最新人教版高二数学必修二知识点

合集下载

高中数学人教版必修2知识点总结

高中数学人教版必修2知识点总结

高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当 90=α时,k 不存在。

②过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。

②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x④截矩式:1x ya b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。

⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。

人教版高中数学必修二知识点大全[整理版]

人教版高中数学必修二知识点大全[整理版]

人教版高中数学必修二知识点大全[整理版]知识点1: 函数的概念和性质- 函数的定义:函数是一种特殊的关系,每个自变量都对应唯一的一个因变量。

- 函数的符号表示:通常用字母 f、g、h 等表示函数。

- 定义域和值域:函数的定义域是指自变量的取值范围,值域是函数的所有可能的因变量值。

- 奇函数和偶函数:对于任意的 x,若有 f(-x) = -f(x) 成立,则函数 f(x) 是奇函数;若有 f(-x) = f(x) 成立,则函数 f(x) 是偶函数。

知识点2: 一次函数与二次函数- 一次函数:一次函数的一般形式为 y = kx + b,其中 k 是斜率,b 是截距。

一次函数的图像是一条直线。

- 二次函数:二次函数的一般形式为 y = ax^2 + bx + c,其中 a、b、c 是常数且a ≠ 0。

二次函数的图像是一条抛物线。

知识点3: 指数函数和对数函数- 指数函数:指数函数的一般形式为 y = a^x,其中 a 是底数,x 是指数。

指数函数的图像呈现递增或递减的特点。

- 对数函数:对数函数的一般形式为 y = loga(x),其中 a 是底数,x 是函数值。

对数函数是指数函数的反函数,可以互相转化。

知识点4: 三角函数- 正弦函数:正弦函数是一个周期为2π 的周期函数,一般形式为 y = A sin(Bx + C),其中 A 是振幅,B 是周期系数,C 是相位角。

- 余弦函数:余弦函数也是一个周期为2π 的周期函数,一般形式为 y = A cos(Bx + C)。

- 正切函数:正切函数是一个无穷区间上的周期函数,一般形式为 y = A tan(Bx + C),其中 A 是振幅,B 是周期系数,C 是相位角。

以上是人教版高中数学必修二的知识点大全。

希望对你的学习有所帮助!。

(完整版)新人教版高中数学必修2知识点总结

(完整版)新人教版高中数学必修2知识点总结

高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱'''''E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''E D C B A P -几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

新人教版高中数学必修二全册教学课件ppt

新人教版高中数学必修二全册教学课件ppt

答案
返回
题型探究
重点难点 个个击破
类型一 旋转体的结构特征 例1 判断下列各命题是否正确: (1)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线; 解 错. 由圆柱母线的定义知,圆柱的母线应平行于轴.
解析答案
(2)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几 何体是圆台; 解 错. 直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与 一个圆锥组成的简单组合体,如图所示.
答案
球的结构特征

图形及表示
定义:以 半圆的直径 所在直线为旋转轴, 半圆面旋转一周形成的旋转体叫做球体, 简称球
相关概念: 球心:半圆的 圆心 半径:半圆的 半径 直径:半圆的 直径
图中的球表示为: 球O
答案
知识点五 简单组合体
思考 下图中的两个空间几何体是柱、锥、台、球体中的一种吗? 它们是如何构成的?


上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物
栏 目
和它一样,也都是由一些简单几何体组合而成的组合体.本节我
开 关
们就来学习旋转体与简单组合体的结构特征.
填一填 研一研 练一练
研一研·问题探究、课堂更高效
探究点一 圆柱的结构特征
问题 1 如图所示的空间几何体叫做圆柱,那么圆
柱是怎样形成的呢?与圆柱有关的几个概念是
为旋转轴,将直角梯形绕旋转轴旋转一周而形成的旋转
体叫做圆台
相关概念:
圆台的轴: 旋转轴
圆台的底面: 垂直于轴 的边旋转一周所形成的圆面
圆台的侧面: 不垂直于轴 的边旋转一周所形成的曲面 图中圆台表示为:
母线:无论旋转到什么位置,不垂直于轴的边

新教材人教版高中数学必修第二册 知识点梳理

新教材人教版高中数学必修第二册 知识点梳理

高中数学 必修2 第六章平面向量设为所在平面上一点,角所对边长分别为,则(1)为的外心. (2)为的重心.(3)为的垂心. (4)为的内心.【6.1】平面向量的概念1、向量的定义及表示(向量无特定的位置,因此向量可以作任意的平移) (1)定义:既有大小又有方向的量叫做向量.(2)表示:①有向线段:带有方向的线段,它包含三个要素:起点、方向、长度; ②向量的表示:2、向量的有关概念:相等向量是平行(共线)向量,但平行(共线)向量不一定是相等向量 向量名称 定义零向量 长度为0的向量,记作0 单位向量 长度等于1个单位长度的向量平行向量 (共线向量) 方向相同或相反的非零向量,向量a ,b 平行,记作a ∥b ,规定:零向量与任一向量平行相等向量长度相等且方向相同的向量;向量a ,b 相等,记作a =b【6.2】平面向量的运算1、向量的加法(1)定义:求两个向量和的运算. (2)运算法则: 向量求和的法则 图示几何意义三角形法则使用三角形法则时要注意“首尾相接”的条件,而向量加法的平行四边法则应用的前提是共起点已知非零向量a ,b ,在平面内任取一点A ,作AB ⃗⃗⃗⃗⃗ =a ,BC ⃗⃗⃗⃗⃗ =b ,则向量AC ⃗⃗⃗⃗⃗ 叫做a 与b 的和,记作a +b ,即a +b =AB ⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ 平行四边形法则以同一点O 为起点的两个已知向量a ,b ,以OA ,OB 为邻边作▱OACB ,则以O 为起点的向量OC ⃗⃗⃗⃗⃗ (OC 是▱OACB 的对角线)就是向量a 与b 的和(3)规定:对于零向量与任意向量a ,规定a +0=0+a =a .(4)位移的合成可以看作向量加法三角形法则的物理模型;力的合成可以看作向量加法平行四边形ABC ∆,,A B C ,,a b c O ABC ∆222OA OB OC ⇔==O ABC ∆0OA OB OC ⇔++=O ABC ∆OA OB OB OC OC OA ⇔⋅=⋅=⋅O ABC ∆0aOA bOB cOC ⇔++=法则的物理模型.(5)一般地我们有|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. (6)向量加法的运算律与实数加法的运算律相同 2、向量的减法(1)相反向量(利用相反向量的定义,-AB ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ 就可以把减法转化为加法) 定义:我们规定,与向量a 长度相等,方向相反的向量,叫做a 的相反向量性质:①对于相反向量有:a +(-a )=0;②若a ,b 互为相反向量,则a =-b ,a +b =0;③零向量的相反向量仍是零向量(2)向量减法运算(向量的减法是向量加法的一种逆运算) 定义:求两个向量差的运算叫做向量的减法.a -b =a +(-b ),减去一个向量就等于加上这个向量的相反向量.几何意义:a -b 表示为从向量b 的终点指向向量a 的终点的向量.3、向量的数乘运算(实数与向量可以进行数乘运算,但不能进行加减运算)(1)定义:规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作:λa ,它的长度和方向规定如下:①|λa |=|λ||a |;②当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反. ③由①可知,当λ=0时,λa =0;由①②知,(-1)a =-a .(2)运算律:设λ,μ为任意实数,则有:①λ(μa )=(λμ)a ;②(λ+μ)a =λa +μa ;③λ(a +b )=λa +λb ;特别地,有(-λ)a =-(λa )=λ(-a );λ(a -b )=λa -λb .(3)向量的加、减、数乘运算统称为向量的线性运算,向量的线性运算结果仍是向 量.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1 a ±μ2b )=λμ1 a ±λμ2 b .(4)共线向量定理:向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .也就是说,位于同一直线上的向量可以由位于这条直线上的一个非零向量表示. 4、向量的数量积(1)向量的夹角:两向量的夹角与两直线的夹角的范围不同,向量夹角范围是[0,π],而两直线夹角的范围为[0,π2](2)向量的夹角的定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作向量OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,则∠a O b =θ(0≤θ≤π)叫做向量a 与b 的夹角. 当θ=0时,a 与b 同向;当θ=π时,a 与b 反向. 如果a 与b 的夹角是π2,我们说a 与b 垂直,记作a ⊥b .(3)向量的数量积及其几何意义:向量的数量积是一个实数,不是向量,它的值可正可负可为0 (4)向量的数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cosθ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cosθ.规定:零向量与任一向量的数量积为0.(5)投影:如图,设a ,b 是两个非零向量,AB ⃗⃗⃗⃗⃗ =a ,CD ⃗⃗⃗⃗⃗ =b ,我们考虑如下变换:过AB ⃗⃗⃗⃗⃗ 的起点a 和终点b ,分别作CD ⃗⃗⃗⃗⃗ 所在直线的垂线,垂足分别为A 1,B 1得到A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,我们称上述变换为向量a 向向量b 投影,A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 叫做向量a 在向量b 上的投影向量.(6)向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则①a ·e =e ·a =|a |cosθ②a ⊥b ⇔a ·b =0③当a 与b 同向时,a ·b =|a ||b |;当a 与b 反向时,a ·b =-|a ||b |,特别地,a ·a =|a |2或|a |=√a ·a .在求解向量的模时一般转化为模的平方,但不要忘记开方④|a ·b |≤|a |·|b |.(7)运算律:①a ·b =b ·a ;②(a +b )·c =a ·c +b ·c (8)运算性质:类比多项式的乘法公式【6.3】平面向量基本定理及坐标表示1、平面向量基本定理(定理中要特别注意向量e 1与向量e 2是两个不共线的向量) 条件:e 1,e 2是同一平面内的两个不共线向量结论:对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1 e 1+λ2 e 2 基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底 2、平面向量的坐标表示(1)基底:在平面直角坐标系中,设与x 轴、y 轴方向相同的两个单位向量分别为i ,j ,取{i ,j }作为基底.(2)坐标:对于平面内的一个向量a ,由平面向量基本定理可知,有且仅有一对实数x ,y ,使得a =x i +y j ,则有序数对(x ,y )叫做向量a 的坐标. (3)坐标表示:a =(x ,y ).(4)特殊向量的坐标:i =(1,0),j =(0,1),0=(0,0). (5)平面向量的加减法坐标运算(可类比实数的加减运算法则进行记忆) 设向量a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则有下表:设向量a =(x ,y ),则有λa =(λx ,λy ),这就是说实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.(7)平面向量共线的坐标表示:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.向量a ,b (b≠0)共线的充要条件是x 1 y 2-x 2 y 1=0.(8)中点坐标公式:若P 1,P 2的坐标分别是(x 1,y 1),(x 2,y 2),线段P 1P 2的中点P 的坐标为(x ,y ),则x =x 1+x 22y =y 1+y 22.此公式为线段P 1 P 2的中点坐标公式.(9)两向量的数量积与两向量垂直的坐标表示已知两个非零向量,向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ. 数量积:两个向量的数量积等于它们对应坐标的乘积的和,即:a ·b =x 1 x 2+y 1 y 2 向量垂直:a ⊥b ⇔x 1 x 2+y 1 y 2=0(10)与向量的模、夹角相关的三个重要公式 ①向量的模:设a =(x ,y ),则|a |=√x 2+y 2.②两点间的距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB ⃗⃗⃗⃗⃗ |=√(x 1-x 2)2+(y 1-y 2)2.③向量的夹角公式:设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则θ=a ·b |a||b|=x 1x 2+y 1y 2√x 12+y 12√x 22+y 22【6.4】平面向量的应用1、平面几何中的向量方法用向量方法解决平面几何问题的“三步曲”(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系;(3)把运算结果“翻译”成几何关系. 2、向量在物理中的应用举例(1)向量与力:向量是既有大小,又有方向的量,它们可以有共同的起点,也可以没有共同的起点.而力是既有大小和方向,又有作用点的量.用向量知识解决力的问题时,往往把向量平移到同一作用点上.(2)向量与速度、加速度、位移:速度、加速度、位移的合成与分解,实质上就是向量的加、减运算.用向量解决速度、加速度、位移等问题,用的知识主要是向量的线性运算,有时也借助于坐标来运算.(3)向量与功、动量:力所做的功是力在物体前进方向上的分力与物体位移的乘积,它的实质是力和位移两个向量的数量积,即W =F ·s =|F ||s |cosθ(θ为F 和s 的夹角).动量m ν实际上是数乘向量. 3、余弦定理、正弦定理(1)余弦定理的表示及其推论(SAS 、SSS 、SSA )文字语言:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.符号语言:;;.在△ABC 中,有2222cos a b c bc =+-A ,推论:222cos 2b c a bc+-A =(2)解三角形:一般地,三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形. (3)正弦定理的表示(AAS 、SSA )文字语言:在一个三角形中,各边和它所对角的正弦的比相等,该比值为该三角形外接圆的直径. 符号语言:在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则2sin sin sin a b cR C===A B (R 为△ABC 的外接圆的半径)(4)正弦定理的变形形式变形形式是在三角形中实现边角互化的重要公式 设三角形的三边长分别为a ,b ,c ,外接圆半径为R ,正弦定理有如下变形: ①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2bR B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ; (5)三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B . (6)相关术语①仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯2222cos a b c bc A =+-2222cos b c a ca B =+-2222cos c a b ab C =+-角,如图所示.②方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图1所示).③方位角的其他表示——方向角正南方向:指从原点O出发的经过目标的射线与正南的方向线重合,即目标在正南的方向线上.依此可类推正北方向、正东方向和正西方向.东南方向:指经过目标的射线是正东和正南的夹角平分线(如图2所示).(7)解三角形应用题解题思路:基本步骤:运用正弦定理、余弦定理解决实际问题的基本步骤如下:①分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);②建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解三角形的数学模型.③求解:利用正弦定理、余弦定理解三角形,求得数学模型的解.④检验:检验所求的解是否符合实际问题,从而得出实际问题的解.第七章复数【7.1】复数的概念1、数系的扩充和复数的概念(1)复数的定义:形如a +bi (a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,全体复数所构成的集合C ={a +bi |a ,b ∈R }叫做复数集.(2)复数通常用字母z 表示,代数形式为z =a +bi (a ,b ∈R ),其中a 与b 分别叫做复数z 的实部与虚部.(3)复数相等:在复数集C ={a +bi |a ,b ∈R }中任取两个数a +bi ,c +di (a ,b ,c ,d ∈R ),我们规定:a +bi 与c +di 相等当且仅当a =c 且b =d . (4)复数的分类①对于复数a +bi (a ,b ∈R ),当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +bi (a ,b ∈R )可以分类如下:复数{实数(b =0)虚数(b ≠0)(当a =0时为纯虚数),②集合表示:2、复数的几何意义(1)复平面(复平面中点的横坐标表示复数的实部,点的纵坐标表示复数的虚部)(2)复数的几何意义①复数z =a +bi (a ,b ∈R )一一对应↔ 复平面内的点z (a ,b ). ②复数z =a +bi (a ,b ∈R )一一对应↔ 平面向量OZ⃗⃗⃗⃗⃗ . (3)复平面上的两点间的距离公式:(,).(4)复数的模①定义:向量OZ⃗⃗⃗⃗⃗ 的模叫做复数z =a +bi (a ,b ∈R )的模或绝对值. 12||d z z =-=111z x y i =+222z x y i =+②记法:复数z =a +bi 的模记为|z |或|a +bi |. ③公式:|z |=|a +bi |=√a 2+b 2(a ,b ∈R ).如果b =0,那么z =a +bi 是一个实数,它的模就等于|a |(a 的绝对值).(5)共轭复数:一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,虚部不等于0的两个共轭复数也叫做共轭虚数.复数z 的共轭复数用z̅表示,即如果z =a +bi ,那么z̅=a -bi .(6)两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。

人教版高二数学必修二知识点讲解

人教版高二数学必修二知识点讲解

人教版高二数学必修二知识点讲解
人教版高二数学必修二主要包括以下知识点:
1.数列和数列的极限:包括等差数列、等比数列、等差数列的前n项和、等比数列的前n项和、通项公式等内容。

同时,还要了解数列的极限概念,以及数列极限的性质和计算方法。

2.函数的概念和性质:包括函数的定义、函数的性质和图像、函数的分类、函数的运算,以及函数的图像变换等内容。

3.三角函数的知识:包括三角函数的定义、三角函数的基本性质、三角函数的图像、三角函数的逆函数,以及三角函数的复合函数等。

4.三角函数的应用:包括解三角函数方程和不等式、解三角形、用三角函数表示复合运动等内容。

5.平面向量的运算:包括向量的概念、向量的加法、减法、数量乘法、点乘、向量的模、向量的夹角、向量的共线性和垂直等内容。

6.平面向量的坐标表示和空间向量:包括向量的坐标表示、向量的共线性和垂直、点到直线的距离,以及空间中向量的概念、向量的共线性和垂直等。

7.空间中的平面和直线:包括平面的点法式方程、平面的一般方程、平面的交线,以及直线的方向向量、直线的参数方程、直线的点向式和直线的位置关系等。

8.解析几何中的应用:包括平面的相关应用,如平面与平面的位置关系、平面与直线的位置关系;直线与直线的位置关系、直线与平面的位置关系等。

以上是人教版高二数学必修二的主要知识点,希望对你有帮助。

如有其他问题,请继续提问。

人教版高中数学【必修二】[知识点整理及重点题型梳理]_圆的方程_提高

人教版高中数学【必修二】[知识点整理及重点题型梳理]_圆的方程_提高

人教版高中数学必修二知识点梳理重点题型(常考知识点)巩固练习圆的方程【学习目标】1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程.2.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.【要点梳理】【圆的方程370891 知识要点】 要点一:圆的标准方程222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径.要点诠释:(1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是222x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时:||||a b r ==;过原点:222a b r +=(2)圆的标准方程222()()x a y b r -+-=⇔圆心为()a b ,,半径为r ,它显现了圆的几何特点.(3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法.要点二:点和圆的位置关系 如果圆的标准方程为222()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有(1)若点()00M x y ,在圆上()()22200||CM r x a y b r ⇔=⇔-+-=(2)若点()00M x y ,在圆外()()22200||CM r x a y b r ⇔>⇔-+->(3)若点()00M x y ,在圆内()()22200||CM r x a y b r ⇔<⇔-+-<要点三:圆的一般方程当2240D E F +->时,方程220x y Dx Ey F ++++=叫做圆的一般方程.,22D E ⎛⎫-- ⎪⎝⎭为圆心,为半径. 要点诠释:由方程220x y Dx Ey F ++++=得22224224D E D E F x y +-⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭(1)当2240D E F +-=时,方程只有实数解,22D E x y =-=-.它表示一个点(,)22D E--. (2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.(3)当2240D E F +->时,可以看出方程表示以,22D E ⎛⎫-- ⎪⎝⎭为半径的圆. 要点四:几种特殊位置的圆的方程求圆的方程常用“待定系数法”.用“待定系数法”求圆的方程的大致步骤是: (1)根据题意,选择标准方程或一般方程.(2)根据已知条件,建立关于a b r 、、或D E F 、、的方程组.(3)解方程组,求出a b r 、、或D E F 、、的值,并把它们代入所设的方程中去,就得到所求圆的方程. 要点六:轨迹方程求符合某种条件的动点的轨迹方程,实质上就是利用题设中的几何条件,通过“坐标法”将其转化为关于变量,x y 之间的方程.1.当动点满足的几何条件易于“坐标化”时,常采用直接法;当动点满足的条件符合某一基本曲线的定义(如圆)时,常采用定义法;当动点随着另一个在已知曲线上的动点运动时,可采用代入法(或称相关点法).2.求轨迹方程时,一要区分“轨迹”与“轨迹方程”;二要注意检验,去掉不合题设条件的点或线等. 3.求轨迹方程的步骤:(1)建立适当的直角坐标系,用(,)x y 表示轨迹(曲线)上任一点M 的坐标; (2)列出关于,x y 的方程;(3)把方程化为最简形式;(4)除去方程中的瑕点(即不符合题意的点); (5)作答. 【典型例题】类型一:圆的标准方程例1.求满足下列条件的各圆的方程: (1)圆心在原点,半径是3;(2)已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上; (3)经过点()5,1P ,圆心在点()8,3C -.【思路点拨】一般情况下,如果已知圆心或易于求出圆心,可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.【答案】(1)229x y +=(2)22(2)10x y -+=(3)()()228325x y -++= 【解析】(1)229x y +=(2)线段AB 的中垂线方程为240x y --=,与x 轴的交点(2,0)即为圆心C 的坐标,所以半径为||CB =,所以圆C 的方程为22(2)10x y -+=.(3)解法一:∵圆的半径||5r CP ===,圆心在点()8,3C -∴圆的方程是()()228325x y -++=解法二:∵圆心在点()8,3C -,故设圆的方程为()()22283x y r -++=又∵点()5,1P 在圆上,∴()()2225813r -++=,∴225r =∴所求圆的方程是()()228325x y -++=.【总结升华】确定圆的方程的主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a ,b )和半径r ,一般步骤为:(1)根据题意,设所求的圆的标准方程为(x―a)2+(y―b)2=r 2; (2)根据已知条件,建立关于a 、b 、r 的方程组;(3)解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.举一反三:【变式1】圆心是(4,―1),且过点(5,2)的圆的标准方程是( ) A .(x―4)2+(y+1)2=10 B .(x+4)2+(y―1)2=10C .(x―4)2+(y+1)2=100D .22(4)(1)x y -++=【答案】A例2.(2015秋 湖北宜昌月考)求下列各圆的标准方程: (1)圆心在直线y =0上,且圆过两点A (1,4),B (3,2);(2)圆心在直线2x +y =0上,且圆与直线x +y ―1=0切于点M (2,―1). 【思路点拨】(1)求出圆心和半径,即可求圆C 的方程;(2)设出圆心坐标,列方程组解之.其中由圆心在直线2x +y =0上得出一个方程;再由圆心到直线x +y ―1=0的距离即半径得出另一个方程.【答案】(1)22(1)20x y ++=;(2)22(1)(2)2x y -++= 【解析】(1)∵圆心在直线y =0上, ∴设圆心坐标为C (a ,0), 则|AC |=|BC |,= 即 22(1)16(3)4a a -+=-+, 解得a =―1,即圆心为(―1,0),半径||r AC ===, 则圆的标准方程为 22(1)20x y ++=, (2)设圆心坐标为(a ,b ),则20a b +=⎧⎪=解得a =1,b =-2,∴r =∴要求圆的方程为 22(1)(2)2x y -++=. 举一反三:【圆的方程370891 典型例题1】【变式1】(1)过点(2,3),(2,5)A B ---且圆心在直线230x y --=上;(2)与x 轴相切,圆心在直线30x y -=上,且被直线0x y -=截得的弦长为 【答案】(1)22(1)(2)10x y +++=(2)22(1)(3)9x y -+-=或22(1)(3)9x y +++= 【解析】(1)设圆的方程为:()222()x a y b r -+-=,则()()()()2222222325230a b r a b r a b ⎧-+--=⎪⎪--+--=⎨⎪--=⎪⎩,解得:21,2,10a b r =-=-= 所求圆的方程为:22(1)(2)10x y +++=(2)设圆的方程为:()222()x a y b r -+-=,则()222230142r b a b a b r ⎧=⎪⎪-=⎨⎪-+=⎪⎩解得:2139a b r ⎧=⎪=⎨⎪=⎩或2139a b r ⎧=-⎪=-⎨⎪=⎩ 所求圆的方程为:22(1)(3)9x y -+-=或22(1)(3)9x y +++=.类型二:圆的一般方程例3.已知直线x 2+y 2―2(t+3)x+2(1―4t 2)y+16t 4+9=0表示一个圆. (1)求t 的取值范围;(2)求这个圆的圆心和半径;(3)求该圆半径r 的最大值及此时圆的标准方程.【思路点拨】若一个圆可用一般方程表示,则它具备隐含条件D 2+E 2―4F >0,解题时,应充分利用这一隐含条件.【答案】(1)117t -<<(2)(t+3,4t 2-1)3222413167497x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭【解析】(1)已知方程表示一个圆⇔D 2+E 2―4F >0,即4(t+3)2+4(1―4t 2)2―4(16t 4+9)>0,整理得7t 2―6t―1<0117t ⇔-<<. (2)圆的方程化为[x―(t+3)]2+[y+(1―4t 2)]2=1+6t―7t 2. ∴它的圆心坐标为(t+3,4t 2-1).(3)由7r ===≤. ∴r的最大值为7,此时圆的标准方程为 222413167497x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.【总结升华】 在本例中,当t 在1,17⎛⎫-⎪⎝⎭中任取一个值,它对应着一个不同的圆,它实质上是一系列的圆,因此本例中的圆的方程实质上是一个圆系方程,由2341x t y t =+⎧⎨=-⎩得y=4(x―3)2―1,再由117t -<<,知2047x <<,因此它是一个圆心在抛物线2204(3)147y x x ⎛⎫=--<< ⎪⎝⎭的圆系方程. 举一反三:【圆的方程370891 典型例题2】【变式1】(1)求过(2,2),(5,3),(3,1)A B C -的圆的方程,及圆心坐标和半径; (2)求经过点(2,4)A --且与直线3260x y +-=相切于点(8,6)的圆的方程. 【答案】(1)()224(1)5x y -+-= (4,1)(2)22113300x y x y +-+-=【解析】(1)法一:设圆的方程为:220x y Dx Ey F ++++=,则8220345301030D E F D E F D E F +++=⎧⎪+++=⎨⎪+-+=⎩,解得:8212D E F =-⎧⎪=-⎨⎪=⎩所以所求圆的方程为:228220x y x y +--+=,即()224(1)5x y -+-=,所以圆心为(4,1),法二:线段AB 的中点为为75,22⎛⎫⎪⎝⎭,321523AB k -==-线段AB 的中垂线为57322y x ⎛⎫-=-- ⎪⎝⎭,即3130x y --= 同理得线段BC 中垂线为260x y +-=联立2603130x y x y +-=⎧⎨+-=⎩,解得41x y =⎧⎨=⎩所以所求圆的方程为(4,1),半径r ==所以()224(1)5x y -+-=.(2)法一:设圆的方程为:220x y Dx Ey F ++++=,则2024062382100860D E F ED DEF --+=⎧⎪⎪+⎪=⎨⎪+⎪⎪+++=⎩,解得:11330D E F =-⎧⎪=⎨⎪=-⎩ 所以圆的方程为22113300x y x y +-+-=.法二:过点B 与直线3260x y +-=垂直的直线是3180x y --=, 线段AB 的中垂线为40x y +-=,由318040x y x y --=⎧⎨+-=⎩得:圆心坐标为113,22⎛⎫- ⎪⎝⎭,由两点间距离公式得半径21252r =,所以圆的方程为22113125222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.【变式2】判断方程ax 2+ay 2―4(a―1)x+4y=0(a≠0)是否表示圆,若表示圆,写出圆心和半径长.【答案】表示圆,圆心坐标2(1)2,a aa -⎛⎫- ⎪⎝⎭,半径2222||a a r a -+= 【变式3】方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是 A .2a <-或23a > B .203a -<< C .20a -<< D .223a -<< 【答案】D【解析】方程x 2+y 2+ax+2ay+2a 2+a-1=0转化为2223()124a x y a a a ⎛⎫+++=--+ ⎪⎝⎭,所以若方程表示圆,则有23104a a --+>,∴ 23440a a +-<,∴ 223a -<<. 例4.(1)△ABC 的三个顶点分别为A (―1,5),B (―2,―2),C (5,5),求其外接圆的方程; (2)圆C 过点P (1,2)和Q (―2,3),且圆C 在两坐标轴上截得的弦长相等,求圆C 的方程. 【思路点拨】在(1)中,由于所求的圆过三个点,因而选用一般式,从而只要确定系数D 、E 、F 即可;注意到三角形外接圆的圆心为各边的垂直平分线的交点,所以也可先求圆心,再求半径,从而求出圆的方程.在(2)中,可用圆的一般方程,但这样做计算量较大,因此我们可以通过作图,利用图形的直观性来进行分析,从而得到圆心或半径所满足的条件.【答案】(1)x 2+y 2―4x―2y―20=0(2)(x+1)2+(y―1)2=5或(x+2)2+(y+2)2=25 【解析】(1)解法一:设所求的圆的方程为x 2+y 2+Dx+Ey+F=0,由题意有5260228055500D E F D E F D E F -+++=⎧⎪--++=⎨⎪+++=⎩,解得4220D E F =-⎧⎪=-⎨⎪=-⎩. 故所求的圆的方程为x 2+y 2―4x―2y―20=0.解法二:由题意可求得AC 的中垂线的方程为x=2,BC 的中垂线方程为x+y―3=0.∴圆心是两中垂线的交点(2,1),∴半径22(21)(15)5r =++-=,∴所求的圆的方程为(x―2)2+(y―1)2=25,即x 2+y 2―4x―2y―20=0.(2)解法一:如右图所示,由于圆C 在两坐标轴上的弦长相等,即|AD|=|EG|,所以它们的一半也相等,即|AB|=|GF|,又|AC|=|GC|,∴Rt △ABC ≌Rt △GFC ,∴|BC|=|FC|. 设C (a ,b ),则|a|=|b|. ①又圆C 过点P (1,2)和Q (―2,3), ∴圆心在PQ 的垂直平分线上,即51322y x ⎛⎫-=+ ⎪⎝⎭,即y=3x+4,∴b=3a+4. ②由①知a=±b ,代入②得11a b =-⎧⎨=⎩或22a b =-⎧⎨=-⎩.∴22(1)(2)5r a b =-+-=或5.故所求的圆的方程为(x+1)2+(y―1)2=5或(x+2)2+(y+2)2=25.即x 2+y 2+2x―2y―3=0或x 2+y 2+4x+4y―17=0. 解法二:设所求的圆的方程为x 2+y 2+Dx+Ey+F=0. ∵圆C 过点P (1,2)和Q (-2,3),∴22122049230D E F D E F ⎧++++=⎨+-++=⎩,解得38117E D F D =-⎧⎨=-⎩.∴圆C 的方程为x 2+y 2+Dx+(3D―8)y+11―7D=0,将y=0代入得x 2+Dx+11―7D=0. ∴圆C 在x 轴上截得的弦长为212||4(117)x x D D -=--.将x=0代入得y 2+(3D―8)y+11―7D=0,∴圆C 在y 轴上截得的弦长为212||(38)4(117)y y D D -=---.由题意有224(117)(38)4(117)D D D D --=---,即D 2―4(11―7D)=(3D―8)2―4(11―7D),解得D=4或D=2.故所求的圆的方程为x 2+y 2+4x+4y―7=0或x 2+y 2+2x―2y―3=0.【总结升华】 (1)本例(1)的解法二思维迂回链过长,计算量过大,而解法一则较为简捷,因此,当所有已知的条件与圆心和半径都无直接关系,在求该圆的方程时,一般设圆的方程为一般方程,再用待定系数法来确定系数即可.(2)本例(2)中,尽管所给的条件也都与圆心和半径无直接关系,但可通过画图分析,利用平面几何知识,找到与圆心和半径相联系的蛛丝马迹,从而避免了选用圆的一般方程带来的繁琐的计算.(3)一般地,当给出了圆上的三点坐标,特别是当这三点的横坐标和横坐标之间、纵坐标和纵坐标之间均不相同时,选用圆的一般方程比选用圆的标准方程简捷;而在其他情况下的首选应该是圆的标准方程,此时要注意从几何角度来分析问题,以便找到与圆心和半径相联系的可用条件.举一反三:【变式1】如图,等边△ABC 的边长为2,求这个三角形的外接圆的方程,并写出圆心坐标和半径长.【答案】30,3⎛⎫ ⎪ ⎪⎝⎭,233,223433x y ⎛⎫+-= ⎪ ⎪⎝⎭ 类型三:点与圆的位置关系例5.判断点M (6,9),N (3,3),Q (5,3)与圆(x ―5)2+(y ―6)2=10的位置关系. 【答案】M 在圆上 N 在圆外 Q 在圆内 【解析】∵圆的方程为(x ―5)2+(y ―6)2=10, 分别将M (6,9),N (3,3),Q (5,3)代入得 (6―5)2+(9―6)2=10,∴M 在圆上; (3―5)2+(3―6)2=13>10,∴N 在圆外;(5―5)2+(3―6)2=9<10,∴Q 在圆内.【总结升华】点与圆的位置关系,从形的角度来看,设圆心为O ,半径为r ,则点P 在圆内⇔|PQ |<r ;点P 在圆上⇔|PQ |=r ;点P 在圆外⇔|PO |>r .从数的角度来看,设圆的标准方程为(x ―a )2+(y ―b )2=r 2,圆心为A (a ,b ),半径为r ,则点M (x 0,y 0)在圆上⇔(x 0―a )2+(y 0―b )2=r 2;点M (x 0,y 0)在圆外⇔(x 0―a )2+(y 0―b )2>r 2;点M (x 0,y 0)在圆内⇔(x 0―a )2+(y 0―b )2<r 2.举一反三:【变式1】点(a +1,a ―1)在圆22240x y ay +--=的内部,则a 的取值范围是________. 【思路点拨】直接把点(a +1,a ―1)代入圆的方程左边小于0,解不等式可得a 的范围. 【答案】(-∞,1) 【解析】∵点(a +1,a ―1)在圆22240x y ay +--=的内部(不包括边界), ∴ 22(1)(1)2(1)40a a a a ++----<,整理得:a <1. 故答案为:(-∞,1). 类型四:轨迹问题 例6.(2016 广东中山市模拟)已知曲线C 上任意一点到原点的距离与到A (3,―6)的距离之比均为12. (1)求曲线C 的方程. (2)设点P (1,―2),过点P 作两条相异直线分别与曲线C 相交于B ,C 两点,且直线PB 和直线PC 的倾斜角互补,求证:直线BC 的斜率为定值.【思路点拨】(1)利用直接法,建立方程,即可求曲线C 的方程.(2)直线与圆的方程联立,求出A ,B 的坐标,利用斜率公式,即可证明直线BC 的斜率为定值.【答案】(1)22(1)(2)20x y ++-=;(2)直线BC 的斜率为定值12-. 【解析】(1)曲线C 上的任意一点为Q (x ,y ),221(1)(2)202x y =⇒++-= (2)证明:由题意知,直线PB 和直线PC 的斜率存在,且互为相反数,P (1,―2), 故可设P A :y +2=k (x ―1), 由2222222(1)(1)2(14)830(1)(2)20y k x k x k k x k k x y +=-⎧⇒++--++-=⎨++-=⎩因为点P 的横坐标x =1一定是该方程的解,故可得22831A k k x k +-=+, 同理,22831B k k x k --=+,所以(1)(1)2()12B A B A B A AB B A B A B A y y k x k x k k x x k x x x x x x ------+====----故直线BC 的斜率为定值12-. 【总结升华】本例求轨迹方程的方法是直接法.用直接法求曲线方程的步骤如下: (1)建系设点:建立适当的直角坐标系,设曲线上任一点坐标为M (x ,y ); (2)几何点集:写出满足题设的点M 的集合P ={M |P (M )};(3)翻译列式:将几何条件P (M )用坐标x 、y 表示,写出方程f (x ,y )=0; (4)化简方程:通过同解变形化简方程;(5)查漏除杂:验证方程表示的曲线是否为已知的曲线,重点检查方程表示的曲线是否有多余的点,曲线上是否有遗漏的点. 例7.已知定点A (4,0),P 点是圆x 2+y 2=4上一动点,Q 点是AP 的中点,求Q 点的轨迹方程. 【答案】(x―2)2+y 2=1【解析】 设Q 点坐标为(x ,y ),P 点坐标为(x ',y '),则4'2x x +=且0'2y y +=,即x '=2x―4,y '=2y .又P 点在圆x 2+y 2=4上,∴x '2+y '2=4,将x '=2x―4且y '=2y 代入得(2x―4)2+(2y)2=4,即(x―2)2+y 2=1.故所求的轨迹方程为(x―2)2+y 2=1.【总结升华】 本题是求轨迹时常用的方法——代入法,对于“双动点”问题,即若已知一动点在某条曲线上运动而求另一动点的轨迹方程时,通常用这一方法.代入法是先设所求轨迹的动点坐标为(x ,y ),在已知曲线上运动的点的坐标为(x ',y '),用x ,y 表示x ',y ',即x '=f (x,y),y '=g (x,y),并将它代入到已知曲线方程,即求出所求动点的轨迹方程.一般情况下,证明可以省略不写,如有特殊情况,可适当予以说明,即扣除不合题意的解或补上失去的解.举一反三:【变式1】已知定点A (2,0),点Q 是圆x 2+y 2=1上的动点,∠AOQ 的平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程.【答案】222439x y ⎛⎫-+= ⎪⎝⎭【圆的方程370891 典型例题5】【变式2】平面内到两定点距离的比值是一个不等于1的常数的动点的轨迹是一个圆.【解析】以两定点所在的直线为x 轴,以两定点所在线段的中垂线为y 轴建立直角坐标系,设两定点分别为()1,0,(1,0)A B -,设动点(,)P x y ,则||(1)||PA c c PB =≠,c =,整理得:()2222221(1)(22)10cxc y c x c -+-+++-=所以222222101c x y x c ++++=-,即()22222221411c c x y c c ⎛⎫+++= ⎪-⎝⎭- 所以动点的轨迹是一个圆.。

(完整版)高中数学人教版必修二知识点总结

(完整版)高中数学人教版必修二知识点总结

(完整版)高中数学人教版必修二知识点总

高中数学人教版必修二知识点总结
本文档总结了高中数学人教版必修二的知识点,帮助学生进行复和总结。

以下是各个章节的重点内容:
第一章函数与导数
- 函数的概念和性质
- 函数的图像与奇偶性
- 导数的定义和性质
- 函数的单调性与极值
第二章三角函数
- 正弦、余弦、正切函数的定义和性质
- 三角函数的基本关系式
- 三角函数的图像和性质
- 三角恒等式的运用
第三章数列与数学归纳法- 数列的定义和性质
- 数列的通项公式和通项求和- 数学归纳法的原理和应用
第四章二次函数与其应用- 二次函数的定义和性质
- 二次函数的图像和性质
- 二次函数的最值问题
- 二次函数在实际问题中的应用
第五章平面向量
- 向量的定义和运算
- 向量共线与共面的判定
- 向量的数量积和性质
- 向量的应用
第六章概率
- 概率的基本概念和性质
- 随机事件与概率
- 条件概率和乘法定理
- 排列与组合的应用和概率计算
第七章统计与回归分析
- 统计的基本概念和性质
- 数据的收集和整理
- 统计图表的制作和分析
- 回归分析的原理和应用
以上是高中数学人教版必修二的主要知识点总结,希望对学生的复有所帮助。

详细内容以教材为准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新人教版高二数学必修二知识点
【篇一】
导数是微积分中的重要基础概念。

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx 的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性逼近。

例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。

若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。

然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数。

寻找已知的函数在某点的导数或其导函数的过程称为求导。

实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。

反之,已知导函数也可以倒过来求原来的函数,即不定积分。

微积分基本定理说明了求原函数与积分是等价的。

求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

【篇二】
一、随机事件
主要掌握好(三四五)
(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。

(2)四种运算律:交换律、结合律、分配律、德莫根律。

(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。

二、概率定义
(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;
(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;
(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。

三、概率性质与公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B 互不相容,则P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则
P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj 引起的概率,则用贝叶斯公式.
(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.。

相关文档
最新文档