离散系统的数学描述

离散系统的数学描述
离散系统的数学描述

离散系统的数学描述

1. 状态空间描述法

状态空间描述离散系统使用ss 命令。

语法:

G=ss(a,b,c,d,Ts) %由a 、b 、c 、d 参数获得状态方程模型

说明:Ts 为采样周期,为标量,当采样周期未指明可以用-1表示。

【例6.2】用状态空间法建立离散系统。 a=[-1.5 -0.5;1 0];

b=[1;0];

c=[0 0.5];

d=0;

G=ss(a,b,c,d,0.1)

%采样周期为0.1s

a =

x1 x2

x1 -1.5 -0.5

x2 1 0

b =

u1 x1 1

x2 0

c =

x1 x2

y1 0 0.5

d =

u1

y1 0

Sampling time: 0.1

Discrete-time model.

2. 脉冲传递函数描述法

脉冲传递函数也可以用tf 命令实现。

语法:

G=tf(num,den,Ts) %由分子分母得出脉冲传递函数

说明:Ts 为采样周期,为标量,当采样周期未指明可以用-1表示,自变量用'z'表示。

【例6.2续】创建离散系统脉冲传递函数21120.5z 1.5z 10.5z 0.51.5z z 0.5z G(z)---+-=+-=

num1=[0.5 0];

den=[1 -1.5 0.5];

G1=tf(num1,den,-1)

Transfer function:

0.5 z

-----------------

z^2 - 1.5 z + 0.5

Sampling time: unspecified

MATLAB中还可以用filt命令产生脉冲传递函数。

语法:

G=filt(num,den,Ts) %由分子分母得出脉冲传递函数

说明:Ts为采样周期,当采样周期未指明Ts可以省略,也可以用-1表示,自变量用'z-1'表示。

【例6.2续】使用filt命令产生脉冲传递函数。

num2=[0 0.5];

G2=filt(num2,den)

Transfer function:

0.5 z^-1

-----------------------

1 - 1.5 z^-1 + 0.5 z^-2

Sampling time: unspecified

程序说明:用filt命令生成的脉冲传递函数的自变量不是z而是z-1,因此分子应改为“[0 0.5]”。

3. 零极点增益描述法

离散系统的零极点增益用zpk命令实现。

语法:

G=zpk(z,p,k,Ts) %由零极点得出脉冲传递函数

【例6.2续】使用zpk命令产生零极点增益传递函数。

G3=zpk([0],[0.5 1],0.5,-1)

Zero/pole/gain:

0.5 z

-------------

(z-0.5) (z-1)

Sampling time: unspecified

语法:

G=ss(传递函数) %由传递函数转换获得

G=ss(零极点模型) %由零极点模型转换获得

【例 6.3】将单输入双输出的系统传递函数12s 5s 3s 52s s 23s (s)G 2321+++??????+++=

转换为状态空间描

述。 num=[0 3 2;

1 2 3];

den=[3 5 2 1];

G11=tf(num(1,:),den)

Transfer function:

3 s + 2

-----------------------

3 s^3 + 5 s^2 + 2 s + 1

G12=tf(num(2,:),den)

Transfer function:

s^2 + 2 s + 3

-----------------------

3 s^3 + 5 s^2 + 2 s + 1

G=ss([G11;G12])

a =

x1 x2 x3

x1 -1.667 -0.3333 -0.08333

x2 2 0 0

x3 0 2 0

b =

u1

x1 1

x2 0

x3 0

c =

x1 x2 x3

y1 0 0.5 0.1667

y2 0.3333 0.3333 0.25

d =

u1

y1 0

y2 0

Continuous-time model.

(2) 传递函数的获得

由tf命令实现将系统的状态空间法和零极点增益模型转换为传递函数。语法:

G=tf(状态方程模型) %由状态空间转换

G=tf(零极点模型) %由零极点模型转换

【例6.3续】由状态空间描述转换为传递函数。

G1=tf(G)

Transfer function from input to output...

s + 0.6667

#1: -----------------------------------

s^3 + 1.667 s^2 + 0.6667 s + 0.3333

0.3333 s^2 + 0.6667 s + 1

#2: -----------------------------------

s^3 + 1.667 s^2 + 0.6667 s + 0.3333

(3) 零极点模型的获得

由zpk命令实现将状态空间法、传递函数转换为零极点模型。

语法:

G=zpk(状态方程模型) %由状态方程模型转换

G=zpk(传递函数) %由传递函数转换

【例6.3续】由传递函数和状态方程模型转换零极点模型。

G2=zpk(G) %由状态方程模型转换

Zero/pole/gain from input to output...

(s+0.6667)

#1: -----------------------------------

(s+1.356) (s^2 + 0.3103s + 0.2458)

0.33333 (s^2 + 2s + 3)

#2: -----------------------------------

(s+1.356) (s^2 + 0.3103s + 0.2458)

G2=zpk(G1); %由传递函数转换

2.模型参数的获取

语法:

[a,b,c,d]=ssdata(G) %获取状态空间参数

[a,b,c,d,e]=dssdata(G) %获取状态空间参数

[num,den]=tfdata(G) %获取传递函数参数

[z,p,k]=zpkdata(G) %获取零极点参数

【例6.3续】获取各模型的参数。

[a,b,c,d]=ssdata(G1) %获取状态方程参数

a =

-1.6667 -0.3333 -0.0833

2.0000 0 0

0 2.0000 0

b =

1

c =

0 0.5000 0.1667

0.3333 0.3333 0.2500

d =

3. 模型类型的检验

【例6.3续】检验模型的类型。 class(G)

%得出系统模型类型

ans =

ss

isa(G,'tf')

%检验系统模型类型

ans =

结构框图的模型表示

1. 串联结构

SISO 的串联结构是两个模块串联在一起,如图6.1所示。

实现串联结构传递函数的命令:

G=G1*G2

G=series(G1,G2)

2. 并联结构 SISO 的并联结构是两个模块并联在一起,

如图6.2所示。

实现并联结构传递函数的命令:

G=G1+G2

G=parallel(G1,G2)

3. 反馈结构

反馈结构是前向通道和反馈通道模块构成正反馈和负反馈,如图6.3所示。

图6.1 串联结构

图6.2 并联结构

实现反馈结构传递函数的命令:

G=feedback(G1,G2,Sign)

说明:Sign 用来表示正反馈或负反馈,Sign=-1或省略则表示为负反馈。

【例6.6】根据系统的结构框图求出整个系统的传递函数,结构框图如图6.4所示,其中1

2s s 1(s)G 21++=,1s 1(s)G 2+=,12s 1(s)G 3+=,s 1(s)G 4=。 G1=tf(1,[1 2 1])

Transfer function:

1

-------------

s^2 + 2 s + 1

G2=tf(1,[1 1]);

G3=tf(1,[2 1]);

G4=tf(1,[1 0]);

G12=G1+G2

%并联结构

Transfer function:

s^2 + 3 s + 2

---------------------

s^3 + 3 s^2 + 3 s + 1

G34=G3-G4

%并联结构

Transfer function:

图6.4结构框图

图6.3 反馈结构

-s - 1

---------

2 s^2 + s

G=feedback(G12,G34,-1) %反馈结构

Transfer function:

2 s^4 + 7 s^

3 + 7 s^2 + 2 s

------------------------------------- 2 s^5 + 7 s^4 + 8 s^3 + s^2 - 4 s - 2

数学建模专题汇总-离散模型

离散模型 § 1 离散回归模型 一、离散变量 如果我们用0,1,2,3,4,?说明企业每年的专利申请数,申请数是一个离散的变量,但是它是间隔尺度变量,该变量类型不在本章的讨论的被解释变量中。但离散变量0和1可以用来说明企业每年是否申请专利的事项,类似表示状态的变量才在本章的讨论中。在专利申请数的问题中,离散变量0,1,2,3 和4 等数字具 有具体的经济含义,不能随意更改;而在是否申请专利的两个选择对象的选择问题中,数字0和1只是用于区别两种不同的选择,是表示一种状态。本专题讨论有序尺度变量和名义尺度变量的被解释变量。 、离散因变量

在讨论家庭是否购房的问题中,可将家庭购买住房的决策用数字1 表示,而将家庭不购买住房的决策用数字0 表示。 1 yes x 0 no 如果x 作为说明某种具体经济问题的自变量,则应用以前介绍虚拟变量知识就足够了。如果现在考虑某个家庭在一定的条件下是否购买住房问题时,则表示状态的虚拟变量就不再是自变量,而是作为一个被说明对象的因变量出现在经济模型中。因此,需要对以前讨论虚拟变量的分析方法进行扩展,以便使其能够适应分析类似家庭是否购房的问题。因为在家庭是否购房问题中,虚拟因变量的具体取值仅是为了区别不同的状态,所以将通过虚拟因变量讨论备择对象选择的回归模型称为离散选择模型。 三、线性概率模型 现在约定备择对象的0 和1 两项选择模型中,下标i 表示各不同的经济主体,取值

0或l的因变量 y i表示经济主体的具体选择结果,而影响经济主体进行选择的自变量 x i 。如果选择响应YES 的概率为 p(y i 1/ x i ) ,则经济主体选择响应NO 的概率为 1 p(y i 1/ x i), 则E(y i /x i) 1 p(y i 1/x i) 0 p(y i 0/x i)= p(y i 1/x i)。根据经典线性回归,我们知道其总体回归方程是条件期望建立的,这使我们想象可以构造线性概率模型 p(y i 1/ x i) E(y i / x i) x iβ 0 1 x i1 L k x ik u i 描述两个响应水平的线性概率回归模型可推知,根据统计数据得到的回归结果并不一定能够保证回归模型的因变量拟合值界于[0,1]。如果通过回归模型式得到的因变量拟合值完全偏离0或l两个数值,则描述两项选择的回归模型的实际用途就受到很大的限制。为避免出现回归模型的因变量预测值偏离0或1的情形,需要限制因变量的取值范围并对回归模型式进行必要的修正。由于要对其进行修正,那么其模型就会改变,模型改变会导致似然函

(完整word版)离散数学建模

离散建模 专业计算机科学与技术 班级 姓名 学号 授课教师 二 O 一七年十二月

离散建模是离散数学与计算机科学技术及IT技术应用间的联系桥梁。也是学习离散数学的根本目的。 它有两部分内容组成: 1.离散建模概念与方法 2.离散建模应用实例 一.离散建模概念与方法 1.1离散建模概念 在客观世界中往往需要有许多问题等待人们去解决。而解决的方法很多,最为常见的方法是将客观世界中的问题域抽象成一种形式化的数学表示称数学模型,从而将对问题域的求解变成为对数学表示式的求解。而由于人们对数学的研究已有数千年历史,并已形成了一整套行之有效的对数学求解的理论与方法,因此用这种数学方法去解决实际问题可以取得事倍功半的作用。而采用这种方法的关键之处是数学模型的建立,它称为数学建模,而当这种数学模型是建立在有限集或可列集之上时,此种模型的建立称离散建模。 1.2.离散建模方法 (1)两个世界理论 在离散建模中有两个世界,一个是现实世界另一个是离散世界。现实世界是问题域产生的世界,离散世界则是一种数学世界,它有三个特性:离散世界采用离散数学语言,该语言具有简洁性且表达力丰富。 离散世界所表示的是一种抽象符号,它是一种形式化符号体系。 离散世界中的环境简单,它在离散建模时设立,可以屏蔽大量无关信息对问题求解的干扰。 为求解问题须将问题域转换成离散模型,然后对离散模型求解,再逆向转换成现实世界中的解. (2)两个世界的转换 在离散建模方法中需要构作两种转换,即由现实世界到离散世界的转换以及由离散世界到现实世界的逆转换,而其中第一种转换尤为重要,这种转换我们一般即称之为离散建模。 下面对两种转换作介绍: 现实世界到离散世界的转换

离散系统的数学描述

离散系统的数学描述 1. 状态空间描述法 状态空间描述离散系统使用ss 命令。 语法: G=ss(a,b,c,d,Ts) %由a 、b 、c 、d 参数获得状态方程模型 说明:Ts 为采样周期,为标量,当采样周期未指明可以用-1表示。 【例6.2】用状态空间法建立离散系统。 a=[-1.5 -0.5;1 0]; b=[1;0]; c=[0 0.5]; d=0; G=ss(a,b,c,d,0.1) %采样周期为0.1s a = x1 x2 x1 -1.5 -0.5 x2 1 0 b = u1 x1 1 x2 0 c = x1 x2 y1 0 0.5 d = u1 y1 0 Sampling time: 0.1 Discrete-time model. 2. 脉冲传递函数描述法 脉冲传递函数也可以用tf 命令实现。 语法: G=tf(num,den,Ts) %由分子分母得出脉冲传递函数 说明:Ts 为采样周期,为标量,当采样周期未指明可以用-1表示,自变量用'z'表示。 【例6.2续】创建离散系统脉冲传递函数21120.5z 1.5z 10.5z 0.51.5z z 0.5z G(z)---+-=+-= 。 num1=[0.5 0];

den=[1 -1.5 0.5]; G1=tf(num1,den,-1) Transfer function: 0.5 z ----------------- z^2 - 1.5 z + 0.5 Sampling time: unspecified MATLAB中还可以用filt命令产生脉冲传递函数。 语法: G=filt(num,den,Ts) %由分子分母得出脉冲传递函数 说明:Ts为采样周期,当采样周期未指明Ts可以省略,也可以用-1表示,自变量用'z-1'表示。 【例6.2续】使用filt命令产生脉冲传递函数。 num2=[0 0.5]; G2=filt(num2,den) Transfer function: 0.5 z^-1 ----------------------- 1 - 1.5 z^-1 + 0.5 z^-2 Sampling time: unspecified 程序说明:用filt命令生成的脉冲传递函数的自变量不是z而是z-1,因此分子应改为“[0 0.5]”。 3. 零极点增益描述法 离散系统的零极点增益用zpk命令实现。 语法: G=zpk(z,p,k,Ts) %由零极点得出脉冲传递函数 【例6.2续】使用zpk命令产生零极点增益传递函数。 G3=zpk([0],[0.5 1],0.5,-1) Zero/pole/gain: 0.5 z ------------- (z-0.5) (z-1) Sampling time: unspecified 语法: G=ss(传递函数) %由传递函数转换获得 G=ss(零极点模型) %由零极点模型转换获得

离散数学 代数系统

第三部分:代数系统 1.在代数系统,S *中,若一个元素的逆元是唯一的,其运算*必定可结合。( ) 2.每一个有限整环一定是域,反之也对。( ) 3.任何循环群必定是阿贝尔群,反之亦真。( ) 4.设(),A ∧∨是布尔代数,则(),A ∧∨一定为有补分配格。( ) 5.设Q 为有理数集,Q 上运算*定义为max(,)a b a b *=,则 ,Q * 是半群。( ) 6.阶数为偶数的有限群中,周期为2的元素的个数一定为偶数。( ) 7.群中可以有零元(对阶数大于一的群)。( ) 8.循环群一定是阿贝尔群。( ) 9.每一个链都是分配格。( ) 1. 对自然数集合N ,哪种运算不是可结合的,运算定义为任,a b N ∈ ( ) A. min(,)a b a b *= B. 2a b a b *=+ C. 3a b a b *=+- D. a b a b *=+ (mod 3) 2. 任意具有多个等幂元的半群,它 ( ) A. 不能构成群 B. 不一定能构成群 C. 不能构成交换群 D. 能构成交换群 3. 循环群33,Z +的生成元为[][]1,2,它们的周期为 ( ) A. 5 B. 6 C. 3 D. 9 4. 设是环,则下列正确的是 ( ) A. 是交换群 B. 是加法群 C. 对*是可分配的 D. *对 是可分配的 5. 下面集合哪个关于减法运算是封闭的 ( ) A. N B. {2|}x x I ∈ C. {21|}x x I +∈ D. {x |x 是质数} 6. 具有如下定义的代数系统,G ?*?,哪个不构成群 ( ) A. G={1,10},*是模11乘 B. G={1,3,4,5,9},*是模11乘 C. G =Q(有理数集),*是普通加法 D. G =Q(有理数集),*是普通乘法 7. 设G ={23|,m n m n I *∈},*为普通乘法.则代数系统,G ?*?的么元为 ( ) A.不存在 B. e =0023? C. e =2×3 D. e =1123--? 8. 任意具有多个等幂元的半群,它( A ) A. 不能构成群 B. 不一定能构成群 C. 必能构成群 D. 能构成交换群 9. 在自然数集N 上,下面哪个运算是可结合的,对任意a ,b N ∈ ( ) A. a b a b *=- B. max(,)a b a b *= C. 5a b a b *=+ D. ||a b a b *=-

离散系统的数学模型

6.4 离散系统的数学模型 为了研究离散系统的性能,需要建立离散系统的数学模型。本节主要介绍线性定常离散系统的差分方程及其解法,脉冲传递函数的定义,以及求开、闭环脉冲传递函数的方法。 6.4.1 差分方程及其解法 1. 差分的概念 设连续函数为,其采样函数为,简记为,则一阶前向差分定义为 ()e t ()e kT ()e k ()(1)()e k e k e k Δ=+? (6-32) 二阶前向差分定义为 2()[()][(1)()](1)()(2)2(1)(e k e k e k e k e k e k e k e k e k ΔΔ=Δ=Δ+?=Δ+?Δ=+?++) 1? (6-33) n 阶前向差分定义为 1()(1)()n n n e k e k e n ?Δ=Δ+?Δ (6-34) 同理,一阶后向差分定义为 ()()(1)e k e k e k ?=?? (6-35) 二阶后向差分定义为 2()[()][()(1)]()(1)()2(1)(2) e k e k e k e k e k e k e k e k e k ?=??=???=????=??+? (6-36) n 阶后向差分定义为 11()()(1)n n n e k e k e n ???=???? (6-37) 2. 离散系统的差分方程 对连续系统而言,系统的数学模型可以用微分方程来表示,即 **00d ()d ()d d i j n m i j i i j c t r t a b t t ===∑∑j (6-38) 式中,分别表示系统的输入和输出。如果把离散序列,看成连续系统中,的采样结果,那么式(6-38)可以化为离散系统的差分方程。 ()r t ()c t ()r k ()c k ()r t ()c t 设系统采样周期为T ,当T 足够小时,函数在()r t t kT =处的一阶导数近似为 ()[(1)]()r kT r k T r kT T ??≈& 可简写为 ()(1)()()r k r k r k r k T T ???≈=& (6-39) 同理,可以写出二阶导数

数学建模实验答案 离散模型讲解

实验09 离散模型(2学时) (第8章离散模型) 1. 层次分析模型 1.1(验证,编程)正互反阵最大特征根和特征向量的实用算法p263~264 已知正互反阵 261????1/21A?4????1/461/1?? 注:[263]定理2 n阶正互反阵A的最大特征根≥n。 ★(1) 用MATLAB函数求A的最大特征根和特征向量。 调用及运行结果(见[264]): 1 3.0092 k = 1 >> w=V(:,k)/sum(V(:,k))

w = 0.5876 0.3234 0.0890 [263])(2) 幂法(见n正互反矩阵,算法步骤如下:A为n×(0)w 1);a. 任取n 维非负归一化初始列向量(分量之和为)k?1)((k2,0,1,?Aww,k?;计算b. 1)?(k w 1)k?(?w1)k?(w归一化,即令c. ;n ?1)?(k w i 1i?)(1)k(k?1)k?(?)n|?|w,(i?w?1,2,w即,当d. 对于预先给定的精度ε时,ii b;为所求的特征向 量;否则返回到步骤1)?(kn w1??i?。e. 计算最大特征根 )(k wn1i?i 注:)k(k?1)(((k)k)???wAw??ww? 1)(k? w?i n,i?1,2,?? )k(w i 文件如下:函数式m [lambda w]=p263MI(A,d) function——求正互反阵最大特征根和特征向量%幂法% A 正互反方阵% d 精度 2 % lambda 最大特征根归一化特征列向量% w 0.000001,则d取if(nargin==1) %若只输入一个变量(即A)d=1e-6; end 的阶数取方阵A n=length(A); %任取归一化初始列向量 w0=w0/sum(w0);%w0=rand(n,1); 1 while ww=A*w0; %归一化w=ww/sum(ww); all(abs(w-w0)

离散数学代数系统练习

一、填空 1.下列集合中, 对普通加法和普通乘法都封闭。 ( ) (A ){}1,0 (B ){}2,1 (C ){}N n n ∈2 (D ){} N n n ∈2 2、在自然数集N 上,下面哪种运算是可结合的? ( ) (A )b a - (B )),max(b a (C )b a 2+ (D )b a - 3、有理数集Q 关于下列哪个运算能构成代数系统? ( ) (A )b a b a =* (B )()1ln 22++=*b a b a (C )()b a b a +=*sin (D )ab b a b a -+=* 4、下列运算中,哪种运算关于整数集I 不能构成半群? ( ) (A )()b a b a ,max =* (B )b b a =* (C )ab b a 2=* (D )b a b a -=* 5.设代数系统?A ,·?,则( )成立. A .如果?A ,·?是群,则?A ,·?是阿贝尔群 B .如果?A ,·?是阿贝尔群,则?A ,·?是循环群 C .如果?A ,·?是循环群,则?A ,·?是阿贝尔群 D .如果?A ,·?是阿贝尔群,则?A ,·?必不是循环群 6.设?L ,∧∨,?是格,?L ,≤?是由这个格诱导的偏序集,则( )不成立. A .对任意a L b a ,,∈≤b b a b =∨? B .∧∨对是可分配 C .∧∨,都满足幂等律 D .?L,≤?的每对元素都有最小上界与最大下界 7.在下列四个哈斯图表示的偏序集中( )是格.

8. 已知偏序集的哈斯图,如图所示,是格的为( ) 9. 6阶有限群的任何子群一定不是()。 (A) 2阶(B) 3 阶(C) 4 阶(D) 6 阶 10. 下列哪个偏序集构成有界格() (1) (N,≤)(2) (Z,≥) (3) ({2,3,4,6,12},|(整除关系))(4) (P(A),?) 11. 下面代数系统中(G、*)中()不是群 A、G为整数集合*为加法 B、G为偶数集合*为加法 C、G为有理数集合*为加法 D、G为有理数集合*为乘法 12. 设 是阶大于1的群,则下列命题中()不真。 A、存在零元 B、存在幺元 C、G中每个元素都有逆元 D、运算*是可结合的 13. 若的真子群,且|H︳= n|G︳= m, 则有 A、n整除m B、m整除n C、n整除m且m整除n D、n不整除m且m不整除n 14. 设?L,≤?是一条链,其中|L︳≧3,则?L,≤?是() A、不是格 B、有补格 C、分配格 D、布尔格

离散数学建模

. .. . 离散建模 专业计算机科学与技术 班级 姓名 学号 授课教师 二 O 一七年十二月 .. ..范文 . .

离散建模是离散数学与计算机科学技术及IT技术应用间的联系桥梁。也是学习离散数学的根本目的。 它有两部分容组成: 1.离散建模概念与方法 2.离散建模应用实例 一.离散建模概念与方法 1.1离散建模概念 在客观世界中往往需要有许多问题等待人们去解决。而解决的方法很多,最为常见的方法是将客观世界中的问题域抽象成一种形式化的数学表示称数学模型,从而将对问题域的求解变成为对数学表示式的求解。而由于人们对数学的研究已有数千年历史,并已形成了一整套行之有效的对数学求解的理论与方法,因此用这种数学方法去解决实际问题可以取得事倍功半的作用。而采用这种方法的关键之处是数学模型的建立,它称为数学建模,而当这种数学模型是建立在有限集或可列集之上时,此种模型的建立称离散建模。 1.2.离散建模方法 (1)两个世界理论 在离散建模中有两个世界,一个是现实世界另一个是离散世界。现实世界是问题域产生的世界,离散世界则是一种数学世界,它有三个特性:离散世界采用离散数学语言,该语言具有简洁性且表达力丰富。 离散世界所表示的是一种抽象符号,它是一种形式化符号体系。 离散世界中的环境简单,它在离散建模时设立,可以屏蔽大量无关信息对问题求解的干扰。 为求解问题须将问题域转换成离散模型,然后对离散模型求解,再逆向转换成现实世界中的解. (2)两个世界的转换 在离散建模方法中需要构作两种转换,即由现实世界到离散世界的转换以及由离散世界到现实世界的逆转换,而其中第一种转换尤为重要,这种转换我们一般即称之为离散建模。 下面对两种转换作介绍: 现实世界到离散世界的转换

离散系统的数学模型

232 6.4 离散系统的数学模型 为研究离散系统的性能,需要建立离散系统的数学模型。线性离散系统的数学模型有差分方程、脉冲传递函数和离散状态空间表达式三种。本节主要介绍差分方程及其解法,脉冲传递函数的定义,以及求开环脉冲传递函数和闭环脉冲传递函数的方法。有关离散状态空表达式及其求解,将在第8章介绍。 6.4.1 线性常系数差分方程及其解法 对于线性定常离散系统,k 时刻的输出)(k c ,不但与k 时刻的输入)(k r 有关,而且与k 时刻以前的输入 ), 2(), 1(--k r k r 有关,同时还与k 时刻以前的输出 ), 2(), 1(--k c k c 有关。这种关系 一般可以用n 阶后向差分方程来描述,即 ∑∑==-+ --=m j j n i i j k r b i k c a k c 0 1 )()()( (6-34) 式中,i a ,i =1,2,…,n 和j b ,j =0,1,…,m 为常系数,n m ≤。式(6-34)称为n 阶线性常系数差分方程。 线性定常离散系统也可以用n 阶前向差分方程来描述,即 ∑∑==-++ -+-=+m j j n i i j m k r b i n k c a n k c 0 1 )()()( (6-35) 工程上求解常系数差分方程通常采用迭代法和z 变换法。 1. 迭代法 若已知差分方程式(6-34)或式(6-35),并且给定输出序列的初值,则可以利用递推关系,在计算机上通过迭代一步一步地算出输出序列。 例6-10 已知二阶差分方程 )2(6)1(5)()(---+=k c k c k r k c 输入序列1)(=k r ,初始条件为1)1(,0)0(==c c , 试用迭代法求输出序列)(k c , ,5,4,3,2,1,0=k 。 解 根据初始条件及递推关系,得 0)0(=c 1)1(=c 6)0(6)1(5)2()2(=-+=c c r c 25)1(6)2(5)3()3(=-+=c c r c 90)2(6)3(5)4()4(=-+=c c r c 301)3(6)4(5)5()5(=-+=c c r c 2. z 变换法

内蒙古大学离散习题代数系统部分答案

《离散数学》代数系统 1.以下集合和运算是否构成代数系统?如果构成,说明该系统是否满足结合律、交换律?求出该运算的幺元、零元和所有 可逆元素的逆元. 1)P(B)关于对称差运算⊕,其中P(B)为幂集. 构成代数系统;满足结合律、交换律;幺元φ;无零元;逆元为自身。 2)A={a,b,c},*运算如下表所示:构成代数系统;满足结合律、交换律;无幺元;无逆元;零元b. 2.设集合A={a,b},那么(1)在A上可以定义多少不同的二元运算?(2)在A上可以定义多少不同的具有交换律的二元 运算?24个不同的二元运算;23个不同的具有交换律的二元运算 3.设A={1,2},B是A上的等价关系的集合. 1)列出B的元素. 2元集合上只有2种划分,因此只有2个等价关系,即B={I A,E A} 2)给出代数系统V=的运算表. 3)求出V的幺元、零元和所有可逆元素的逆元. 幺元E A、零元I A;只有E A可逆,其逆元为E A. 4)说明V是否为半群、独异点和群?V是为半群、独异点,不是群 4.设A={a,b,c},构造A上的二元运算*,使得a*b=c,c*b=b,且*运算满足幂等律、交换律. 1)给出关于*运算的一个运算表. 其中表中?位置可以是a、b、c。 2)*运算是否满足结合律,为什么?不满足结合律;a*(b*b)=c≠(a*b)*b=b 5.设是一个代数系统。 *是R上的一个二元运算,使得对于R(实数集合)中的任意元素a,b都有a*b=a+b+a·b(·和+为数集上的乘法和加法). 证明:: 是独异点. 6.如果是半群,且*是可交换的. 证明:如果S中有元素a,b,使得a*a=a和b*b=b,则(a*b)*(a*b)=a*b. (a*b)*(a*b) = a*(b*a)*b 结合律 = a*( a*b)*b 交换律 = (a* a)*(b*b) = a*b. 7.设是一个群,则?a,b,c∈S。试证明:群G中具有消去律,即成立: 如果a·b=a·c ,b·a=c·a 那么b=c. 8.求循环群的所有生成元和子群. 生成元有:1、3、5、7、9、11、13、15 子群有:<0>、<1>、<2>、<4>、<8>. 9.设是群,a∈G . 现定义一种新的二元运算⊙:x⊙y=x*a*y,?x,y∈G . 证明:也是群. 证明:显然⊙是G上的一个二元运算。 ?x,y,z∈G,(x⊙y)⊙z=(x⊙y)*a*z=(x*a*y)*a*z=x*a*(y*a*z)= x*a*(y⊙z)= x⊙(y⊙z).故运算⊙满足结合律.

离散数学答案 第八章 代数系统

第八章 代数系统 习题8.1 1.解 ⑴是,⑵不是,⑶是,⑷不是。 2.解 若﹡对 是可分配的,则有任意a,b,c ∈* I ,均有 a ﹡( b c)=(a ﹡b) (a ﹡c)= a b a c =( a b ? a c )= a b+c 而a ﹡(b c)=a ﹡(b ?c)= a b ?c ≠a b+c 故﹡对 是不可分配的。 3.解 ⑴对于任意A ∈P(S), 因为A ?S ,所以,A ?S =S ,因此,S 是关于?运算的零元; ⑵对于任意A ∈P(S), 因为A ?S ,所以,A ?S = A ,因此,S 是关于?运算的零元单。 4.解 ⑴①因为x*y=xy-2x-2y+6,则y*x=yx-2y-2x+6= x*y ,满足交换律; ②任意x,y,z ∈R 有 x*(y*z)=x*(yz-2y-2 z +6)=x(yz-2y-2 z +6)-2x-2(yz-2y-2z+6)+6 =xyz-2xy-2xz+6x-2x -2yz+4y+4z-12+6= xyz-2xy-2xz-2yz+4x+4y+4z-6. (x*y)*z=(xy-2x-2y+6) *z =(xy-2x-2y+6)z-2(xy-2x-2y+6)-2z+6 =xyz-2xz-2yz+6z-2xy+4x+4y-2z-6=x*(y*z). 故满足结合律。 (2) ①设任意a ∈R,存在e ∈R,要e*a= ea-2e-2a+6=a ,由于a 的任意性则e=3。 因此e=3是其单位元; ②设任意b ∈R, z ∈R ,要有z*b= zb-2 z-2b+6= z ,由于b 的任意性则z=2,因此 z=2是其零元。 (3)因为*是满足交换律,对于x ∈R ,要存在1 -x ∈R ,须有x*1 -x = x 1 -x -2x-21 -x +6= e=3, 当x ≠2 时,2 321 --= -x x x 。即对于任意的x ,当x ≠2时x 都是可逆的,且2 321 --= -x x x 。 5.解 f 1,f 2,f 3都满足交换律,f 4满足等幂率,f 2有单位元a ,f 1有零元a ,f 3有零元b 。 习题8.2 1.解 构成代数系统的运算有(2),(3),(4)。 2.解 >⊕<>⊕<>⊕<444},3,2,1,0{,},2,0{,},0{ 1f b a a a a a b a 2f b a b a a b b a 3f b a a b a a b a 4f b a b a b a b a 表8-2

数学建模实验答案离散模型

实验09 离散模型(2学时) (第8章 离散模型) 1. 层次分析模型 1.1(验证,编程)正互反阵最大特征根和特征向量的实用算法p263~264 已知正互反阵 ?? ????????=14/16/1412/1621 A 注:[263]定理2 n 阶正互反阵A 的最大特征根 ≥ n 。 ★(1) 用MATLAB 函数求A 的最大特征根和特征向量。

(2) 幂法(见[263]) A 为n×n 正互反矩阵,算法步骤如下: a. 任取n 维非负归一化初始列向量(分量之和为1)(0) w ; b. 计算(1) (),0,1,2,k k w Aw k +==%L ; c. (1) k w +%归一化,即令(1) (1) (1) 1k k n k i i w w w +++== ∑%%; d. 对于预先给定的精度ε,当(1) ()||(1,2,,)k k i i w w i n ε +-<=L 时,(1)k w +即为所求 的特征向量;否则返回到步骤b ; e. 计算最大特征根(1)()11k n i k i i w n w λ+==∑%。 注: ()()(1)()(1) () 1,2,,k k k k k i k i Aw w w w w i n w λλλ++≈?≈?∴≈=%%L 函数式m 文件如下:

n=length(A); %取方阵A 的阶数 w0=rand(n,1); w0=w0/sum(w0);%任取归一化初始列向量 while 1 ww=A*w0; w=ww/sum(ww); %归一化 if all(abs(w-w0)

武大数学建模培训多目标决策模型层次分析法AHP代数模型离散

层次分析法建模 层次分析法(AHP-Analytic Hierachy process)---- 多目标决策方法 70 年代由美国运筹学家T·L·Satty提出的,是一种定性与定量分析相结合的多目标决策分析方法论。吸收利用行为科学的特点,是将决策者的经验判断给予量化,对目标(因素)结构复杂而且缺乏必要的数据情况下,采用此方法较为实用,是一种系统科学中,常用的一种系统分析方法,因而成为系统分析的数学工具之一。 传统的常用的研究自然科学和社会科学的方法有: 机理分析方法:利用经典的数学工具分析观察的因果关系; 统计分析方法:利用大量观测数据寻求统计规律,用随机数学方法描 述(自然现象、社会现象)现象的规律。 基本内容:(1)多目标决策问题举例AHP建模方法 (2)AHP建模方法基本步骤 (3)AHP建模方法基本算法 (3)AHP建模方法理论算法应用的若干问题。 参考书: 1、姜启源,数学模型(第二版,第9章;第三版,第8章),高等教育出版社 2、程理民等,运筹学模型与方法教程,(第10章),清华大学出版社 3、《运筹学》编写组,运筹学(修订版),第11章,第7

节,清华大学出版社 一、问题举例: A .大学毕业生就业选择问题 获得大学毕业学位的毕业生,“双向选择”时,用人单位与毕业生都有各自的选择标准和要求。就毕业生来说选择单位的标准和要求是多方面的,例如: ① 能发挥自己的才干为国家作出较好贡献(即工作岗位适合发挥专长); ② 工作收入较好(待遇好); ③ 生活环境好(大城市、气候等工作条件等); ④ 单位名声好(声誉-Reputation ); ⑤ 工作环境好(人际关系和谐等) ⑥ 发展晋升(promote, promotion )机会多(如新单位或单位发展有后 劲)等。 问题:现在有多个用人单位可供他选择,因此,他面临多种选择和决策,问题是他将如何作出决策和选择——或者说他将用什么方法将可供选择的工作单位排序 B.假期旅游地点选择 暑假有3个旅游胜地可供选择。例如:1P :苏州杭州,2P 北戴河,3P 桂林,

离散系统的数学模型辨识

系统模型的辨识与仿真 摘要:系统传递函数是系统模型的数学形式,广泛地应用于自动控制领域。通过已知输入信号与输出信号的采样结果,利用矩阵运算与系统辩识技术,客观地求出了系统真实的传递函数并利用Matlab仿真对其进行了验证。经过大量的实践,该技术现已成功应用于实际工程之中。 关键词:系统辨识;系统仿真;数字模型 Identification And Simulation Of System Model Abstract:The system transfer function is the mathematical form of system model,which is widely used in the field of automatic control. With the known input signal and output signal sampling results,the true transfer function of system is derived objectively by using matrix operations and system identification technology,and verified by means of Matlab simulation.It has been successfully applied to the practical engineering.Keywords:system identification;system simulation;digital model 0 引言 系统是一个内涵十分丰富的概念,从广义上来讲,系统是指具有某些特定功能、相互联系、相互作用的元素的集合。系统的数字模型则是用抽象的数学方程描述系统内部物理变量之间的关系。通过对系统的数字模型的研究可以揭示系统的内在运动和系统的动态性能。对于一些简单的系统,可以通过基本定律如牛顿定律、基尔霍夫定律建立数字模型,这种建模方法通常称之为“机理建模法”。而对于很多系统,由于系统的复杂性,难于写出用数学表达式表示的数字模型,则必须利用实验方法获得实验数据,通过系统辨识技术建立数字模型。因为数字模型是系统仿真的研究依据,所以数字模型的准确性是十分重要的。凡是需要通过实验数据确定数学模型和估计参数的场合都要利用辨识技术,辨识技术已经推广到工程和非工程的许多领域。 1理论基础

线性离散系统的数学模型和分析方法

§10-2 线性离散系统的数学模型和分析方法 大多数计算机控制系统可以用线性时不变离散系统的数学模型来描述。对于单输入单输出线性离散系统,人们习惯用线性常系数差分方程或脉冲传递函数来表示。离散系统的线性常系数差分方程和脉冲传递函数,分别和连续系统的线性常系数微分方程和传递函数在结构、性质和运算规则上相类似。对于多变量、时变和非线性系统用状态空间方法处理比较方便。 一、线性离散系统的数学描述 1. 差分方程 对简单的单输入单输出线性离散系统,其输入)(kT u 和输出)(kT y 之间的关系可用下列线性常系数差分方程来表示 )()()()()()(101nT kT u b T kT u b kT u b nT kT y a T kT y a kT y n n -++-+=-++-+ (10.17) (10.17)式也可以写成如下紧缩的形式 ∑∑==-=-+n i n i i i iT kT u b iT kT y a kT y 1 )()()( (10.18) 如果引入后移算子1 -q ,即 )()(1T kT y kT y q -=- (10.19) 则(10.18)式可写成多项式的形式 )()()()(11kT u q B kT y q A --= (10.20) 式中 n n q a q a q A ---+++= 1111)( n n q b q b b q B ---+++= 1101)( 方程(10.17)、(10.18)和(10.20)中假设左右两端阶次相同,这并不失一般性,差分方程中最高和最低指数之差n 被称为差分方程的阶数。如果(10.17)式中右端的系数项i b ,n i ,,1,0 =,不全为零,则此方程被称为非齐次方程。方程右端又被称为驱动项。方程的阶数和系数反映系统的结构特征。用差分方程作为物理系统的数学模型时,方程中各变量代表一定的物理量,其系数有时具有明显的物理意义。如果(10.17)式右端的系数全为零,则被称作齐次方程。齐次差分方程表征了线性离散系统在没有外界作用的情况下,系统的自由运动,它反映了系统本身的物理特性。 2. 差分方程的解 线性常系数差分方程求解方法和线性代数方程的求解相类似,其全解)(kT y 由齐次方程的通解

离散数学习题解+代数系统

离散数学习题解 代数系统 习题四 第四章代数系统 1.设I 为整数集合。判断下面的二元关系是否是I 上的二元运算 a )+={(x ,y ),z|x ,y ,zI 且z=x+y} b )-={((x ,y ),z )|x ,y ,zI 且z=x -y} c )3={((x ,y ),z )|x ,y ,zI 且z=x 3y} d )/={((x ,y ),z )|x ,y ,zI 且z=x/y} e )R={((x ,y ),z )|x ,y ,zI 且z=x y } f ) ={((x ,y ),z )|x ,y ,zI 且z=y x } g )min = {((x ,y ),z )|x ,y ,zI 且z=max (x ,y )} h )min = {((x ,y ),z )|x ,y ,zI 且z=min (x ,y )} i )GCD = {((x ,y ),z )|x ,y ,zI 且z= GCD (x ,y )} j )LCM={((x ,y ),z )|x ,y ,z ∈I 且z= LCM (x ,y )} [解] a )是。由于两个整数之和仍为整数,且结果唯一,故知+:I 2→I 是I 上的一个二元运算。 b )是。由于两个整数之差仍为整数,且结果唯一,故知一:I 2→I 是I 上的一个二元运算。 c )是。由于两个整数这积仍为整数,且结果唯一,故知x :I 2→I 是I 上的一个二元运算。 d )不是:例如若x=5,y=6,则z=x/y=5/6?I ;当y=0时z=x|y=x/0无定义。 e )不是。例如若x=2,y= -2,则z=x y =2 –2= 2 2 1=I 41 ?;若x=y=0,则z=x y =0,则z=I 2x ?= χ; g )是。由于两个整数中最大者仍为整数,且结果唯一。故知max :I 2→I 是I 上的一个二 元运算。 h )是。由于两个整数中最小者仍为整数,且结果唯一。故知min :I 2→I 是I 上的一个二 元运算。 i )是。由于两个整数的最大公约数仍为整数,且结果唯一。故知GCD :I 2→I 是I 上的一 个二元运算。 j )是。由于两个整数的最小公倍数仍为整数,且结果唯一。故知LCD :I 2→I 是I 上的一 个二元运算。 注:两个整数a 和b 的最大公约数GCD (a ,b )定义为同时除尽a 和b 的正整数中最大

离散数学学习体会

离散数学学习心得(1) -- 一类抽象代数题的解题思路 学习离散数学已经有一段时间了,书读了不少,题也做了一些。最近又常在群里和研友们讨论离散数学中的问题。所以对离散数学也有了一些心得和体会。在今后的一段时间里,我会不定期的写一些小的经验总结,以供后来人参考。 这次我们来讨论一类代数问题的解题思路。 问题:设R为含幺环,求证:对任意a,b∈R,若1-ab可逆,则1-ba 也可逆。 分析: 我们知道,证明问题的方法大致可以分为两类:构造性证明和存在性证明。前者要求给出一个切实的方法,找出符合命题要求的元素(在这道题中,就是找到1-ba的逆元)。后者则只证明这样的元素必然存在,但并不给出切实的寻找方法。反证法是存在性证明的基本方法。 无论打算采用是哪种证明方法,确认一下我们可以使用的前提条件总是必要的。 就这道题而言,我们可以使用这些前提: 1、R是含幺环。这就意味着R对加法构成Abel群(从而我们可以自由地使用加法交换律、加法消去律、加法逆元等),R对乘法构成独异点(从而可以使用乘法单位元1),当然还有乘法对加法的分配律。 2、1-ab是可逆的,这就是说,存在c∈R,使得c(1-ab)=(1-ab)c=1。移项后得到:cab=abc=c-1。 需要注意的是: 1、在题设中没有假设R的可换性(事实上,如果R可换的话,整个问题就没有任何难度了),也没有假设a、b是可逆的。所以,在解题时,不能使用乘法交换律,也不能随便使用a、b的逆元(除非已经证明了它们的存在性)。 2、如果没有1-ab可逆这个条件,肯定是推不出1-ba可逆的(我们在环中可以找到太多的反例)。所以,cab=abc=c-1将是解题的关键。观察这个式子,我们注意到,它提供了在c的参与下,移动和消去ab的方法。 我们的目的是,证明存在这样的一个元素d∈R,满足(1-ba)d=d(1-ba)=1。 初看到这道题,我们并不知道使用构造性证明容易还是使用反证法容易。 不过推理一下我们可以发现,如果要使用反证法的话,我们需要反设1 -ba不存在乘法逆元,然后由此推出1-ab也不可能有逆元(或者推出R不是含幺环)。 但反设1-ba不存在乘法逆元后,我们到底能推出哪些结论来呢?似乎很少。我们甚至连“对任意x∈R,必有x(1-ba)≠1”这样简单的情况都难以证明(因为我们只假设了1-ba没有“乘法逆元”,并不能由此推出1-ba没有“乘

数学建模 离散模型

实验六 离散模型 学号:1109301-22 姓名:张芳 评分: 一、 实验目的 1. 掌握层次分析模型、最短路模型等的建模基本方法和步骤,; 2. 会利用计算机求解层次分析模型、最短路模型 二、 实验要求 1. 预习层次分析模型、最短路模型等的建模与求解方法和实际案例分析; 2. 完成下面的实验内容; 3. 整理并上交实验报告(问题提出→模型建立→模型求解→程序运算结果→结果分析→心 得体会)。 三、实验内容与步骤 1. 你已经去过几家主要的摩托车商店,基本确定将从三种车型中选购一种。你选择的标准 主要有:价格、耗油量大小、舒适程度和外表美观情况。经反复思考比较,构造了它们之间的成对比较矩阵 ??????? ?? ???=115181315171551318731 A 三种车型(记为a ,b ,c )关于价格、耗油量、舒适程度及你对它们表观喜欢程度的成对比较矩阵为 (价格) (耗油量) c b a c b a c b a ??????????121312121321 c b a ????? ?????171271521511 (舒适程度) (外表) c b a c b a c b a ??????????1411411531 c b a ??????????17131715311 (1)根据上述矩阵可以看出四项标准在你心目中的比重是不同的,请按由重到轻的顺序将它们排出。 (2)哪辆车最便宜、哪辆车最省油、哪辆车最舒适,你认为哪辆车最漂亮? (3)用层次分析法确定你对这三种车型的喜欢程度(用百分比表示)。 解:(1)b,c,a; (2)c 车最便宜,a 车最省油,a 车最舒适,b 车最漂亮。

常见的个离散动态系统模型

常见的三个离散动态系统模型 要理解并预测由差分方程n n Ax x =+1所描述的动态系统的长期行为或演化,关键在于掌握矩阵A 的特征值与特征向量. 在本节中,我们将通过应用实例来介绍矩阵对角化在离散动态系统模型中的应用. 这些应用实例主要针对生态问题,是因为相对于物理问题或工程问题,它们更容易说明和解释,但实际上动态系统在许多科学领域中都会出现. 分布图示 ★ 引言 ★ 教师职业转换预测问题 ★ 区域人口迁移预测问题 ★ 捕食者与被捕食者系统 ★ 内容小结 ★ 课堂练习 ★ 习题4-5 例题选讲 例1(E01)(教师职业转换预测问题)某城市有15万人具有本科以上学历,其中有1.5万人是教师,据调查,平均每年有10%的人从教师职业转为其他职业,只有1%的人从其他职业转为教师职业,试预测10年以后这15万人中还有多少人在从事教育职业。 解 用n x 表示第n 年后做教师职业和其他职业的人数,则??? ? ??=5.135.10x ,用矩阵??? ? ??==99.010.001.090.0)(ij a A 表示教师职业和其他职业间的转移,其中90.011=a 表示每年有90%的人原来是教师现在还是教师;10.021=a 表示每年有%10的人从教师职业转为其他职业。显然 ??? ? ??=???? ?????? ??==515.13485.15.135.199,010.001.090.001Ax x , 即一年以后,从事教师职业和其他职业的人数分别为1.485万和13.515万。又 0212x A Ax x ==,…,01x A x x n n n ==-, 所以01010x A x =,为计算10A 先需要把A 对角化。 001.0891.089.1001.0)99.0)(9.0(99.01.001.09 .02-+-=---=----=-λλλλλλλA E 0890.089.12=+-=λλ 89.0121==λλ,,21λλ≠,故A 可对角化.

相关文档
最新文档