氢脆与应力腐蚀断裂的比较

合集下载

应力腐蚀和氢脆

应力腐蚀和氢脆
▪ 解放初期黄铜子弹壳开裂现象:原因是润滑用肥皂水中 含微量铵离子。
二、应力腐蚀产生的条件
▪ (1)只有在拉伸应力作用下才能引起应力腐蚀开 裂(近年来,也发现在不锈钢中可以有压应力引起)。 这种拉应力可以是外加载荷造成的应力,但 主要是各种残余应力,如焊接残余应力、热处理 残余应力和装配应力等。 据统计,在应力腐蚀开裂事故中,由残余应 力所引起的占80%以上,而由工作应力引起的则 不足20%。
▪ 控制温度,使材料工作在该体系的临界温度以下, 以抑制SCC的发生。
▪ 采用外加电流阴极保护法也可以防止SCC的发生, 而且在裂纹形成后还可使其停止发展。
采用电化学保护
▪ 一般采用阴极保护法,但高强度钢或其它 氢脆敏感的材料不宜采用。
F/A-18舰载机
SCC像晶间腐蚀一样,能导致飞机结构的临界载荷破裂失效。 在飞机制造时,安装和装配应力也应该消除。材料选择和过程 也能预防SCC,选择较小SCC倾向的铝合金是关键。必须采用 经过长时间时效处理、延展的和消除了应力的铝合金。同样, 利用开发的用于减少应力腐蚀开裂的恰当的铝回火热处理也很 重要。
▪ 应力腐蚀的主裂纹扩展时常有分枝。但不要形成绝对化 的概念,应力腐蚀裂纹并不总是分枝的。
▪ 应力腐蚀破坏的断口,其颜色灰暗,表面常有腐蚀产物 (泥状花样),或腐蚀坑。而疲劳断口的表面,如果是 新鲜断口常常较光滑,有光泽。
▪ 应力腐蚀引起的断裂可以是穿晶断裂,也可以是沿晶断 裂。如果是穿晶断裂,其断口是解理或准解理的,其裂 纹有似人字形或羽毛状的标记。
枯枝状
泥状花状
奥氏体不锈钢应力腐 蚀断口
1Cr18Ni9Ti钢应力腐蚀的解理断口(SEM)
a) 解理断口Βιβλιοθήκη b) 扇形状或羽毛状的痕迹

第06章金属的应力腐蚀和氢脆断裂

第06章金属的应力腐蚀和氢脆断裂
13
测定金属材料的K 测定金属材料的 ISCC 值可用恒载荷法或恒位 移法。以恒载荷法的悬臂梁弯曲试验法最常用, 移法。以恒载荷法的悬臂梁弯曲试验法最常用,所 用试样与测定的K 的三点弯曲试样相同, 用试样与测定的 IC 的三点弯曲试样相同 , 装置见 图6-6。 。 裂纹尖端的ΚⅠ可用公式(6-2)计算。 裂纹尖端的 可用公式( )计算。
(6-2) ) 通过做出Κ 的关系图线, 通过做出 Ⅰ初 — lgtf的关系图线,便可从曲线 的水平部分所对应的Κ 值即为材料的Κ 的水平部分所对应的 Ⅰ初值即为材料的 Ⅰscc。
14
2、应力腐蚀裂纹扩展速率da/dt 、应力腐蚀裂纹扩展速率 当应力腐蚀裂纹尖端的K 当应力腐蚀裂纹尖端的 I>KISCC时,裂纹就会 不断扩展。 不断扩展。 单位时间内裂纹的扩展量称为应力腐蚀裂纹 单位时间内裂纹的扩展量称为 应力腐蚀裂纹 扩展速率, 扩展速率,da/dt。 。
10
2、微观特征 断口的微观形貌一般为沿晶断裂 沿晶断裂, ⑴ 断口的微观形貌一般为 沿晶断裂 , 也可能 为穿晶断裂。 穿晶断裂。 ⑵ 其表面可见到 “ 泥状花样 ” 的 腐蚀产物 (见图6-3a)及腐蚀坑(见图 见图 ) 腐蚀坑(见图6-3b)。 ) 应力腐蚀的显微裂纹有分叉现象 显微裂纹有分叉现象, ⑶ 应力腐蚀的 显微裂纹有分叉现象 , 呈枯树 枝状,如图所示。表明应力腐蚀时, 枝状 , 如图所示 。 表明应力腐蚀时 , 有一主裂纹 扩展较快,其它分枝扩展较慢, 扩展较快 ,其它分枝扩展较慢, 根据这一特征可 将其与腐蚀疲劳、晶间腐蚀等断裂区分开来。 将其与腐蚀疲劳、晶间腐蚀等断裂区分开来。
17
4、 采用电化学保护 使金属远离电化学腐蚀 、 采用电化学保护使金属远离电化学腐蚀 敏感电位区域 敏感电位区域 因为金属在化学介质中只有在一定的电极电 位范围内才会产生应力腐蚀现象,因此采用外加 位范围内才会产生应力腐蚀现象 , 因此采用外加 电位的方法,使金属在化学介质中的电位远离应 电位的方法, 力腐蚀敏感电位区域,也是一种防止措施。 力腐蚀敏感电位区域, 也是一种防止措施 。 一般 采用阴极保护法。 采用 阴极保护法。此方法不适用于高强度钢和其 阴极保护法 它氢脆敏感材料。 它氢脆敏感材料。

6 金属的应力腐蚀和氢脆断裂

6 金属的应力腐蚀和氢脆断裂

举例
低碳钢,低合金钢— 低碳钢,低合金钢—碱脆,硝脆; 高强度钢 钛合金 不锈钢— 不锈钢—氯脆; 铜合金— 铜合金—氨脆; 高强度铝合金— 高强度铝合金—脆裂.
2,产生条件
应力:静应力远低于材料的屈服强度,且 一般为拉应力.包括工作应力和残余应力. 化学介质:一定材料对应一定的化学介质; 如黄铜—氨气氛,不锈钢— 如黄铜—氨气氛,不锈钢—氯离子的腐蚀 介质,低碳钢— 介质,低碳钢—碱脆. 金属材料:纯金属一般不会产生应力腐蚀, 合金对应力腐蚀都比较敏感,不同的合金 成分,敏感性不同.
四,防止应力腐蚀的措施
应力腐蚀是通过阳极溶解的过程进行的. 应力腐蚀机理就是滑移— 应力腐蚀机理就是滑移—溶解理论.它 可以简单地归结为四个过程,即滑移— 可以简单地归结为四个过程,即滑移— 膜破—阳极溶解— 膜破—阳极溶解—再钝化. 防止应力腐蚀的方法要视具体的材料— 防止应力腐蚀的方法要视具体的材料— 介质而定.
2,应力腐蚀临界应力场强度因子KISCC 应力腐蚀临界应力场强度因子K
定义:在特定介质中不发生应力腐蚀断裂 的最大应力场强度因子. 含宏观裂纹的试样,恒定载荷,特定介质, 测KI~tf曲线. KISCC值的测定:1) 恒载荷法:使KI不断增 值的测定:1) 恒载荷法:使K 大的方法,最常用的是恒载荷的悬臂梁弯 曲试验装置.2) 恒位移法:使K 曲试验装置.2) 恒位移法:使KI不断减少, 用紧凑拉伸试样和螺栓加载.
防止应力腐蚀的措施
1,合理选择金属材料:正确选材,选用 KISCC较高的合金. 2,减少或消除机件中的残余拉应力:主要是 应力集中,注意工艺措施. 3,改善化学介质. 4,采用电化学保护:使金属远离电化学腐蚀 区域.一般采用阴极保护法,但高强度钢 或其它氢脆敏感的材料不宜采用.

应力腐蚀及环境氢脆测试方法

应力腐蚀及环境氢脆测试方法

K1-tF曲线
五、慢应变率法试验
慢应变率法,又称恒 应变率法,它是将拉伸试 样放在特定的介质中,然 后在慢应变率试验机上, 用一定的、缓慢的应变速 度进行拉伸试验,直到拉 断。
SERT型慢应变应力腐蚀试验机
六、应力腐蚀案例
不锈钢管与管板胀接部位的横向裂纹
管与管板连接方式很多,在应 力腐蚀工程事故分析中,多遇到胀 -焊连接,仅胀未焊连接还仅焊未 胀连接三种。部分胀-焊连接方式 见图。 大量事故分析表明,不论是胀 -焊还是仅胀未焊连接,不锈钢管 束应力腐蚀裂纹多位于胀与未胀过 渡区。 这与滚胀连接时,局部变形, 受有较大的纵向残余拉应力有关。 实测表明,此处纵向应力一般高达 相当于屈服强度的数值。
典型的da/dt-K曲线(K为应力强度因子)
8、破裂电位范围和临界破裂电位
大量的例子表明,对于某一特定体系应力腐蚀 破裂只发生于一定的电位以上,低于这个电位则不 会发生,这个电位值称为应力腐蚀破裂临界电位。
在沸腾的42%MgCl2 溶液中,18-8Ti 不锈钢的电位-断裂 时间关系
二、试样及测试方法的类型
b、三点弯曲试样
恒应变三点弯曲 试样及试验装置
恒载荷三点弯曲试验
1-棒;2-试样; 3-荷重
C、四点弯曲试样
恒应变四点弯曲试样及试样架
恒应变四点弯曲试样及试样架
1-棒;2-试样;3-荷重
d、双弯梁
3、U形弯曲试样
U形试样 弯曲过程
常用的U形试样
1-焊接或缚紧;2-焊接;3-夹紧前;4-受力试样
水中Cl-浓度对 0Cr18Ni10钢SCC 敏感性的影响
5、应力腐蚀破裂敏感系数
在特定条件下,把应力腐蚀破裂时间的倒 数,称为破裂敏感系数。当破裂敏感系数越大时, 材料的应力腐蚀敏感性也越大。

第六章 金属的应力腐蚀与氢脆断裂

第六章 金属的应力腐蚀与氢脆断裂

第六章金属的应力腐蚀与氢脆断裂Chapter 6 Stress Corrosion and Hydrogen Embrittlement ofMetals第一节概述(Brief introduction)1、定义(Definition)在应力和环境介质的共同作用下,金属构件产生破坏行为按其受力情况与破坏方式的不同可分为以下三种基本类型。

应力腐蚀——金属构件在静态或准静态拉应力和环境介质的共同作用下,经过一定的时间后而产生的低应力脆断称为应力腐蚀(SCC);(包括低碳钢的碱脆、低碳钢的硝脆、奥氏体不锈钢的氯脆和低合金高强度钢的氢脆等)腐蚀疲劳——金属构件在交变应力和环境介质的共同作用下,经过一定的时间后而产生的断裂称为腐蚀疲劳;腐蚀磨损——金属构件在环境介质作用下还受机械摩擦,或者由于腐蚀介质的直接冲刷等引起表面磨损的现象腐蚀磨损。

由于金属的应力腐蚀现象更为普遍,并且其破坏原理更为复杂,氢脆也是极为重要的一种破坏方式,因此本章重点以应力腐蚀和氢脆为主。

同时由于这类腐蚀大多为低应力脆断,因此具有很多的危险性,同时随着航空、原子能、石油化工等工业的迅速发展,这类腐蚀越来越多,因此有必要进行研究。

第二节应力腐蚀(Stress corrosion)(一)应力腐蚀现象及其产生条件(Stress corrosion phenomenon and engendering condition)应力和环境综合作用的结果,其效果不是两者的简单迭加。

绝大多数金属材料在一定介质下都有应力腐蚀倾向。

如:1)低碳及低合金钢的碱脆与硝脆;2)奥氏体不绣钢的氯脆;3)铜合金的氨脆;4)高强度铝合金在空气、蒸馏水中的脆断;5)低合金高强度钢及不锈钢的氢脆等。

可见产生应力腐蚀的条件是:应力、介质及合金的材料(纯金属不会产生应力腐蚀)。

(二)应力腐蚀断裂机理及断口形貌特征(Fracture mechanism and morphology of stress corrosion)1、断裂机理(Fracture mechanism)目前断裂机理有多种理论,至今尚未得到统一,但主要以阳极溶解为基础的钝化膜破坏理论为主。

应力腐蚀断裂和氢脆

应力腐蚀断裂和氢脆

海川流浪人应力腐蚀断裂和氢脆金属材料的两种经常有关而又有别的被破坏(或断裂)的现象。

应力腐蚀断裂(SCC) 是应力与腐蚀介质协同作用下引起的金属断裂现象(见金属腐蚀)。

它有三个主要特征:①应力腐蚀断裂是时间的函数。

拉伸应力越大,则断裂所需时间越短;断裂所需应力一般都低于材料的屈服强度。

这种应力包括外加载荷产生的应力、残余应力、腐蚀产物的楔形应力等。

②腐蚀介质是特定的,只有某些金属-介质的组合(见表发生应力腐蚀断裂的典型体系──金属与腐蚀介质的组合)情况下,才会发生应力腐蚀断裂。

若无应力,金属在其特定腐蚀介质中的腐蚀速度是微小的。

③断裂速度在纯腐蚀及纯力学破坏之间,断口一般为脆断型。

氢脆(HE) 又称氢致开裂或氢损伤,是一种由于金属材料中氢引起的材料塑性下降、开裂或损伤的现象。

所谓“损伤”,是指材料的力学性能下降。

在氢脆情况下会发生“滞后破坏”,因为这种破坏需要经历一定时间才发生。

氢的来源有“内含”的及“外来”的两种:前者指材料在冶炼及随后的机械制造(如焊接、酸洗、电镀等)过程中所吸收的氢;而后者是指材料在致氢环境的使用过程中所吸收的氢(见金属中氢)。

致氢环境既包括含有氢的气体,如H□、H□S;也包括金属在水溶液中腐蚀时阴极过程所放出的氢。

金属的应力腐蚀断裂和氢脆是两种既经常相关而又不同的现象。

在高温高压氢气中结构件的开裂,既是HE,又是SCC;水溶液中应力腐蚀时,若阴极过程析出的氢对断裂起了决定性作用,则这种破坏既是SCC,也是HE;这两个实例便位于图1应力腐蚀断裂(SCC)和氢脆(HE)关系的示意所示的重叠区内。

试验方法和工程参量应力腐蚀试验一般采用光滑或缺口试样,固定环境条件(即腐蚀介质和温度),采用断裂为临界点、测定固定应力下的断裂时间(□□)或固定□□下的断裂应力(□□),用□□的长短或□□的高低,来衡量材料抗应力腐蚀断裂能力的大小。

70年代以来,人们广泛地运用了断裂力学研究应力腐蚀断裂;用预制裂纹的试样进行应力腐蚀试验,如图2断裂时间□□与应力场强度因子(□□)之间的关系所示。

应力腐蚀

应力腐蚀
应力腐蚀:应力-阳极过程 氢脆:应力-阴极过程
差 异
• 应力腐蚀:
沿晶裂纹优先在表面生核,源点有大量的腐蚀产物。 沿晶区有严重的二次裂纹或腐蚀坑。 穿晶型的应力腐蚀断口,往往具有泥纹状花样等特征。
•氢脆:
沿晶断裂起源于皮下,呈多源断裂。 断口上撕裂棱较多,二次裂纹较少,尚可观察到平行 条纹花样,但不同于疲劳纹。 在沿晶区能发现韧窝及发纹,在某些区域可观察到氢 所引起的准解理面。
3.3 应力腐蚀和氢脆断裂
某些金属或合金在腐蚀性介质中,受拉应力(或残 余应力)的作用,同时又有电化学腐蚀而导致正 常的韧性材料迅速开裂和早期脆性损坏的现象, 称为应力腐蚀断裂。 某些金属或合金中原来就存在或吸收了过量的氢, 在外加张应力或残余应力的作用下引起的脆性开 裂称为氢脆断裂。 二者常常共存。
宏观分叉尺寸较大,有时达几毫米,甚至厘 米。主裂纹上长出两个或多个几乎以相同 速度扩展的分叉裂纹,分叉间常常是锐角。
2、微观特征
1)泥纹状花样,腐蚀产物覆盖断口所致。 2)微观分叉,尺寸较小,通常在一个晶粒范 围内。 3)裂纹既可穿晶,也可沿晶扩展。
三、应力腐蚀和氢脆的比较
广义均属应力腐蚀
一、应力腐蚀 1、宏观特征
1)断口平齐,垂直于主应力方向,无明显塑性变形 痕迹和唇口,断口一般呈颗粒状,呈现明显的脆 性特征。 2)应力腐蚀是一种局部腐蚀,但裂纹常常被腐蚀产 物覆盖,因而断口灰暗。 3)断口一般有三个区域: 断裂源区、缓慢扩展区、瞬断区
4)应力腐蚀裂纹扩展过程中常常出现分叉。

氢脆与应力腐蚀断裂的比较

氢脆与应力腐蚀断裂的比较

三、氢脆与应力腐蚀断裂的比较
应力腐蚀与氢脆往往同时发生。

因此,要从机理上把应力腐蚀与氢脆清晰区分开来是困难的。

但是从预防的角度来看,区分他们又十分必要,因此,可以作如下的分析(表5-2)。

表5-2 氢脆与应力腐蚀断裂异同
应力腐蚀开裂氢脆
产生条件
1 临界值以上的拉应力或低速度应力
临界值以上的拉应力(三
轴应力)
2 合金发生。

而纯金属不发生
合金与某些纯金属都能发

3
一种合金只对少数特定化学介质是敏感
的。

其数量和浓度不一定大
只要含氢或能产生氢(酸
洗、电镀)的情况都能发

4 发生温度从室温到300℃从-100~100℃
5 无应力时合金对环境是惰性的
无应力时合金对环境是惰
性的
6 阳极反应阴极反应
7 采用阴极防护能明显改善阴极极化反而促进氢脆
8 受应力作用时间支配不明显
9 对金属组织敏感对金属组织敏感
10 不同的σs有不同的门槛值不同的σs有不同的含氢量
外观形貌特征1 裂纹从表面开始。

断口不平整
裂纹从次表面或内部开
始。

断口较平整
2 裂纹分叉,有二次裂纹几乎不分叉,有二次裂纹
3
裂纹张开度小
裂纹不张开
4
裂纹萌生处可能有腐蚀产物,但不一定有
点蚀
裂纹萌生点在内部与点蚀
无关
5 裂纹萌生点可能是一个或多个
裂纹萌生点可能是一个或
多个
6 裂纹不一定在应力集中处萌生裂纹多在三轴应力区萌生
7 多数为沿晶、奥氏体不锈钢为穿晶断口多数为沿晶
8 沿晶断口上有腐蚀产物断口上没有腐蚀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、氢脆与应力腐蚀断裂的比较
应力腐蚀与氢脆往往同时发生。

因此,要从机理上把应力腐蚀与氢脆清晰区分开来是困难的。

但是从预防的角度来看,区分他们又十分必要,因此,可以作如下的分析(表5-2)。

表5-2 氢脆与应力腐蚀断裂异同
? 应力腐蚀开裂氢脆
产生条件1临界值以上的拉应力或低速度应力
临界值以上的拉应力
(三轴应力)
2合金发生。

而纯金属不发生
合金与某些纯金属都能
发生
3
一种合金只对少数特定化学介质是
敏感的。

其数量和浓度不一定大
只要含氢或能产生氢
(酸洗、电镀)的情况
都能发生
4发生温度从室温到300℃从-100~100℃
5无应力时合金对环境是惰性的
无应力时合金对环境是
惰性的
6阳极反应阴极反应
7采用阴极防护能明显改善阴极极化反而促进氢脆8受应力作用时间支配不明显。

相关文档
最新文档