a a a ,则n n n a a a na a a 2121≥+++(当且n a a a === 21时取等号)三、绝对值不等式: ≤ ≤ ≤注意:⇔+<+||||||b a b a ;⇔+=+||||||b a b a ;⇔+<-||||||b a b a ;⇔+=-||||||b a b a ; ⇔+<-||||||b a b a ;⇔+=-||||||b a b a ; ⇔-<-||||||b a b a ;⇔-=-||||||b a b a ;四、常用的基本不等式:(1)设R b a ∈,,则0)(,022≥-≥b a a (当且仅当 时取等号)(2)a a ≥||(当且仅当 时取等号);a a -≥||(当且仅当 时取等号)(3)若0,0>>b a ,则2233ab b a b a +≥+;(4)若R c b a ∈,,,则ca bc ab c b a ++≥++222(5)若R c b a ∈,,,则)(3)()(32222c b a c b a ca bc ab ++≤++≤++(6)柯西不等式:设R b b a a ∈2121,,,,则))(()(2221222122211b b a a b a b a ++≤+ 注意:可从向量的角度理解:设),(),,(2121b b b a a a ==,则222)(b a b a ≤⋅ (7)b a ab b a 110,<⇒>>;⇔<ba 11 ; (8)+∈>R mb a ,0,,若1<a b ,则m a m b a b ++<;若1>a b ,则m a m b a b ++>; 五、证明不等式常用方法:(1)比较法:①作差比较:B A B A ≤⇔≤-0;②作商比较:B A B BA ≥⇔>≥)0(1 作差比较的步骤:(1)作差:对要比较大小的两个数(或式)作差。
(2)变形:对差进行因式分解或配方成几个数(或式)的完全平方和。
(3)判断差的符号:结合变形的结果及题设条件判断差的符号。
注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。
(2)综合法:由因导果。
(3)分析法:执果索因。
基本步骤:要证……只需证……,只需证……(4)反证法:正难则反。
(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。
放缩法的方法有:(1)添加或舍去一些项,如:a a >+12;n n n >+)1((2)将分子或分母放大(或缩小)(3)利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅;2)1()1(++<+n n n n (4)利用常用结论: Ⅰ、m a m b a b R m b a ++<∈>>+,,0; Ⅱ、k k k k k 21111<++=-+; Ⅲ、k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k(程度大) Ⅳ、)1111(21)1)(1(111122+--=+-=-<k k k k k k ; (程度小) Ⅴ、)1(2121--=-+<k k k k k ;121++>k k k (6)判别式法:与一元二次函数有关的或能通过等价变形转化成一元二次方程的根据其有实数解或无解建立不等式关系。
如:证明23112122≤+++≤x x x ,可转化为求函数1122+++=x x x y 的值域。
(7)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。
如:已知222a y x =+,可设θθsin ,cos a y a x ==;已知122≤+y x ,可设θθsin ,cos r y r x ==(10≤≤r ); 已知12222=+by a x ,可设θθsin ,cos b y a x ==;已知12222=-by a x ,可设θθtan ,sec b y a x ==; (8)构造法:通过构造函数、方程、数列、复数(向量)或不等式来证明不等式;六、不等式的解法:(1)如果两个不等式的解集相等,那么这两个等式就叫做同解不等式,解不等式主要是依据不等式的性质和同解变形原理,求解原不等式的同解不等式。
(2)不等式的同解原理主要有:1、不等式两边都加上(或减去)同一个数或同一个整式,所得不等式与原不等式同解。
2、不等式两边都乘上(或除以)同一个正数或同一个大于零的整式,所得不等式与原不等式同解。
3、不等式两边都乘以(或除以)同一个负数或同一个小于零的整式,并把不等号改变方向后,所得不等式与原不等式同解。
(3)一元一次不等式:Ⅰ、)0(≠>a b ax :⑴若0>a ,则 ;⑵若0<a ,则 ;Ⅱ、)0(≠<a b ax :⑴若0>a ,则 ;⑵若0<a ,则 ;(4)一元二次不等式: 一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零; 注:要对∆进行讨论:Ⅰ、)0(02>>++a c bx ax :⑴ ;⑵ ;⑶ ; Ⅱ、)0(02><++a c bx ax :⑴ ;⑵ ;⑶ ;(5)绝对值不等式:若0>a ,则⇔<a x || ;⇔>a x || ;⑴⇔<)(|)(|x g x f ;⑵⇔>)(|)(|x g x f ; ⑶⇔<|)(||)(|x g x f ;⑷含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。
注意:Ⅰ、几何意义:||x : ;||m x -: ;Ⅱ、解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;①若0>a 则=||a ;②若0=a 则=||a ;③若0<a 则=||a ;⑵通过两边平方去绝对值;需要注意的是不等号两边为非负值。
(6)高次不等式:化成标准型)0(0)())()(()(321<>----=n x x x x x x x x x P ,利用表解法和序轴表根法写出解集。
序轴表根法求解的步骤:⑴将每个因式的根标在数轴上;⑵从右上方依次通过每个点画出曲线,注意: ;⑶根据曲线显示的)(x P 值的符号变化写出不等式的解集。
注意:每个因式中x 前的系数都为正值。
(7)分式不等式的解法:通解变形为整式不等式; ⑴⇔>0)()(x g x f ;⑵⇔<0)()(x g x f ; ⑶⇔≥0)()(x g x f ;⑷⇔≤0)()(x g x f ; (8)无理不等式的解法:通解变形为有理不等式; ⑴⇔<)()(x g x f ;⑵⇔<)()(x g x f ; ⑶⇔>)()(x g x f ;注意:⑴保证根式有意义;⑵取根号的方法是平方、换元,通过两边平方去根号,不等式两边要为非负值。
(9)指数不等式:⑴⇔≠>>>)10,0()(a a b b ax f 且 ; ⑵⇔≠>>)10()()(a a a a x g x f 且 ;⑶)0(0)()(2<>+⋅+⋅C a B a A x f x f 利用换元法,令)(x f a t =将不等式化为一元二次不等式来解。
注意:对底数的讨论。
(10)对数不等式:⑴⇔>b x f a )(log ;⑵⇔>)(log )(log x g x f a a ;⑶)0(0)(log )]([log 2<>+⋅+⋅C x f B x f A a a 利用换元法,令)(log x f t a =将不等式化为一元二次不等式来解。
注意:⑴对底数的讨论;⑵真数大于零;⑶解指数、对数不等式的一般步骤:统一底数→同解变形→分类讨论(底数);(11)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。
(12)解含有参数的不等式:一般是对含参数的不等式进行恰当的分类和讨论: ⑴对二次项系数含有参数的一元二次不等式,要注意二次项系数为零转化为一元一次不等式的问题。
⑵对含参数的一元二次不等式,还要分0>∆、0=∆、0<∆讨论。
⑶对一元二次不等式和分式不等式转化为整式不等式后有根,且根为21,x x (或更多)但含参数,要分21x x >、21x x =、21x x <讨论。
⑷对指数、对数不等式要注意对底数分1>a 、10<<a 进行讨论。
如:(1))1(12)1(≠>--a x x a ;(2)022>---x a x a。