甘肃省庆阳市2009年中考数学试题(含答案)
2009年全国各地数学中考模拟试题分类汇编—阅读、规律、代数式

中考模拟分类汇编阅读、规律、代数式一、选择题1. (2009·浙江温州·模拟1)如图,地面上有不在同一直线上的A 、B 、C 三点,一只青蛙位于地面异于A 、B 、C 的P 点,第一步青蛙从P 跳到P 关于A 的对称点P 1,第二步从P 1跳到P 1关于B 的对称点P 2,第三步从P 2跳到P 2关于C 的对称点P 3,第四步从P 3跳到P 3关于A 的对称点P 4……以下跳法类推,青蛙至少跳几步回到原处P .( )A .4B .5C .6D .8 答案:C2. (2009·浙江温州·模拟2) 下列运算结果为2m 的式子是( ) A .63m m ÷ B .42m m -⋅C .12()m -D .42m m -答案:B3. 二次三项式2346x x -+的值为9,则2463x x -+的值为( ) A .18 B .12 C .9 D . 7 答案:D4. 如图是2007年5月的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是( )A .27B .36C .40D .54答案:C5、(2009年浙江省嘉兴市评估4). 如图,记抛物线12+-=x y 的图象与x 正半轴的交点为A ,将线段OA 分成n 等份,设分点分别为P 1,P 2,…,P n-1,过每个分点作x 轴的垂线,分别与抛物线交于点Q 1,Q 2,…,Q n-1,再记直角三角形OP 1Q 1,P 1P 2Q 2,…的面积分别为S 1,S 2,…,这样就有32121n n S -=,32224nn S -=,…;记W=S 1+S 2+…+S n-1,当n 越来越大时,你猜想W 最接近的常数是( )A · ·B P ·C · 第10题A.32 B. 21 C. 31 D. 41 答案:C6、(2009年浙江省嘉兴市秀洲区6).若干桶方便面摆放在桌子上,如图所示是它的三视图,则这一堆方便面共有( )(A )6桶 (B )7桶 (C )8桶(D )9桶 答案:B 7、(09九江市浔阳区中考模拟)观察下列正方形的四个顶点所标的数字规律,那么2009这个数标在【 】A.第502个正方形的左下角B. 第502个正方形的右下角C. 第503个正方形的左下角D. 第503个正方形的右下角答案:D8、若 表示000, 表示001, 则 表示为 ………………………( ▲ ) (09温州永嘉县二模)A 110B 010C 101D 011 答案:C 9、(安徽桐城白马中学模拟一).有一种石棉瓦(如图4),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n (n 为正整数)块石棉瓦覆盖的宽度为( ) A. 60n 厘米 B. 50n 厘米 C. (50n+10)厘米 D. (60n -10)厘米答案: C. (50n+10)厘米 二、填空题:1、(2009年深圳市数学模拟试卷)瑞士中学教师巴尔末成功地从光谱数据59,1216,2125,3236,……中得到巴尔末公式,从而打开了光谱奥妙的大门,请按这种规律写出第七个数据是________. 解:81772、(2009年湖北随州 十校联考数学试题)观察图(1)至图(4)中小圆圈的摆放规律,并按这样的规律继续摆放,记第n 个图中小圆圈的个数为m ,则m =______________(用含n 的代数式表示)(第2题图)主视图 左视图俯视图21111===CA CC BC BB AB AA S A 1B 1C 1=1431222===CA CC BC BB AB AA 41333===CA CC BC BB AB AA 91888===CA CC BC BB AB AA答:3n+23、(2009泰兴市 济川实验初中 初三数学阶段试题)观察下列等式:第一个等式是1+2=3,第二个等式是2+3=5,第三个等式是4+5=9,第四个等式是8+9=17,……猜想:第n 个等式是 . 答:12)12(211+=++--n n n4、(2009年重庆一中摸试卷)已知1112,12323a =+=⨯⨯2113,23438a =+=⨯⨯3114,...,345415a =+=⨯⨯依据上述规律,则=99a 。
甘肃省庆阳市中考数学真题试题(含解析)

2015年甘肃省庆阳市中考数学试卷一、选择题(本题包括12小题,每小题3分,共36分,每小题只有一个选项符合题意)1.﹣的相反数是()A. 3 B.﹣3 C.D.﹣考点:相反数.分析:一个数的相反数就是在这个数前面添上“﹣”号.解答:解:﹣的相反数是,故选C点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2015•庆阳)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)(2015•庆阳)2015羊年春晚在某网站取得了同时在线人数超14 000 000的惊人成绩,创下了全球单平台网络直播记录,则14 000 000用科学记数法可表示为()A.0.14×108B.1.4×107C.1.4×108D.14×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:14000000=1.4×107,故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2015•庆阳)下列说法属于不可能事件的是()A.四边形的内角和为360°B.梯形的对角线不相等C.内错角相等D.存在实数x满足x2+1=0考点:随机事件.分析:不可能事件就是一定不会发生的事件,根据定义即可作出判断.解答:解:A、是随机事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、不可能事件,故选项正确;故选D.点评:考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)(2015•庆阳)某几何体由一些大小相同的小正方体组成,如图分别是它的主视图和俯视图,那么要组成该几何体,至少需要多少个这样的小正方体()A.3 B.4 C.5 D.6考点:由三视图判断几何体.专题:数形结合.分析:先由俯视图可得最底层有3个小正方体,然后根据主视图得到第二列由两层,于是可判断上面第二列至少有1个小正方体,从而得到几何体所需要最少小正方体的个数.解答:解:从俯视图可得最底层有3个小正方体,由主视图可得上面一层至少有1个小正方体,所以至少需要4个这样的小正方体.故选B.点评:本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.6.(3分)(2015•庆阳)已知点P(a+1,﹣+1)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组;关于原点对称的点的坐标.分析:首先根据题意判断出P点在第二象限,再根据第二象限内点的坐标符号(﹣,+),可得到不等式a+1<0,﹣+1>0,然后解出a的范围即可.解答:解:∵P(a+1,﹣+1)关于原点对称的点在第四象限,∴P点在第二象限,∴a+1<0,﹣+1>0,解得:m<﹣1,则a的取值范围在数轴上表示正确的是.故选:C.点评:此题主要考查了关于原点对称的点的坐标特点,以及各象限内点的坐标符号,关键是判断出P点所在象限.7.(3分)(2015•庆阳)在△ABC中,若角A,B满足|cosA﹣|+(1﹣tanB)2=0,则∠C的大小是()A.45°B.60°C.75°D.105°考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.分析:根据非负数的性质得出cosA=,tanB=1,求出∠A和∠B的度数,继而可求得∠C 的度数.解答:解:由题意得,cosA=,tanB=1,则∠A=30°,∠B=45°,则∠C=180°﹣30°﹣45°=105°.故选D.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.8.(3分)(2015•庆阳)书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与随机抽取2本都是小说的情况,再利用概率公式即可求得答案.解答:解:设三本小说分别为红、红、红、两本散文分别为白、白,画树状图得:∵共有20种等可能的结果,从中随机抽取2本都是6种情况,∴从中随机抽取2本都是小说的概率=,故选A.点评:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)(2015•庆阳)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0考点:二次函数图象与系数的关系.分析:根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称性是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.解答:解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.10.(3分)(2015•庆阳)如图,在△ABC中,两条中线BE,CD相交于点O,则S△DOE:S△DCE=()A.1:4 B.1:3 C.1:2 D.2:3考点:相似三角形的判定与性质;三角形中位线定理.分析:先根据题意判断出DE是△ABC的中位线,故可得出△ODE∽△OCB,由此可得出=,进而可得出结论.解答:解:∵在△ABC中,两条中线BE,CD相交于点O,∴DE是△ABC的中位线,∴△ODE∽△OCB,∴=,∴=,∵△DOE与△DCE等高,∴S△DOE:S△DCE=OD:CD=1:3.故选B.点评:本题考查的是相似三角形的判定与性质,先根据题意得出DE是△ABC的中位线是解答此题的关键.11.(3分)(2015•庆阳)如果二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c 和反比例函数y=在同一坐标系中的图象大致是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:根据二次函数的图象的性质先确定出a、b、c的取值范围,然后根据一次函数和反比例函数的性质即可做出判断.解答:解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴由于y轴的左侧;∴a与b同号,∴b<0,∵抛物线经过原点,所以c=0.∵b<0,c=0,∴直线y=bx+c经过二、四象限和坐标原点.∵b<0,∴反比例函数的图象,位于二、四象限.故选:A.点评:本题主要考查的是二次函数、一次函数和反比例函数的性质,掌握相关性质是解题的关键.12.(3分)(2015•庆阳)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,)B.(2n﹣1,)C.(4n+1,)D.(2n+1,)考点:坐标与图形变化-旋转.专题:规律型.分析:首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出A n的坐标的规律,求出A2n+1的坐标是多少即可.解答:解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴A n的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,A n的纵坐标是,当n为偶数时,A n的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故选:C.点评:此题主要考查了坐标与图形变化﹣旋转问题,要熟练掌握,解答此题的关键是分别判断出A n的横坐标、纵坐标各是多少.二、填空题(本题包括8小题,每小题3分,共24分)13.(3分)(2015•庆阳)函数y=的自变量x的取值范围是x≤且x≠0.考点:函数自变量的取值范围.专题:计算题.分析:根据分母不为零和被开方数不小于零得到x≠0且1﹣2x≥0,然后求出两不等式的公共解即可.解答:解:根据题意得x≠0且1﹣2x≥0,所以x≤且x≠0.故答案为点评:本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义,当表达式的分母中含有自变量时,自变量取值要使分母不为零;当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.14.(3分)(2015•庆阳)的平方根是±2.考点:平方根;算术平方根.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.解答:解:的平方根是±2.故答案为:±2点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15.(3分)(2015•庆阳)如图,Rt△ABC中,∠ACB=90°,AC=BC=2,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为8π(结果保留π).考点:圆锥的计算;点、线、面、体.分析:首先求得高CD的长,然后根据圆锥的侧面积的计算方法,即可求解.解答:解:过点C作CD⊥AB于点D,Rt△ABC中,∠ACB=90°,AC=BC,∴AB=AC=4,∴CD=2,以CD为半径的圆的周长是:4π.故直线旋转一周则所得的几何体得表面积是:2××4π×2=8π.故答案为:8π.点评:此题主要考查了圆锥的有关计算,正确确定旋转后的图形得出以CD为半径的圆的弧长是解题的关键.16.(3分)(2015•庆阳)若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是 2 .考点:立方根;合并同类项;解二元一次方程组.专题:计算题.分析:根据同类项的定义可以得到m,n的值,继而求出m﹣3n的立方根.解答:解:若﹣2x m﹣n y2与3x4y2m+n是同类项,∴,解方程得:.∴m﹣3n=2﹣3×(﹣2)=8.8的立方根是2.故答案为:2.点评:本题考查了同类项的概念以及立方根的求法,解体的关键是根据定义求出对应m、n的值.17.(3分)(2015•庆阳)有六张完全相同的卡片,其正面分别标有数字:﹣2,,π,0,,3.,将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数字为无理数的概率是.考点:概率公式;无理数.专题:计算题.分析:判断六张卡片中无理数的个数,即可得到结果.解答:解:在﹣2,,π,0,,3.中,无理数有,π共2个,则从中随机抽取一张卡片,则其正面的数字为无理数的概率是=.故答案为:点评:此题考查了概率公式,以及无理数,熟练掌握无理数的定义是解本题的关键.18.(3分)(2015•庆阳)如图,定点A(﹣2,0),动点B在直线y=x上运动,当线段AB最短时,点B的坐标为(﹣1,﹣1).考点:一次函数图象上点的坐标特征;垂线段最短.分析:过A作AD⊥直线y=x,过D作DE⊥x轴于E,即当B点和D点重合时,线段AB的长最短,求出∠DOA=∠OAD=∠EDO=∠EDA=45°,OA=2,求出OE=DE=1,求出D的坐标即可.解答:解:过A作AD⊥直线y=x,过D作DE⊥x轴于E,则∠DOA=∠OAD=∠EDO=∠EDA=45°,∵A(﹣2,0),∴OA=2,∴OE=DE=1,∴D的坐标为(﹣1,﹣1),即动点B在直线y=x上运动,当线段AB最短时,点B的坐标为(﹣1,﹣1),故答案为:(﹣1,﹣1).点评:本题考查了等腰直角三角形,垂线段最短,坐标与图形性质的应用,解此题的关键求出符合条件的点的位置.19.(3分)(2015•庆阳)已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是①②④.(填写所有真命题的序号)考点:命题与定理;平行线的判定与性质.专题:推理填空题.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:①如果a∥b,a⊥c,那么b⊥c是真命题,故①正确;②如果b∥a,c∥a,那么b∥c是真命题,故②正确;③如果b⊥a,c⊥a,那么b⊥c是假命题,故③错误;④如果b⊥a,c⊥a,那么b∥c是真命题,故④正确.故答案为:①②④.点评:本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,难度适中.20.(3分)(2015•庆阳)在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)考点:平面展开-最短路径问题.分析:根据绕两圈到C,则展开后相当于求出直角三角形ACB的斜边长,并且AB的长为圆柱的底面圆的周长,BC的长为圆柱的高,根据勾股定理求出即可.解答:解:如图所示,∵无弹性的丝带从A至C,∴展开后AB=2πcm,BC=3cm,由勾股定理得:AC==cm.故答案为:.点评:本题考查了平面展开﹣最短路线问题和勾股定理的应用,能正确画出图形是解此题的关键,用了数形结合思想.三、解答题(本题包括9小题,共90分)21.(8分)(2015•庆阳)计算:(﹣2)0+()﹣1+4cos30°﹣|﹣|考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=1+3+4×﹣2=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(8分)(2015•庆阳)如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.考点:作图—基本作图;线段垂直平分线的性质.分析:(1)分别以A、B两点为圆心,以大于AB长度为半径画弧,在AB两边分别相交于两点,然后过这两点作直线即为AB的垂直平分线;(2)根据线段垂直平分线的性质和三角形的内角和证明即可.解答:解:(1)如图1所示:(2)连接BD,如图2所示:∵∠C=60°,∠A=40°,∴∠CBA=80°,∵DE是AB的垂直平分线,∴∠A=∠DBA=40°,∴∠DBA=∠CBA,∴BD平分∠CBA.点评:本题考查了线段的垂直平分线的性质及三角形的内角和及基本作图,解题的关键是了解垂直平分线上的点到线段两端点的距离相等.23.(8分)(2015•庆阳)已知关于x的一元二次方程mx2+mx+m﹣1=0有两个相等的实数根.(1)求m的值;(2)解原方程.考点:根的判别式.分析:(1)根据题意得到:△=0,由此列出关于m的方程并解答;(2)利用直接开平方法解方程.解答:解:(1)∵关于x的一元二次方程mx2+mx+m﹣1=0有两个相等的实数根,∴△=m2﹣4×m×(m﹣1)=0,且m≠0,解得m=2;(2)由(1)知,m=2,则该方程为:x2+2x+1=0,即(x+1)2=0,解得x1=x2=﹣1.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.24.(10分)(2015•庆阳)现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,某市为了解学生的视力变化情况,从全市九年级随机抽取了1500名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图.解答下列问题:(1)图中D所在扇形的圆心角度数为54°;(2)若2015年全市共有30000名九年级学生,请你估计视力在4.9以下的学生约有多少名?(3)根据扇形统计图信息,你觉得中学生应该如何保护视力?考点:折线统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)根据扇形统计图中的数据求出D占的百分比,乘以360即可得到结果;(2)根据样本中视力在4.9以下的人数占的百分比,乘以30000即可得到结果;(3)由扇形统计图中影响视力的因素,提出合理化建议即可.解答:解:(1)根据题意得:360°×(1﹣40%﹣25%﹣20%)=54°;故答案为:54°;(2)根据题意得:30000×=16000(名),则估计视力在4.9以下的学生约有16000名;(3)建议中学生应少看电视,少玩游戏,少看手机,才能保护视力.点评:此题考查了折线统计图,扇形统计图,以及用样本估计总体,弄清题中统计图中的数据是解本题的关键.25.(10分)(2015•庆阳)如图,在正方形ABCD中,点E是边BC的中点,直线EF交正方形外角的平分线于点F,交DC于点G,且AE⊥EF.(1)当AB=2时,求△GEC的面积;(2)求证:AE=EF.考点:全等三角形的判定与性质;正方形的性质.分析:(1)首先根据△ABE∽△ECG得到AB:EC=BE:GC,从而求得GC=即可求得S△GEC;(2)取AB的中点H,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECF,从而得到AE=EF;解答:解:(1)∵AB=BC=2,点E为BC的中点,∴BE=EC=1,∵AE⊥EF,∴△ABE∽△ECG,∴AB:EC=BE:GC,即:2:1=1:GC,解得:GC=,∴S△GEC=•EC•CG=×1×=;(2)证明:取AB的中点H,连接EH;∵ABCD是正方形,AE⊥EF;∴∠1+∠AEB=90°,∠2+∠AEB=90°∴∠1=∠2,∵BH=BE,∠BHE=45°,且∠FCG=45°,∴∠AHE=∠ECF=135°,AH=CE,∴△AHE≌△ECF,∴AE=EF;点评:此题考查了正方形的性质和全等三角形的判定与性质,解(2)题的关键是取AB的中点H,得出AH=EC,再根据全等三角形的判定得出△AHE≌△ECF.26.(10分)(2015•庆阳)某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得到方程组;即可解得结果;(2)设购进篮球m个,排球(100﹣m)个,根据题意得不等式组即可得到结果.解答:解:(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得:,解得:,答:每个篮球和每个排球的销售利润分别为25元,20元;(2)设购进篮球m个,排球(100﹣m)个,根据题意得:,解得:≤m≤35,∴m=34或m=35,∴购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.点评:本题考查了一元一次不等式的应用,二元一次方程组的应用,找准数量关系是解题的关键.27.(12分)(2015•庆阳)定义运算max{a,b}:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.如max{﹣3,2}=2.(1)max{,3}= 3 ;(2)已知y1=和y2=k2x+b在同一坐标系中的图象如图所示,若max{,k2x+b}=,结合图象,直接写出x的取值范围;(3)用分类讨论的方法,求max{2x+1,x﹣2}的值.考点:反比例函数与一次函数的交点问题.专题:新定义.分析:(1)根据3>和已知求出即可;(2)根据题意得出≥k2x+b,结合图象求出即可;(3)分为两种情况:当2x+1≥x﹣2时,当2x+1<x﹣2时,结合已知求出即可.解答:解:(1)max{,3}=3.故答案为:3;(2)∵max{,k2x+b}=,∴≥k2x+b,∴从图象可知:x的取值范围为﹣3≤x<0或x≥2;(3)当2x+1≥x﹣2时,max{2x+1,x﹣2}=2x+1,当2x+1<x﹣2时,max{2x+1,x﹣2}=x﹣2.点评:本题考查了一次函数和反比例函数的交点问题的应用,能读懂题意是解此题的关键.28.(12分)(2015•庆阳)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB于点E,交CA的延长线于点F.(1)求证:FE⊥AB;(2)当EF=6,=时,求DE的长.考点:切线的性质;相似三角形的判定与性质.分析:(1)连接AD、OD,根据直径所对的圆周角是直角求出∠ADC=90°,根据等腰三角形的性质证明D是BC的中点,得到OD是△ABC的中位线,根据切线的性质证明结论;(2)根据平行线分线段成比例定理,列出比例式计算得到答案.解答:(1)证明:连接AD、OD,∵AC为⊙O的直径,∴∠ADC=90°,又∵AB=AC,∴CD=DB,又CO=AO,∴OD∥AB,∵FD是⊙O的切线,∴OD⊥EF,∴FE⊥AB;(2)∵=,∴=,∵OD∥AB,∴==,又EF=6,∴DE=9.点评:本题考查的是切线的性质和平行线分线段成比例定理,掌握圆的切线垂直于过切点的半径和等腰三角形的三线合一是解题的关键.29.(12分)(2015•庆阳)如图,在平面直角坐标系中.顶点为(﹣4,﹣1)的抛物线交y 轴于点A(0,3),交x轴于B,C两点.(1)求此抛物线的解析式;(2)已知点P是抛物线上位于B,C两点之间的一个动点,问:当点P运动到什么位置时,四边形ABPC的面积最大?并求出此时四边形ABPC的面积.(3)过点B作AB的垂线交抛物线于点D,是否存在以点C为圆心且与线段BD和抛物线的对称轴l同时相切的圆?若存在,求出圆的半径;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求函数的解析式即可;(2)由题意可知当P点移动到抛物线的顶点是△PBC的面积最大,根据四边形ABPC的面积的最大值为:S△ABC+S△PBC求得即可;(3)已知∠ABD是直角,若连接圆心和切点(暂定为E),不难看出Rt△OAB、Rt△EBC相似,可据此求出⊙C的半径,再将该半径与点C到对称轴l的距离进行比较即可.解答:解:(1)根据题意,可设抛物线的解析式为y=a(x+4)2﹣1,把点A(0,3)代入得:3=16a﹣1,解得a=,所以此抛物线的解析式为y=(x+4)2﹣1;(2)令y=0,则0=(x+4)2﹣1;解得x1=﹣2,x2=﹣6,∴B(﹣2,0),C(﹣6,0),∴BC=4,∵S四边形ABPC=S△ABC+S△PBC,S△A BC=BC•OA=×4×3=6,∴要使四边形ABPC的面积最大,则△PBC的面积最大,∴当P点移动到抛物线的顶点是△PB C的面积最大,∴四边形ABPC的面积的最大值为:S△ABC+S△PBC=6+×4×1=6+2=8;(3)如图,设⊙C与BD相切于点E,连接CE,则∠BEC=∠AOB=90°.∵A(0,3)、B(﹣2,0)、C(﹣6,0),∴OA=3,OB=2,OC=6,BC=4;∴AB==,∵AB⊥BD,∴∠ABC=∠EBC+90°=∠OAB+90°,∴∠EBC=∠OAB,∴△OAB∽△EBC,∴=,即=∴EC=.设抛物线对称轴交x轴于F.∵抛物线的对称轴x=﹣4,∴CF=2≠,∴不存在以点C为圆心且与线段BD和抛物线的对称轴l同时相切的圆.点评:此题是二次函数的综合题,主要考查的是利用待定系数法确定函数解析式、相似三角形的判定和性质、直线与圆的位置关系以及四边形的面积等重要知识点.。
2009年中考模拟考试数学试卷

第 题图第 题图第主左俯Oxy2011高邮九年级数学适应性训练试题(考试时间:120分钟 满分:150分)友情提醒:本卷中的所有题目均在答题卡上作答,在本卷中作答无效. 一、选择题(本大题共 个小题 每小题 分,共 分) 如果□× - ,那么“□”内应填的实数是.- .21- .21.下列条件中,能判定两个等腰三角形相似的是.都含有一个 °的内角 .都含有一个 °的内角 .都含有一个 °的内角 .都含有一个 °的内角已知两圆的半径分别是 和 ,圆心距为 ,那么这两圆的位置关系是 .相交 .内切 .外切 .内含平面内有一个角是 °的菱形绕它的中心旋转,使它与原来的菱形重合,那么旋转的角度至少是. ° . ° . ° . °.工程队进行河道清淤时,清理长度y 米 与清理时间x (时)之间关系的图像如图所示,下列说法不正确的是 .该工程队共清理了 小时 .河道总长为 米.该工程队用 小时清理了 米 .该工程队清理了 米之后加快了速度仓库里堆积着正方体的货箱若干,根据如图所示的三视图可得出箱子的个数是 . . . ..如图,若将直尺的 刻度与半径为 的量角器的 °对齐,并让量角器沿直尺的边缘无滑动滚动,则直尺上的 刻度对应的量角器上的度数大约为 . ° . ° . ° . °.已知 个整数1a 、2a 、3a 、…、2011a 满足下列条件:10a =,212a a =-+,322a a =-+,…,2011a =20102a -+,则123a a a +++…2011a +. . .- . 二、填空题(本大题共 个小题 每小题 分,共 分) .请写出一个大于 且小于 的无理数 ▲ ..截至目前福岛核泄漏事故中泄漏的放射性物质碘 总量为 万居里, 万居里可用科学记数法表示为 ▲ 居里.已知关于x 的不等式1x a ≥-的解集如图所示,则a 的值为 ▲ ..将一直角三角板与两边平行的纸条如图所示放置,若∠ °,则∠ ▲ °.第 题第第 题图. 如图,长为 的长方形纸片 沿对称轴 折叠两次后 与 的距离为 ,则原纸片的宽度为 ▲ ..把容量是 的样本分成 组,从第 组到第 组的频数分别是 ,, , ,第 组到第 组的频率都是 ,那么第组的频数是 ▲ ..一次函数6y x =-+与反比例函数8y x=的图象交于 、 两点,设点 的坐标为 1x 1y ,则边长分别为1x 、1y 的矩形周长为 ▲ ..如图, 是△ 的中线, ,∠ °,若△ 沿 所在直线翻折后点 落在点 ,那么点 到直线 的距离是 ▲ .若△ 的面积为 ,则△ 沿 — — — 路线作匀速运动,设运动时间为x ,∠ =y °,右图表示y 与x 之间函数关系,则点 的横坐标为 ▲ .三、解答题(本大共 题,共 分).(本题 分)计算112sin 45(2)3-⎛⎫+-π- ⎪⎝⎭.(本题 分)学校以 班学生的地理测试成绩为样本,按 、 、 、 四个等级进行统计,并将统计结果绘制成两幅统计图,结合图中信息填空:( ) 级学生的人数占全班人数的百分比为 ▲ ; ( )扇形统计图中 级所在扇形圆心角度数为 ▲ ; ( )该班学生地理测试成绩的中位数落在 ▲ 级内;( )若该校共有 人,则估计该校地理成绩得 级的学生约有 ▲ 人.题图 第图图.(本题 分)将图 中的矩形 沿对角线 剪开,再把△ 沿着 方向平移,得到图 中的△ .( )写出图 中的两.对.全等的三角形(不能添加辅助线和字母,△ ≌△ 除外);( )选择一对加以证明..(本题 分)一辆货车在 处加满油后匀速行驶,下表记录的是货车一次加满油后油箱内余油量y行驶时间x (时)余油量y (升)( )求y与x之间的函数关系式;( )求货车行驶 小时到达 处时油箱内的余油量..(本题 分)小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,两个陌生人可在 至 层的任意一层出电梯.( )求甲、乙二人在同一层楼出电梯的概率;( )约定“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该约定是否公平?若公平,说明理由;若不公平,修改成公平约定..(本题 分)如图,吴老师不小心把墨水滴在了 个班学生捐款金额的统计表上,只记得:三个班的捐款总金额是 元, 班的捐款金额比 班的捐款金额多 元.( )求 班、 班的捐款金额;( )若 班学生平均每人捐款的金额大于.. 元,小于.. 元.求 班的学生人数..(本题 分)如图,已知⊙ 是△ 的外接圆, 是⊙ 的直径, 是 延长线上的一点, ⊥ 交 的延长线于 , ⊥ 于 ,且 .( )求证: 是⊙ 的切线;( )若 , ,求 和 的长..(本题 分)如图,一根电线杆 和一块半圆形广告牌在太阳照射下,顶端 的影子刚好落在半圆形广告牌的最高处 ,而半圆形广告牌的影子刚好落在地面上一点 .已知 米, 米,半圆的直径 米.( )求线段 的长;班级班 金额(元)·( )求电线杆 的高度..(本题 分)电瓶厂投资 万元安装了电动自行车电瓶流水线,生产的电瓶成本为 元/只,设销售单价为x 元 100250x ≤≤ ,年销售量为y 万件,年获利为w 万元 .经过市场调研发现:当x = 元时,y = 万件.当 <x ≤ 元时,x 在 元的基础上每增加 元,y 将减少 万件;当 <x ≤ 元时,x 在 元的基础上每增加 元,y 将减少 万件. 年获利=年销售额-生产成本-投资( )当x 时,w ▲ 万元;当x 时,y ▲ 万件; ( )求y 与x 的函数关系式;( )当x 为何值时,第一年的年获利亏损最少?. 本题 分 已知△ 中,∠ °, , ,过点 作直线 ⊥ ,点 是直线 上的一个动点 与点 不重合 ,连结 交 于点 ,设 x , y .( )如图 ,若点 在射线 上,求 与 的函数解析式;( )射线 上是否存在一点 ,使以点 、 、 组成的三角形与△ 相似,若存在,求 的长,若不存在,说明理由;( )如图 ,过点 作 ⊥ ,垂足为 ,以 为圆心、 为半径的⊙ 与以 为圆心 为半径的动⊙ 相切,求⊙ 的半径.图图九年级数学中考模拟试卷参考答案一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填在下面的括号内,本大题共 个小题 每小题 分,共 分)二、填空题(本大题共 个小题 每小题 分,共 分)等 ; 62.410⨯ ; ; ; ;; ; ; ;12π+ .三、解答题(本大共 题,共 分)解:原式2132=⨯+-………………………… 分2= ………………………… 分解:( ) % ………………………… 分 ( )72︒ ………………………… 分 ( ) 级 ………………………… 分 ( )由题意可知: 级学生的人数和占全班总人数的 % ⨯ %估计这次考试中 级和 级的学生共有 人……………… 分解:( )AA E C CF ''△≌△ 、A DF CBE '△≌△ ………………‥ 分 ( )AA E C CF ''△≌△证明:由平移的性质可知:AA CC ''=,又A C '∠=∠∵,90AA E C CF ''∠=∠= AA E C CF ''∴△≌△ ……………… 分 或:A DF CBE '△≌△证明:由平移的性质可知:A E CF '∥,A F CE '∥∴四边形A ECF '是平行四边形 A F CE '=∴,A E CF '= A B CD '=∵ DF BE =∴又90B D ∠=∠=∵ A DF CBE '∴△≌△ ………………… 分解:( )设y 与x 之间的关系为一次函数,其函数表达式为y kx b =+ ………… 分将(0100),,(180),代入上式得,10080b k b =⎧⎨+=⎩ 解得20100k b =-⎧⎨=⎩20100y x ∴=-+ ………………… 分验证:当2x =时,20210060y =-⨯+=,符合一次函数20100y x ∴=-+; 当 2.5x =时,20 2.510050y =-⨯+=,也符合一次函数20100y x ∴=-+.∴ 可用一次函数20100y x =-+表示其变化规律,而不用反比例函数、二次函数表示其变化规律y ∴与x 之间的关系是一次函数,其函数表达式为20100y x =-+ ………… 分( )当 4.2x =时,由20100y x =-+可得16y =即货车行驶到 处时油箱内余油 升. ………………… 分.解: 列表如下:甲乙…… 分一共出现 种等可能结果,其中出现在同一层楼梯的有四种结果P ∴ 甲、乙在同一层楼梯 41164== ………… 分 由 列知:甲、乙住在同层或相邻楼层的有 种结果 故P 小亮胜 P = 同层或相邻楼层 105168== ………… 分 P 小芳胜 63168== ………… 分5388> ∴不公平 ………… 分 修改规则:若甲、乙同住一层或相邻楼层,则小亮得 分;小芳得 分. ……… 分解:( )设( )班的捐款金额为x 元,( )班的捐款金额为y 元,则依题意,得77002000300.x y x y +=-⎧⎨-=⎩, 解得30002700.x y =⎧⎨=⎩,答:( )班的捐款金额为 元,( )班的捐款金额为 元. ………… 分( )设( )班的学生人数为x 人.则依题意,得482000512000.x x <⎧⎨>⎩,解得1123941513x <<. x 是正整数,40x ∴=或 .答:( )班的学生人数为 人或 人. ………… 分解:( )连接 . ……………………………………… 分∵ ⊥ , ⊥ ,∴∠ =∠ …………………………………… 分 ∵∴∠ =∠ ……………………… 分 ∴∠ =∠ ∴ ∥ ∴ ⊥∴ 是⊙ 的切线. ……………………………………… 分 ( )∵ , ∴12. 在 △ 中, , ,∴∠ = °,∠ = °. …………………………………………… 分 在 △ 中, , ∴ =12 92. 在△ 中,∵∠ = °, ,∴△ 是等边三角形. ∴ . …………………………………………… 分 解:( )连接·根据题意可得 与⊙ 相切, ,∴ ( )过点 作 ∥ 交 于点 ∴ ∠ =∠ ∵∠ =∠ = ° ∴ ∽∴GB OB OF EF = 834GB = ∴ ∴ ……… 分解:( )- 万元、 万件; ………………… 分 ( )①当200100≤<x 时,200.1(100)0.130y x x =--=-+ ……… 分②当300200≤<x 时, 100.2(200)0.250y x x =--=-+先把200=x 代入0.130y x =-+ 得10y = ………………… 分( )①当200100≤<x 时,2(40)(0.130)20000.1343200w x x x x =--+-=-+- 20.1(170)310x =---当x = 时,w =最大值- ………………… 分②当 <x ≤ 时,2(40)(0.250)20000.2584000w x x x x =--+-=-+-20.2(145)205x =--+∴对称轴是直线145x =- < <x ≤∴在 <x ≤ 时,w 随x 的增大而减小x 时,w -∴w 最大值<- ……… 分∴综合①、②得当x = 元时,w =最大值- 万元 ……… 分证明:( )∵ ⊥ ,∠ °∴ ∥ ∴AP AD BC BD = ∵ , , ∴ ∵ x , y ∴810x y y =- ∴()1008xy x x =>+( )假设射线 上存在一点 ,使以点 、 、 组成的三角形与△ 相似 ∵ ∥ ∴∠ ∠∵∠ ° ∠ ≠ °∴ ∽ ∴AB PA BC AD =∴101088x x x =+ 解得:x = ∴当 的长为 时, ∽( )∵⊙ 与⊙ 相切, x①当点 在线段 上,⊙ 与⊙ 外切时, 8x -, 8614x x -++=- 在直角三角形 中,222AC AP PC +=∴2226(14)x x +=- 解得:407x = ∴⊙ 的半径为167②点 在射线 上,当⊙ 与⊙ 内切时, 8x +, 862x x +-=+ 在直角三角形 中,222AC AP PC +=∴2226(2)x x +=+ 解得:8x =(舍去)∴⊙ 的半径为③点 在射线 上,当⊙ 与⊙ 外切时, 8x -, 862x x -+=- 在直角三角形 中,222AC AP PC +=∴2226(2)x x +=- 解得:8x =- 舍去当⊙ 与⊙ 内切时, 8x -, 8614x x --=-在直角三角形 中,222AC AP PC += ∴2226(14)x x +=- 解得:407x = 舍去 ∴当⊙ 与⊙ 相切时,⊙ 的半径为 或167。
2009年兰州市中考数学试题及答案

1兰州市2009年初中毕业生学业考试试卷数 学注意事项:1.全卷共150分,考试时间120分钟。
2.考生必须将报考学校、姓名、准考证号、考场、座位号等个人信息填(涂)写在答题卡的 相应位置上。
3.考生务必将答案直接填写(涂)在答题卡的相应位置上。
一、选择题(本题15小题,每小题4分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的)1. 下列图形中,是轴对称图形但不是中心对称图形的是A B C D2. 已知两圆的半径分别为3cm和2cm ,圆心距为5cm ,则两圆的位置关系是 A .外离B .外切C .相交D .内切3. 如图1所示的几何体的俯视图是4. 下列说法正确的是 A .一个游戏的中奖概率是110,则做10次这样的游戏一定会中奖 B .为了解全国中学生的心理健康情况,应该采用普查的方式 C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .若甲组数据的方差20.01S =甲,乙组数据的方差20.1S =乙,则乙组数据比甲组数据稳定 5. 函数y =x -2+31-x 中自变量x 的取值范围是 A .x ≤2 B .x =3 C . x <2且x ≠3 D .x ≤2且x ≠3 6. 如图2,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会A .逐渐增大B .不变C .逐渐减小D .先增大后减小 7. 2008年爆发的世界金融危机,影响,某商品原价为200元,连续两次降价%a 后售价为148元,下面所列方程正确的是A .2200(1%)148a +=B .2200(1%)148a -=C .200(12%)148a -=D .2200(1%)148a -=8. 如图3,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米, 拱的半径为13米,则拱高为 A .5米 B .8米 C .7米 D .53米9. 在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是10. 如图4,丁轩同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行20m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部,已知丁轩同学的身高是1.5m ,两个路灯的高度都是9m ,则两路灯之间的距离是A .24mB .25mC .28mD .30m11. 把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为A .2(1)3y x =---B .2(1)3y x =-+- C .2(1)3y x =--+D .2(1)3y x =-++12. 如图5,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.75的山坡上种树, 也要求株距为4m ,那么相邻两树间的坡面距离为 A .5m B .6m C .7m D .8m13. 二次函数c bx ax y ++=2的图象如图6所示,则下列关系式不正确的是 A .a <0 B.abc >0图2 A.B . CD . 图12图13CBAC.c b a ++>0D.ac b 42->014. 如图7所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是15. 如图8,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发, 沿O-C-D-O 的路线作匀速运动.设运动时间为t 秒, ∠APB 的度数 为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是二、填空题(本题5小题,每小题4分,共20分)16. 如图9所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED的正切值等于 .17. 兰州市某中学的铅球场如图10所示,已知扇形AOB 的面积是36米2,弧AB 的长度为9米,那么半径OA = 米. 18. 如图11,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 1y x=(0x >)的 图象上,则点E 的坐标是( , ). 阅读19.材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=ca.根据该材料填空:已知x 1、x 2是方程 x 2+6x +3=0的两实数根,则21x x +12x x 的值为 . 20. 二次函数223y x =的图象如图12所示,点0A 位于坐标原点, 点1A ,2A ,3A ,…, 2008A 在y 轴的正半轴上,点1B ,2B ,3B ,…, 2008B 在二次函数223y x =位于第一象限的图象上, 若△011A B A ,△122A B A ,△233A B A ,…,△200720082008A B A 都为等边三角形,则△200720082008A B A 的边长= .三、解答题(本题9小题,共70分.解答时写出必要的文字说明、证明过程或演 算步骤)21.(本题满分10分)(1)(本小题满分5分)计算:101245(2 1.41)3-⎛⎫--+ ⎪⎝⎭(2)(本小题满分5分)用配方法解一元二次方程:2213x x += 22.(本题满分5分)如图13,要在一块形状为直角三角形 (∠C 为直角)的铁皮上裁出一个半圆形的铁皮,需先 在这块铁皮上画出一个半圆,使它的圆心在线段AC 上, 且与AB 、BC 都相切.请你用直尺和圆规画出来(要求用尺规作图,保留作图痕迹,不要求写作法).23.(本题满分7分)今年兰州市在全市中小学中开展以感恩和生命为主题的教育活动,各中小学结合学生实际,开展了形式多样的感恩教育活动.下面图①,图②分别是某校调查部分学生是否知道母亲生日情况的扇形统计图和条形统计图.根据图上信息,解答下列问题:(1)求本次被调查学生的人数,并补全条形统计图;(2)若全校共有2700名学生,你估计这所学校有多少名学生知道母亲的生日? (3)通过对以上数据的分析,你有何感想?(用一句话回答)24.(本题满分7分) 端午节吃粽子是中华民族的传统习俗.五月初五早晨,妈妈为洋洋准备 了四只粽子:一只香肠馅,一只红枣馅,两只什锦馅,四只粽子除内部馅料不同外,其他 均一切相同.洋洋喜欢吃什锦馅的粽子.(1)请你用树状图或列表法为洋洋预测一下吃两只粽子刚好都是什锦馅的概率;(2)在吃粽子之前,洋洋准备用如图所示的转盘进行吃粽子的模拟试验(此转盘被等分成 四个扇形区域,指针的位置是固定的,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置.若指针指向两个扇形的交线时,重新转动转盘),规定:连续转动A . 图7B .C .D . 图9BA C3两次转盘表示随机吃两只粽子,从而估计吃两只粽子刚好都是什锦馅的概率.你认为这种模拟试验的方法正确吗?试说明理由.25.(本题满分7分) 如图14,已知(4)A n -,,(24)B -,是一次函数y kx b =+的图象和 反比例函数my x=的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程0=-+xmb kx 的解(请直接写出答案); (4)求不等式0<-+xmb kx 的解集(请直接写出答案).26.(本题满分7分)如图15,在四边形ABCD 中,E 为AB 上一点,△ADE 和△BCE 都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,试判断四边形PQMN 为怎样的四边形,并证明你的结论.27.(本题满分9分) 如图16,在以O 为圆心的两个同心圆中,AB 经过圆心O ,且与小圆相交于点A 、与大圆相交于点B .小圆的切线AC 与大圆相交于 点D ,且CO 平分∠ACB .(1)试判断BC 所在直线与小圆的位置关系,并说明理由; (2)试判断线段AC 、AD 、BC 之间的数量关系,并说明理由; (3)若8cm 10cm AB BC ==,,求大圆与小圆围成的圆环的 面积.(结果保留π)28.(本题满分9分)如图17,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM 为12米. 现以O 点为原点,OM 所在直线为x 轴建立 直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标; (2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD- DC- CB , 使C 、D 点在抛物线上,A 、B 点在地面OM 上, 则这个“支撑架”总长的最大值是多少?29.(本题满分9分)如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动, 同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动, 设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度; (2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标;(4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.4兰州市2009年初中毕业生学业考试试卷数学(A )参考答案及评分标准一、选择题(本大题15小题,每小题4分,共60分)16.1217.8 18.(215+,215-) 19. 10 20. 2008三、解答题(本大题9小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)21.(本题满分10分) (1)(本题满分5分) 解:原式=1323++-- ·············································································· 3分 =1)32(3+-- ············································································· 4分=32+····················································································· 5分(第一步计算中,每算对一个给1分)(2)(本题满分5分) 解:移项,得2231x x -=- ····························································································· 1分二次项系数化为1,得23122x x -=- ····························································································· 2分 配方22233132424x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭231416x ⎛⎫-= ⎪⎝⎭····························································································· 4分 由此可得3144x -=± 11x =,212x =···························································································· 5分22.(本题满分5分)作出角平分线得2分,作出半圆再得2分,小结1分,共5分。
2009年中考数学试题及答案

2009年陕西省初中毕业学业考试数 学第Ⅰ卷(选择题 共30分)A 卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.12-的倒数是( ). A.2 B .2- C .12 D .12-2.1978年,我国国内生产总值是3 645亿元,2007年升至249 530亿元.将249 530亿元用科学记数表示为( ). A .1324.95310⨯元 B .1224.95310⨯元 C .132.495310⨯元 D .142.495310⨯元3.图中圆与圆之间不同的位置关系有( ). A .2种 B .3种 C .4种 D .5种 4.王老师为了了解本班学生课业负担情况,在班中随机调查了10名学生,他们每人上周平均每天完成家庭作业所用的时间分别是(单位:小时):1.5,2,2,2,2.5,2.5,2.5,2.5,3,3.5.则这10个数据的平均数和众数分别是( ). A .2.4,2.5 B .2.4,2 C .2.5,2.5 D .2.5,2 5.若正比例函数的图象经过点(1-,2),则这个图象必经过点( ). A .(1,2) B .(1-,2-) C .(2,1-) D .(1,2-)6.如果点(12)P m m -,在第四象限,那么m 的取值范围是( ). A .102m <<B .102m -<<C .0m <D .12m > 7.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ). A .1.5 B .2 C .3 D .68.化简2b aa a ab ⎛⎫- ⎪-⎝⎭的结果是( ).A .a b -B .a b +C .1a b - D .1a b+ 9.如图,9030AOB B ∠=∠=°,°,A OB ''△可以看作是由AOB △绕点O 顺时针旋转α角度得到的.若点A '在AB 上,则旋转角α的大小可以是( ).A .30°B .45°C .60°D .90°10.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴( ).(第3题图)120°(第7题图)AOBA 'B '(第9题图)x… 1- 0 1 2 … y…1-74- 2-74- …A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分) 11.031)--=__________.12.如图,AB CD ∥,直线EF 分别交AB CD 、于点E F 、, 147∠=°,则2∠的大小是__________. 13.若1122()()A x y B x y ,,,是双曲线3y x=上的两点, 且120x x >>,则12_______y y {填“>”、“=”、“<”}.14.如图,在梯形ABCD 中,DC AB ∥,DA CB =. 若104AB DC ==,,tan 2A =,则这个梯形的面积 是__________.15.一家商店将某种商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润__________元.16.如图,在锐角ABC △中,45AB BAC =∠=°,BAC ∠的平分线交BC 于点D M N ,、分别是AD 和AB 上的动点,则BM MN +的最小值是___________ .三、解答题(共9小题,计72分) 17.(本题满分5分) 解方程:223124x x x --=+-. 18.(本题满分6分)如图,在ABCD中,点E 是AD 的中点,连接CE 并延长,交BA 的延长线于点F . 求证:FA AB =.AB DC EF12 (第12题图)ABCD(第14题图)ABCDNM(第16题图)A B C DE F (第18题图)某校为了组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,并绘制成如图①、②所示的条形和扇形统计图.根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数,并补全条形统计图;(2)若全校有1 500名学生,请你估计该校最喜欢篮球运动的学生人数;(3)根据调查结果,请你为学校即将组织的一项球类对抗赛提出一条合理化建议. 20.(本题满分8分)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度 1.2CD =m ,0.8CE =m ,30CA =m (点A E C 、、在同一直线上).已知小明的身高EF 是1.7m ,请你帮小明求出楼高AB (结果精确到0.1m ).项目 ①足球20%篮球 26% 乒乓球 32% 羽毛球 16% 其他②(第19题图)(第20题图)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h )时,汽车与甲地的距离为y (km ),y 与x 的函数关系如图所示. 根据图象信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由; (2)求返程中y 与x 之间的函数表达式;(3)求这辆汽车从甲地出发4h 时与甲地的距离.22.(本题满分8分)甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由. 23.(本题满分8分)如图,O ⊙是ABC △的外接圆,AB AC =,过点A 作AP BC ∥,交BO 的延长线于点P . (1)求证:AP 是O ⊙的切线;(2)若O ⊙的半径58R BC ==,,求线段AP 的长.(第21题图)(第23题图)24.(本题满分10分)如图,在平面直角坐标系中,OB OA ⊥,且2OB OA =,点A 的坐标是(12)-,. (1)求点B 的坐标;(2)求过点A O B 、、的抛物线的表达式;(3)连接AB ,在(2)中的抛物线上求出点P ,使得ABP ABO S S =△△. 25.(本题满分12分) 问题探究(1)请在图①的正方形ABCD 内,画出使90APB ∠=°的一个..点P ,并说明理由. (2)请在图②的正方形ABCD 内(含边),画出使60APB ∠=°的所有..的点P ,并说明理由.问题解决(3)如图③,现在一块矩形钢板43ABCD AB BC ==,,.工人师傅想用它裁出两块全等的、面积最大的APB △和CP D '△钢板,且60APB CP D '∠=∠=°.请你在图③中画出符合要求的点P 和P ',并求出APB △的面积(结果保留根号).D C B A ① D C BA ③ D CB A ② (第25题图)2009年陕西省初中毕业学业考试数学试题参考答案A 卷一、选择题(共10小题,每小题3分,计30分)题号1 2 3 4 5 6 7 8 9 10 A 卷答案 BC A AD D C B C B题号1 2 3 4 5 6 7 8 9 10 B 卷答案 DA D C AB B A B C二、填空题(共6小题,每小题3分,计18分)11.2 12.133° 13.< 14.42 15.60 16.4 三、解答题(共9小题,计72分) 17.(本题满分5分) 解:22(2)(4)3x x ---=. ························································································ (2分)45x -=-.54x =. ······················································································· (4分)经检验,54x =是原方程的解. ···················································································· (5分) 18.(本题满分6分)证明: 四边形ABCD 是平行四边形, AB DC AB DC ∴=,∥.FAE D F ECD ∴∠=∠∠=∠,. ············ (3分) 又EA ED = ,AFE DCE ∴△≌△. ······························· (5分) AF DC ∴=. AF AB ∴=. ············································· (6分) 19.(本题满分7分) 解:(1)1326%50÷= ,∴本次被调查的人数是50. ·········· (2分) 补全的条形统计图如图所示. ······· (4分)(第19题答案图)项目ABCDEF(2)150026%390⨯= ,∴该校最喜欢篮球运动的学生约为390人. ································································ (6分) (3)如“由于最喜欢乒乓球运动的人数最多,因此,学校应组织乒乓球对抗赛”等.(只要根据调查结果提出合理、健康、积极的建议即可给分) ·············································· (7分) 20.(本题满分8分)解:过点D 作DG AB ⊥,分别交AB EF 、于点G H 、, 则 1.2EH AG CD ===,0.830DH CE DG CA ====,. ························ (2分) EF AB ∥, FH DH BGDG∴=. ························································· (5分)由题意,知 1.7 1.20.5FH EF EH =-=-=.0.50.830BG ∴=,解之,得18.75BG =. ··················· (7分) 18.75 1.219.9520.0AB BG AG ∴=+=+=≈.∴楼高AB 约为20.0米. ······························································································ (8分) 21.(本题满分8分)解:(1)不同.理由如下:往、返距离相等,去时用了2小时,而返回时用了2.5小时,∴往、返速度不同. ······································································································ (2分) (2)设返程中y 与x 之间的表达式为y kx b =+,则120 2.505.k b k b =+⎧⎨=+⎩,解之,得48240.k b =-⎧⎨=⎩,········································································································ (5分)∴48240y x =-+.(2.55x x ≤≤)(评卷时,自变量的取值范围不作要求) ····· (6分) (3)当4x =时,汽车在返程中,48424048y ∴=-⨯+=.∴这辆汽车从甲地出发4h 时与甲地的距离为48km . ················································· (8分) 22.(本题满分8分)解:这个游戏不公平,游戏所有可能出现的结果如下表:第二次第一次3 45 6 3 33 34 35 36 4 43 44 45 46 5 53 54 55 56 663646566表中共有16种等可能结果,小于45的两位数共有6种. ·········································· (5分)(第20题答案图)()()168168甲获胜乙获胜3588≠ , ∴这个游戏不公平. ······································································································ (8分) 23.(本题满分8分)解:(1)证明:过点A 作AE BC ⊥,交BC 于点E . AB AC =,AE ∴平分BC .∴点O 在AE 上. ······································· (2分) 又AP BC ∥, AE AP ∴⊥.AP ∴为O ⊙的切线. ································ (4分) (2)142BE BC == ,3OE ∴.又AOP BOE ∠=∠ , OBE OPA ∴△∽△. ··································································································· (6分)BE OE AP OA ∴=. 即435AP =. 203AP ∴=. ················································································································· (8分)24.(本题满分10分) 解:(1)过点A 作AF x ⊥轴,垂足为点F ,过点B 作BE x ⊥轴,垂足为点E ,则21AF OF ==,.OA OB ⊥,90AOF BOE ∴∠+∠=°. 又90BOE OBE ∠+∠= °, AOF OBE ∴∠=∠.Rt Rt AFO OEB ∴△∽△.2BE OE OBOF AF OA ∴===. 24BE OE ∴==,.(42)B ∴,. ····················································································································· (2分) (2)设过点(12)A -,,(42)B ,,(00)O ,的抛物线为2y ax bx c =++. 216420.a b c a b c c -+=⎧⎪∴++=⎨⎪=⎩,,解之,得12320a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,,.P(第23题答案图)22(3)由题意,知AB x ∥轴.设抛物线上符合条件的点P 到AB 的距离为d ,则1122ABP S AB d AB AF == △. 2d ∴=.∴点P 的纵坐标只能是0,或4. ··············································································· (7分) 令0y =,得213022x x -=.解之,得0x =,或3x =.∴符合条件的点1(00)P ,,2(30)P ,. 令4y =,得213422x x -=.解之,得32x ±=. ∴符合条件的点34)P,44)P . ∴综上,符合题意的点有四个: 1(00)P ,,2(30)P ,,33(4)2P -,43(4)2P . ·········································· (10分) (评卷时,无1(00)P ,不扣分) 25.(本题满分12分)解:(1)如图①,连接AC BD 、交于点P ,则90APB ∠=°.∴点P 为所求.······················································· (3分) (2)如图②,画法如下:1)以AB 为边在正方形内作等边ABP △;2)作ABP △的外接圆O ⊙,分别与AD BC 、交于点E F 、.在O ⊙中,弦AB 所对的APB 上的圆周角均为60°, EF∴上的所有点均为所求的点P . ··················· (7分) (3)如图③,画法如下:1)连接AC ;2)以AB 为边作等边ABE △;3)作等边ABE △的外接圆O ⊙,交AC 于点P ; 4)在AC 上截取AP CP '=. 则点P P '、为所求. ············································· (9分) (评卷时,作图准确,无画法的不扣分) 过点B 作BG AC ⊥,交AC 于点G . 在Rt ABC △中,43AB BC ==,.DCBA① P②③(第25题答案图)5AC ∴==.125AB BC BG AC ∴== . ····························································································· (10分) 在Rt ABG △中,4AB =,165AG ∴==.在Rt BPG △中,60BPA ∠=°,12tan 60535BG PG ∴==⨯=°.∴165AP AG PG =+=1116122255APB S AP BG ⎛∴==⨯+⨯= ⎝⎭ △. ································· (12分)。
2009年中考数学试题参考答案

2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。
2009年九年级数学中考试题分类汇编——应用题

2009年中考数学试题分类汇编——应用题(某某)l9.(9分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.(某某)20.(9分)如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李师傅的身高为l.78m,当他攀升到头顶距天花板0.05~时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)(某某)22. (10分)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:第23题图(1)第23题图(2)(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下. 如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?(某某)7.某市2008年国内生产总值(GDP )比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是…………………………【 】A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+(某某)23.已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.【解】(2)写出批发该种水果的资金金额w (元)与批发量m (kg么X 围内,以同样的资金可以批发到较多数量的该种水果.【解】(3数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案, )使得当日获得的利润最大.【解】()18.列方程或方程组解应用题:市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?(某某州)22.某超市经销A、B两种商品,A种商品每件进价20元,售价30元;B种商品每件进价35元,售价48元.(1)该超市准备用800元去购进A、B两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大(其中B种商品不少于7件)?(2)在“五·一”期间,该商场对A、B两种商品进行如下优惠促销活动:促销活动期间小颖去该超市购买A种商品,小华去该超市购买B种商品,分别付款210元与268.8元.促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?(某某市)23. (本小题满分12分)为了拉动内需,某某启动“家电下乡”活动。
2009年中考数学试题汇编之1-有理数试题及答案

全国免费客户服务电话:400-715-6688地址:西安经济技术开发区凤城一路8号御道华城A 座10层2009年中考试题专题之1-有理数试题及答案 一、选择题1.(2009年福建省泉州市)计算:=-0)5(( ). A .1 B .0 C .-1 D .-5 【答案】A2.(2009年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2009年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元 B .70.25810⨯元 C .62.5810⨯元 D .625.810⨯元 【答案】C4.(2009年抚顺市)2-的相反数是( ) A .2 B .12- C .2- D .12【答案】A5.(2009年绵阳市)2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是A .0.156³10-5B .0.156³105C .1.56³10-6D .1.56³106【答案】C6.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m【答案】A 7.(2009呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2009年龙岩)-2的相反数是( )A .-2B .2C .21 D .-21【答案】B 9.(2009年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( )A .111.4810⨯元 B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2009年黄石市)12-的倒数是( )A .2B .12C .12- D .2-【答案】D 11.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( ) A .107.2610⨯ 元 B .972.610⨯ 元 C .110.72610⨯ 元D .117.2610⨯元【答案】A 12.(2009年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0a b >B .0a b +<C .1a b <D .0a b -<【答案】C 13.(2009年枣庄市)-12的相反数是( )A .2B .2-C .12D .12-【答案】C14.(2009年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( )A 、1.196³108立方米B 、1.196³107立方米C 、11.96³107立方米D 、0.1196³109立方米 【答案】A15.(2009年赤峰市)3(3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2009贺州)计算2)3(-的结果是( ).A .-6B .9C .-9D .6【答案】B17.(2009年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( ) A .8.1³190-米 B .8.1³18-米 C .81³19-米 D .0.81³17-米【答案】Bab 018.(2009年江苏省)2-的相反数是( ) A .2 B .2-C .12D .12-【答案】A 19.(2009贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A .32B .23C .23- D .32-21.(2009襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯ D .83.110-⨯解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
庆阳市2009年初中毕业学业监测与高中阶段学校招生考试数 学 试 卷友情提示:1.抛物线2y ax bx c =++的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 2.扇形面积公式:2π360n R S =扇形;其中,n 为扇形圆心角度数,R 为圆的半径. 本试卷满分为150分,考试时间为120分钟.一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内. 1.8的立方根是( )A .2B .2-C .±2D .2.方程240x -=的根是( ) A .2x =B .2x =-C .1222x x ==-,D .4x =3.图1中不是中心对称图形的是( )A .B .C .D .图14.下列说法中,正确的是( ) A .“明天降雨的概率是80%”表示明天有80%的时间降雨 B .“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上 C .“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖 D .在同一年出生的367名学生中,至少有两人的生日是同一天 5.将抛物线22y x =向下平移1个单位,得到的抛物线是( ) A .22(1)y x =+B .22(1)y x =-C .221y x =+D .221y x =-6.如图2,晚上小亮在路灯下散步,在小亮由A 处径直走到B 处这一过程中,他在地上的影子( ) A .逐渐变短 B .先变短后变长 C .先变长后变短 D .逐渐变长7.如图3,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( ) A .1米 B .1.5米 C .2米 D .2.5米图2 图3 图4 图58.如图4,在平行四边形ABCD 中,E 是AB 的中点,CE 和BD 交于点O ,设△OCD 的面积为m ,△OEB) A .5m =B.m =C.m =D .10m =9.如图5,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 不可能为( ) A .2 B .3 C .4 D .510.图6(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图6(2)建立平面直角坐标系,则抛物线的关系式是( ) A .22y x =- B .22y x = C .212y x =-D .212y x =二、填空题:本大题共10小题,每小题4分,共40分.把答案填在题中的横线上. 11在实数范围内有意义的x 应满足的条件是 . 12.若关于x 的方程2210x x k ++-=的一个根是0,则k = .13.如图7,将正六边形绕其对称中心O 旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是 度.14.若100个产品中有95个正品、5个次品,从中随机抽取一个,恰好是次品的概率是 . 15.如图8,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.16.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)的函数关系式是29.8 4.9h t t =-,那么小球运动中的最大高度为 米.17.如图9,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形的面积图6(1) 图6(2)图7 图8= cm 2.18.如图10,两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .图9 图10 图11 图1219.如图11,正方形OEFG 和正方形ABCD 是位似形,点F 的坐标为(1,1),点C 的坐标为(4,2),则这两个正方形位似中心的坐标是 . 20.图12为二次函数2y ax bx c =++的图象,给出下列说法:①0ab <;②方程20ax bx c ++=的根为1213x x =-=,;③0a b c ++>;④当1x >时,y 随x 值的增大而增大;⑤当0y >时,13x -<<.其中,正确的说法有 .(请写出所有正确说法的序号) 三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.21.(62sin 45°.22.(7分)一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图13所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).图13主视图 左视图 俯视图23.(8分)如图14,在平面直角坐标系中,等腰Rt △OAB 斜边OB 在y 轴上,且OB =4. (1)画出△OAB 绕原点O 顺时针旋转90°后得到的三角形;(2)求线段OB 在上述旋转过程中所扫过部分图形的面积(即旋转前后OB 与点B 轨迹所围成的封闭图形的面积).24.(8分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求: (1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元? 25.(9分)一只不透明的袋子中,装有2个白球(标有号码1、2)和1个红球,这些球除颜色外其他都相同.(1)搅匀后从中摸出一个球,摸到白球的概率是多少?(2)搅匀后从中一次摸出两个球,请用树状图(或列表法)求这两个球都是白球的概率.图14四、解答题(二):本大题共4小题,共42分.解答时,应写出必要的文字说明、证明过程或演算步骤. (1)26.(10分)如图15(1),一扇窗户打开后用窗钩AB 可将其固定. (1)这里所运用的几何原理是( ) (A )三角形的稳定性 (B )两点之间线段最短 (C )两点确定一条直线 (D )垂线段最短(2)图15(2)是图15(1)中窗子开到一定位置时的平面图,若∠AOB =45°, ∠OAB =30°,OA =60cm ,求点B 到OA 边的距离.1.7,结果精确到整数)27.(10分)如图16,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点. △ACB 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F . (1)求证:△ACB ∽△DCE ;(2)求证:EF ⊥AB .28.(10分)如图17,在边长为2的圆内接正方形ABCD 中,AC 是对角线,P 为边CD 的中点,延长AP 交圆于点E . (1)∠E = 度;(2)写出图中现有的一对不全等的相似三角形,并说明理由; (3)求弦DE 的长.图15(1) 图15(2)图16 图1729.(12分)如图18,在平面直角坐标系中,将一块腰长为5的等腰直角三角板ABC 放在第二象限,且斜靠在两坐标轴上,直角顶点C 的坐标为(1-,0),点B 在抛物线22y ax ax =+-上.(1)点A 的坐标为 ,点B 的坐标为 ; (2)抛物线的关系式为 ;(3)设(2)中抛物线的顶点为D ,求△DBC 的面积;(4)将三角板ABC 绕顶点A 逆时针方向旋转90°,到达AB C ''△的位置.请判断点B '、C '是否在(2)中的抛物线上,并说明理由.附加题:如果你的全卷得分不足150分,则本题的得分记入总分,但记入总分后全卷得分不得超过150分,超过按150分算. 30.(10分)图19是二次函数2122y x =-+的图象在x 轴上方的一部分,若这段图象与x 轴所围成的阴影部分面积为S ,试求出S 取值的一个范围.图18 图19庆阳市2009年初中毕业学业监测与高中阶段学校招生考试数学试卷参考答案与评分标准11.x >1 12.1 13.60 14.20115.3 16.4.9 17.60 18.60° 19.(2-,0) 20. ①②④三、解答题(一):本大题共5小题,共38分. 21.本小题满分6分解: 原式=22⨯························································································ 4分 =0. ························································································································ 6分22.本小题满分7分解:正确的三视图如图所示:主视图正确; ········································································ 2分 左视图正确; ········································································ 2分俯视图正确. ····································································· 3分 说明:俯视图中漏掉圆心的黑点扣1分.23.本小题满分8分解:(1)画图正确(如图); ······················································· 4分 (2)所扫过部分图形是扇形,它的面积是:290π44π360⨯=. ································································· 8分24.本小题满分8分 解:(1)设每年盈利的年增长率为x , ················································································ 1分根据题意,得21500(1)2160x +=. ·········································································· 3分 解得120.2 2.2x x ==-,(不合题意,舍去).···························································· 5分1500(1)1500(10.2)1800x ∴+=+=.答:2007年该企业盈利1800万元. ············································································· 6分 (2) 2160(10.2)2592+=.答:预计2009年该企业盈利2592万元. ··································································· 8分 25. 本小题满分9分 解 (1)p (一个球是白球)=23······················································································ 3分 (2)树状图如下(列表略):开始········································································································································· 6分P ∴(两个球都是白球)2163== . ············································································· 9分 四、解答题(二):本大题共4小题,共42分. 26.本小题满分10分 解:(1)A . ··············································································· 3分 (2)如图,过点B 作BC ⊥OA 于点C , ··························· 4分 ∵ ∠AOB =45°,∴∠CBO =45°,BC =OC . ·························· 5分 设BC =OC =x ,∵∠OAB =30°, ∴ AC =BC ×tan60°=3x . ··················································· 7分 ∵ OC +CA =OA ,∴x +3x =60, ······································ 8分 ∴ x =3160+≈22(cm ).即点B 到OA 边的距离是22 cm . ··············································································· 10分 27. 本小题满分10分 证明:(1)∵ 3,2AC DC = 63,42BC CE == ··············································· 2分∴ .AC BC DC CE = 又 ∠ACB =∠DCE =90°, ··················································· 3分 ∴ △ACB ∽△DCE . ······················································ 5分 (2) ∵ △ACB ∽△DCE ,∴ ∠ABC =∠DEC . ······································································ 6分 又 ∠ABC +∠A =90°,∴ ∠DEC +∠A =90°. ······························································· 8分 ∴ ∠EF A =90°. ∴ EF ⊥AB . ······················································································ 10分 28.本小题满分10分 解:(1)45. ················································································ 2分 (2)△ACP ∽△DEP . ···························································· 4分 理由:∵∠AED =∠ACD ,∠APC =∠DPE ,∴ △ACP ∽△DEP . ································································ 6分(3)方法一:∵ △ACP ∽△DEP , ∴ .AP AC DP DE =······························· 7分 又 AP =522=+DP AD ,AC =2222=+DC AD , ·········································· 9分 ∴ DE =5102. ········································································································ 10分方法二:如图2,过点D 作DF AE ⊥于点F .在Rt ADP △中, AP ··················· 7分 又1122ADP S AD DP AP DF == △, ·························· 8分 白2 红 白1 白1 红 白2白1 白2 红BCO图2图1∴ DF =552. ············································································································ 9分∴ 51022==DF DE . ························································································ 10分29.本小题满分12分 解: (1)A (0,2), B (3-,1). ················································································· 2分 (2)211222y x x =+-. ······························································································ 3分 (3)如图1,可求得抛物线的顶点D (11728--,). ················································· 4分 设直线BD 的关系式为y kx b =+, 将点B 、D 的坐标代入,求得54k =-,114b =-,∴ BD 的关系式为51144y x =--. ················································································· 5分设直线BD 和x 轴交点为E ,则点E (115-,0),CE =65.∴ △DBC 的面积为1617152588⨯⨯+=(1). ······························································ 7分(4)如图2,过点B '作B M y '⊥轴于点M ,过点B 作BN y ⊥轴于点N ,过点C '作C P y '⊥轴于点P . ······················································································································· 8分在Rt △AB ′M 与Rt △BAN 中,∵ AB =AB ′, ∠AB ′M =∠BAN =90°-∠B ′AM , ∴ Rt △AB ′M ≌Rt △BAN . ·································································································· 9分 ∴ B ′M =AN =1,AM =BN =3, ∴ B ′(1,1-). ···························································· 10分图1图2同理△AC ′P ≌△CAO ,C ′P =OA =2,AP =OC =1,可得点C ′(2,1); ·························· 11分 将点B ′、C ′的坐标代入211222y x x =+-,可知点B ′、C ′在抛物线上. ················· 12分 (事实上,点P 与点N 重合)附加题:如果你的全卷得分不足150分,则本题的得分记入总分,但记入总分后全卷得分不得超过150分,超过按150分算. 30.本小题满分10分 解:方法一:由题意,可知这段图象与x 轴的交点为A (-2,0)、B (2,0),与y 轴的交点为C (0,2). ······················································· 2分显然,S 在ABC ∆面积与过A 、B 、C 三点的⊙O 半圆面积之间. ··································· 3分 ∵ ABC S △=4, ··································································· 4分 12O S =2π, ······························································· 5分 ∴ 4<S <2π. ······································································ 6分说明:关于半圆⊙O 的面积大于图示阴影部分面积的证明,如下(对学生不要求): 设P (x ,y )在图示抛物线上,则 OP 2=x 2+y 2=(4-2y )+y 2=(y -1)2+3. ∵ 0≤y ≤2, ∴ 3≤OP 2≤4. ∴ 点P 在半圆x 2+y 2=3、x 2+y 2=4所夹的圆环内, 以及点P为内圆周点(1)与外圆周点A 、B 、C . ∴ 半圆⊙O 的面积大于图示阴影部分的面积. 由于内半圆的面积为12O S -3π2, ∴3π2<S <2π. 如果学生能得出此结论,可在上面结论基础上,加4分.方法二:由题意,可知这段图象与x 轴的交点为A (-2,0)、B (2,0),与y 轴的交点为C (0,2). ························································································· 2分2的两个半圆所夹的圆环内,以及过内半圆上点 P(1)与半外圆上点A 、B 、C . ······················ 5分∴ S 在图示两个半圆面积之间. ····································· 7分即21π2⋅<S <2122π⋅. ········································· 9分 ∴ 3π2<S <2π. ·························································· 10分。