《离散数学》几个典型的代数系统-1(群)讲解

合集下载

离散数学第六章资料

离散数学第六章资料

如例2中的 Z, ,Q, ,R, , P(A), ,
Zn, 都是阿贝尔群。
例3、Klein四元群。
G e, a,b,c,运算o由下表给出:
3、群的阶。 群 有 无限 限群 群
有限群 G 的阶, 记 G 。 例如: Zn, 的阶为 n ,
Klein 四元群的阶为4。
4、群中元素的幂 xn 。 对于群 G ,定义:xn (x1)n 则可以把独异点中的关于 xn 的定义扩充为: x0 e xn1 xn ox ( n 为非负整数) xn (x1)n ( n 为正整数) 有关幂的两个公式:xm oxn xmn
(xm )n xmn (m, n Z )
5、群中元素 x 的阶 (或周期)。
群 G中元素 x 的阶x
的阶
有限,记 x k 无限(不存在以上的k
)
例如:Klein 四元群中,
a,b, c的阶都是2,记 a b c 2。
e 的阶为1,记 e 1 。
例如: Z , , N, 都是 Z, 的子半群,
且 N, 是 Z, 的子独异点。
二、群。 1、定义。
代数系统 G,o 满足:
①结合律, ②有幺元, ③任意元有逆元,
则称 G,o 为群。
例2、(1) Z, ,Q, , R, 都是群, 因任意元素 x 的逆元(x)存在, 而 Z , ,N, 不是群, Z , 没有幺元,
第六章 几个典型的代数系统 第一节 半群与群
内容:半群,群,子群。 重点:1、半群,可交换半群,独异点的定义,
2、群,交换群 (阿贝尔群)的定义及性质, 3、群的阶的定义, 4、循环群,生成元的定义及例子, 5、子群的定义及判定。
一、半群。
1、定义:满足结合律的代数系统 S,o 称为半群。 例1、(1) Z , ,N, ,Z, ,Q, ,

《离散数学》代数系统的一般性质-1

《离散数学》代数系统的一般性质-1

定义 设 S 为集合,函数 f:S×S→S 称为 S 上的 二元运算, 简称为二元运算. 也称 S 对 f 封闭. 特点: - 变量和函数值的取值限定在同一个集合上。 例1 - (1) N 上的二元运算:加法、乘法. - (2) Z 上的二元运算:加法、减法、乘法. - (3) 非零实数集 R* 上的二元运算: 乘法、除 法. - (4) 设 S = { a1, a2, … , an}, ai ∘aj = ai , ∘ 为 S 上二元运算.

二元运算的特异元素 5.1 二 元 运 算 及 其 性 质 单位元
定义 设∘为S上的二元运算,如果存在el(或er)S,使得 对任意x∈S 都有 el ∘x =x (或x∘er =x), 则称el(或er )是S中关于∘运算的左(或右)幺元(单位元). 若e∈S关于∘运算既是左单位元又是右单位元,则称 e 为S上关于∘运算的幺元. 例:N上加法的幺元是0,乘法的幺元是1 Mn(R)上加法的么元是0矩阵,乘法的幺元是单位阵
第5章 代数系统的一般 性质
代数结构
【引例】 (1)在Z集合上,x∈Z,
5.1 二 元 运 算 及 其 性 质
则f(x)=-x是将x映为它的相反 数。-x是由x唯一确定的,它是对一个数施行求相反数运 算的结果。这个运算可表示为函数: f :Z→Z
(2)在R+ 集合上,x∈R+,则f(x)= 1/x是将x映为它的倒 数。1/x是由x唯一确定的,它是对R+中的一个数施行倒数 运算的结果。这个元算可以表示为函数 f : R+ → R+。 (3)设a,b∈R,则f(a,b)=a+b(a-b,a×b)是将两个数a, b映为R中的唯一的一个数,它是对R中的两个数施行加 (减,乘)法运算的结果。这个运算可以表示为函数f : R2 → R。

《离散数学》几个典型的代数系统-1(群)

《离散数学》几个典型的代数系统-1(群)
离散数学几个典型的代数系统1群离散数学代数系统线性代数和离散数学线性代数离散数学离散数学代数结构证明代数系统是群代数系统群有什么用离散数学群离散数学群的意义离散数学群的习题集
第六章 几个典型的代 数系统
6.1 半群与群
6.1
半 群 与 群 半群与独异点 - 半群定义与性质 - 交换半群与独异点 - 半群与独异点的子代数和积代数 - 半群与独异点的同态 群 - 群的定义与性质 - 子群与群的直积 - 循环群 - 置换群
7
半群与独异点的子代数
6.1
半 群 与 群 定义 半群的子代数称为子半群,独异点的子代数称 为子独异点。 判断方法: 设 V=<S,>为半群, T 是 S 的非空子集, T是V的子半群当且仅当T对o运算封闭. 设V=<S, , e>为独异点,T是V的子独异点当且仅当T 对o运算封闭,且eT 实例: <Z+,+>, <N,+>是<Z,+>的子半群,<N,+>是<Z,+> 的子独异点, <Z+,+>不是<Z,+>的子独异点.
实例 nZ(n是自然数)是整数加群 <Z,+> 的子 群. 当 n≠1 时, nZ 是 Z 的真子群. 对任何群 G 都存在子群. G 和 {e} 都是 G 的 子群,称为 G 的平凡子群.
22
子群判定定理
6.1
半 群 与 群
判定定理 设 G 为群,H 是 G 的非空子集. H 是 G 的子群 当且仅当 x, y∈H 有 xy1∈H. 证明 H 为 G 的子群的步骤: 通过给出 H 中的元素说明 H 是 G 的非空子集 任取 x, y属于 H,证明 xy-1属于H

离散数学及其应用课件:典型代数系统简介

离散数学及其应用课件:典型代数系统简介

典型代数系统简介
9.3.2 布尔代数的概念与性质 定义9.20 如果一个格是有补分配格,则称它为布尔格或
布尔代数。布尔代数通常记为<B,∨,∧,',0,1>,其中“¢”为求 补运算。
典型代数系统简介
典型代数系统简介
定义9.21 设<B,*,·>是一个格代数系统,*和·是B 上的两 个二元运算,如果*和·满足交换律、分配律、同一律和互补 律,则称<B,*,·>为布尔代数。
(2)若 H 是G 的子群,且 H ⊂G,则称 H 是G 的真子群,记作
H <G。 定理9.6 假设G 为群,H 是G 的非空子集,则 H 是G 的子
群当且仅当下面的条件成立:
(1)∀a,b∈H 必有ab∈H; (2)∀a∈H 有a-1∈H。 证明 必要性是显然的。为证明充分性,只需证明e∈H。 因为 H 非空,必存在a∈H。由条件(2)知a-1∈H,再根据条件(1)
典型代数系统简介
典型代数系统简介
定义9.10 令<R,+,·>是环,若环中乘法·适合交换律,则称R 是交换环。若环中乘法·存在单位元,则称R 是含幺环。 注意
(1)在环中通常省略乘法运算·; (2)为了区别含幺环中加法幺元和乘法幺元,通常把加法 幺元记作0,乘法幺元记作1。可以证明加法幺元0恰好是乘法 的零元。 (3)环中关于加法的逆元称为负元,记为-x;关于乘法的逆 元称为逆元,记为x-1。
有aa-1∈H,即e∈H。
典型代数系统简介
定理9.7 假设G 为群,H 是G 的非空子集,H 是G 的子群当
且仅当∀a,b∈H 有ab-1∈H。
证明 根据定理9.6必要性显然可得出,这里只证充分性。
因为 H 非空,必存在a∈H。根据已知条件得aa-1∈H,即e∈H。 任取a∈H,由e,a∈HH得ea-1∈H,即a-1∈H。任取a,b∈H,知b1∈H .再利用给定条件得a (b-1)-1∈,即ab∈H。

离散数学第六章

离散数学第六章

6.1.6 循环群和置换群
§循环群 在循环群G=<a>中, 生成元a的阶与群G的阶是一样 的. 如果a是有限阶元, |a|=n, 则称G为n阶循环群. 如 果a是无限阶元, 则称G为无限阶循环群. 例如: <Z,+>是无限阶循环群; <Z6,>是n阶循环群. 注意:(1) 对9 无限阶循环群G=<a>, G的生成元是a和a-1; (2) 对n阶循环群G=<a>=<e,a,…,an-1>,G的生成元是at 当且仅当t与n互素, 如12阶循环群中, 与12互素的数 有1、5、7、11. 那么G的生成元有a1=a、a5、a7、 a11. (3) N阶循环群G=<a>, 对于n的每个正因子d, G恰好有 一个d阶子群H=<an/d>.
6.1.3 子群
例如, 群<Z6,>中由2生成的子群包含2的各次 幂, 20=e=0, 21=2, 22=22=4, 23=222=0, 所 以由2生成的子群:<2>={0,2,4}.
对于Klein四元群G={e,a,b,c}来说, 由它的每个 元素生成的子群是 <e>={e}, <a>={e,a}, <b>={e,b}, <c>={e,c}
6.1.6 循环群和置换群
§循环群
定义6.7 在群G中, 如果存在aG使得 G={ak|kZ} 则称G为循环群, 记作G=<a>,称a为G的生成元. ☆ 循环群必定是阿贝尔群, 但阿贝尔群不一定 是循环群. 证明: 设<G,*>是一个循环群, 它的生成元是a, 那么,对于任意x,yG, 必有r,sZ, 使得 x=as,y=at, 而且x*y=as*at=as+t=at*as=y*x 由此可见<G,*>是一个阿贝尔群. 例如,<Z,+>是一个循环群, 其生成元是1或-1.

离散数学第六章

离散数学第六章

第六章几个典型的代数系统6.1 半群与群引言:简略介绍群论产生的背景1. 图形的对称性如正三角形、正方形(一般地正n 边形)、长方形、 等腰三角形、等腰梯形等;三维空间中的正四面体、 正方体、长方体等都各有自己的对称性。

画图解释:2.用根式求解代数方程的根(1)一元二次方程:20x bx c ++=⇒122b x -±=,。

注:①约公元前2000年即出现二次方程求根问题; ②约公元9世纪时,阿拉伯人花拉子米首次得到上述求根公式。

(2)三次及四次方程的求根公式一般三次方程: 320x ax bx c +++=。

先作变换:用3a x -代替x 后可化成 3x mx n +=(不含二次项), (*)其中 332,3327a ab a m b n c =-=--。

利用恒等式:333()3()u v uv u v u v -+-=-,把它与(*)比较得:33,3,x u v uv m u v n =-=-=。

由后面两个关于33,u v 的方程可得u x u v v ⎫⎪=⎪⇒=-= (即*方程的解) 以上求解三次方程的公式叫做卡丹公式, 出现在公元1545年出版的著作《大书》中。

关于四次方程的求根公式这里从略,可以肯定的是, 四次一般方程也有求根公式,并且也叫卡丹公式。

(3从1545年之后的近300年间,人们都没能找到五次(当然,这并不排除对 某些特殊的五次及五次以上的方程可以求出它们的根)。

直到1830年由法国人Galois (伽珞瓦)解决,证明出:五次及五次以上的一般方程不存在用加、减、乘、除及开方表示的求根公式,所用方法就是现在已广为接受的群的思想。

可是在当时,很多同时代的大数学家都无法理解和接受他的思想方法。

3.群在其它方面的应用:如编码理论、计算机等。

一.群的定义及简单性质1定义:设,G ⋅是一个具有二元运算⋅的代数系统,如果⋅同时满足(1)结合律:即,,a b c G ∀∈,()()a b c a b c ⋅⋅=⋅⋅总成立;(2)存在单位元(也称为幺元,记为e ),即 ,;a e e a a a G ⋅=⋅=∀∈(3)中每个元素a 都有逆元(记为1a -):即存在1a G -∈,使得11a a a a e --⋅=⋅=,则称G 关于运算⋅构成一个群。

离散数学代数结构部分

离散数学代数结构部分

离散数学代数结构部分离散数学是数学的一个分支,主要研究离散的、分离的、离散化的对象和结构。

其中代数结构是离散数学的一个重要部分,涉及到一些常见的代数结构,如群、环和域等。

下面将从群、环和域三个方面展开,对离散数学中的代数结构进行详细介绍。

一、群群是离散数学中的一个基本代数结构,它由三个主要部分组成:集合、运算和满足一定性质的公理。

具体地,一个群G是一个非空集合,也即G={a,b,c,...},其中的元素a、b、c等叫做群的元素。

除此之外,群还具有一个二元运算,记作"·",满足以下四个公理:1.封闭性公理:对于群的任意两个元素a、b,它们的乘积c=a·b仍然属于G,即c∈G。

2.结合律公理:对于群的任意三个元素a、b、c,(a·b)·c=a·(b·c)。

3.单位元公理:群中存在一个特殊的元素e,称为单位元,满足对于任意元素a,有a·e=e·a=a。

4.逆元公理:对于群中任意元素a,存在一个元素b,使得a·b=b·a=e,其中e是群的单位元。

群结构的研究对于解决各类数学问题具有重要意义。

例如,在密码学中,通信双方使用群的运算来实现加密和解密的功能。

二、环环是另一个重要的代数结构,在离散数学中有广泛的应用。

一个环R由一个非空集合以及两个满足一定条件的二元运算分别组成。

对于一个环R={G,+,·},其中G是一个非空集合,"+"和"·"分别是R上的两个二元运算,满足以下四个公理:1.集合G关于"+"构成一个阿贝尔群,即对于任意的a、b、c∈G,满足以下性质:(a+b)+c=a+(b+c),存在单位元0,对于任意元素a,有a+0=0+a=a,对于任意元素a,存在一个元素-b,使得a+(-b)=-b+a=0,且满足交换律性质:a+b=b+a。

离散数学 第四章 4

离散数学  第四章 4

(3)
S={1,2,3,…,n}到自身的双射称为 元置换, 到自身的双射称为n元置换 到自身的双射称为 元置换 记为σ 记为σ,可表示为
2 n 1 σ = σ (1) σ (2) σ ( n )
上的双射即置换的个数共n!个 上置换 注:S上的双射即置换的个数共 个,S上置换 上的双射即置换的个数共 的全体记作S 的全体记作 n
2 设f是含有格中元素以及符号 是含有格中元素以及符号=,≤,≥,∨和∧ 是含有格中元素以及符号 , 的公式, 是将f中的符号分别替换成 的公式,令f*是将 中的符号分别替换成 , 是将 中的符号分别替换成=, ≥ ,≤, ∧与∨所得到的公式,则称 为f的对偶 所得到的公式,则称f*为 的对偶 命题。 命题。 3 对偶原理:f* f 对偶原理:
第六章
几个典型的代数系统
半群与群
格与布尔代数
6.1 半群与群
是一个代数系统, 设V=(G, )是一个代数系统 是一个代数系统 上的二元运算, 是G上的二元运算 上的二元运算 1 若 在G上成立结合律 则称 为半群。 上成立结合律 则称V为半群。 上成立结合律,则称 如:〈Z+, +〉, 〈N, +〉, 〈Z,+〉 〉 〉 〉 2 若 在G上成立结合律 且有单位元,则称 为 上成立结合律 上成立结合律, 有单位元,则称V为 独异点(含幺半群) 独异点(含幺半群)。 如: N, +〉, 〈Z,+〉 〈 〉 〉
轮换其乘法
例 设f=(15342), g=(125)(34) 求fg, g f, f-1, g-1
(4) 设M是非空集合 有n个元素 上所有置换 是非空集合,有 个元素 个元素,M上所有置换 是非空集合
的集合关于置换的乘法(函数的复合运算 构成 的集合关于置换的乘法 函数的复合运算)构成 函数的复合运算 一个群,称为 元对称群, 称为n元对称群 一个群 称为 元对称群, 它的任何子群称为n元置换群 元置换群。 它的任何子群称为 元置换群。 例题: 元对称群。 例题 S3是3元对称群。 元对称群
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25
重要子群(续)
6.1
半 群 与 群
群G的中心C 设 G 为群, 令 C = { a | a∈G∧x∈G(ax=xa)}, 则 C是 G 的子群,称为 G 的中心. 证:e∈C. C是 G 的非空子集.任取 a, b∈C,证 明 ab1与 G 中所有的元素都可交换. x∈G,有 (ab1)x = ab1x = ab1(x1)1 = a(x1b)1 = a(bx1)1= a(xb1) = (ax)b1 = (xa)b1 = x(ab1) 由判定定理可知 C≤G.
6.1
半 群 与 群
={ ak | k∈Z },则H是G的子群,称为由a 生成 的子群,记作<a>. 证:首先由a∈<a> 知道<a>≠. 任取 am, al ∈<a>,则 am (al)1 = am al = aml∈<a> 根据判定定理可知<a>≤G.
24
实例
整数加群<Z,+>, - 由 2 生成的子群是 <2> = { 2k | k∈Z } = 2Z 模 6 加群 <Z6, >中 - 由 2 生成的子群 <2> = { 0, 2, 4 } Klein四元群 G = { e, a, b, c } 的所有生成子群 是: - <e> = { e }, - <a> = { e, a }, <b> = { e, b }, <c> = { e, c }.
10
同态的实例
6.1
半 群 与 群
例2 设半群 V1 = <S,· >,独异点 V2= <S,· ,e>. 其中 · 为矩阵乘法,e 为 2 阶单位矩阵,
a 0 S | a, d R 0 d
a 0 a 0 令 :SS, 0 d 0 0 , 是半群 V1 的自
3
元素的幂运算性质
6.1
半 群 与 群
由于半群中的运算是结合的,可以定义运算的 幂。设V=<S, >为半群,对任意 x∈S,规定: x1 = x xn+1 = xnx, n∈Z+ 幂运算规则: xn xm = xn+m (xn)m= xnm m, n∈Z+ 证明方法:数学归纳法
4
特殊的半群
6.1
半 群 与 群
整数 k 称为 x 的阶(或周期),记作 |x| = k,称
x为 k 阶元. 若不存在这样的正整数 k,则称 x 为 无限阶元. 在<Z6,>中,2 和 4 是 3 阶元,3 是 2 阶元,1 和
5 是 6 阶元,0 是 1 阶元
在<Z,+>中,0 是 1 阶元,其它整数的阶都不存在. 注:在任何群中,幺元的阶都是1
8
半群与独异点的积代数
6.1
半 群 与 群
定义 设 V1=<S1, >,V2=<S2,∗> 是半群 (或独异 点),令S = S1×S2,定义 S 上的 ·运算如下: <a,b>,<c,d>∈S, <a,b>· <c,d> = < ac, b∗d > 称 <S,· >为 V1 和 V2 的 积半群(直积),记作 V1×V2. 若 V1 = <S1,, e1> 和 V2 = <S2,∗, e2> 是独 异点,则 V1×V2 = <S1×S2, · ,<e1,e2>> 也是独异 点, 称为独异点的 积独异点 (直积).
( x1 x2 ...xn ) xn xn1 ...x2 x1
1
1
1
1
1
18
群的性质---群方程存在唯一解
6.1
半 群 与 群
定理2 G为群,a,b∈G,方程 ax=b 和 ya=b 在G中有解且仅有惟一解. a1b 是 ax=b的解. ba1 是 ya = b 的唯一解. 例 设 G=<P({a,b}),>,其中为对称差. 群方程 {a} X = ,Y {a,b} = {b} 的解 X = {a}1 = {a} = {a}, Y = {b}{a,b}1 = {b}{a,b} = {a}
19
群的性质---消去律
6.1
半 群 与 群
定理6.3 G为群,则G适合消去律,即a,b,c∈G 有 (1)若ab = ac,则 b = c. (2)若ba = ca,则 b = c. 例、设G={a1,a2, …, an} 是 n 阶群,令 aiG = { ai aj | j =1,2, … , n } 证明:aiG=G. 证:由群中运算的封闭性有 aiGG. 假设aiGG, 即|aiG|<n. 必有aj, ak∈G使得 ai aj = ai ak (j≠k) 由消去律得 aj = ak, 与 |G| = n 矛盾.
12
Klein四元群
设G = { e, a, b, c },G上的运算由下表给出,
6.1
半 群 与 群
称为 Klein四元群 e a b c e a e a a e b c c b b c 运算表特征: • e为G中的幺元 • 对称性---运算可交换 • 主对角线元素都是幺元 ---每个元素是自己的逆元 • a, b, c 中任两个元素运算 都等于第三个元素.
n0 e x n x n 1 x n 0 ( x 1 ) m m n, n 0 n Z
实例 在<Z3, >中有 23=(21)3=13=111=0
在 <Z,+> 中有
(2)3=23=2+2+2=6
16
群中的术语(续)
设G是群,x∈G,使得等式 xk = e 成立的最小正
17
群的性质---幂运算规则
6.1
半 群 与 群
定理1 设 G 为群, 则 G 中的幂运算满足: (1) x∈G,(x1)1 = x. (2) x, y∈G,(xy)1 = y1x1. (3) x∈G,xnxm = xn+m,n, m∈Z. (4) x∈G,(xn)m = xnm,n, m∈Z. 注意 (xy)n = (xy)(xy)…(xy), 是 n 个xy 运算,G为 交换群,才有 (xy)n = xnyn.
第六章 几个典型的代 数系统
6.1 半群与群
6.1
半 群 与 群 半群与独异点 - 半群定义与性质 - 交换半群与独异点 - 半群与独异点的子代数和积代数 - 半群与独异点的同态 群 - 群的定义与性质 - 子群与群的直积 - 循环群 - 置换群
2
半群的定义与实例
6.1
半 群 与 群
定义 设 V=<S, o> 是代数系统,o为二元运算,如果 运 算是可结合的,则称 V 为半群. 实例 (1)<Z+,+>,<N,+>,<Z,+>,<Q,+>,<R,+>都是半群,+ 是普通加法. (2)设 n 是大于1的正整数,<Mn(R),+>和<Mn(R),· >都是 半群,其中+和 ·分别表示矩阵加法和矩阵乘法. (3)<P(B),>为半群,其中为集合的对称差运算. (4)<Zn, >为半群,其中 Zn={0,1, …, n1},为模 n 加 法. (5)<AA, >为半群,其中 为函数的复合运算. (6)<R*,>为半群,其中R*为非零实数集合,运算定义 如下:x, y∈R*, x y =y
6.1
半 群 与 群 定义 设V = <S, >是半群 (1) 若 运算是可交换的,则称V 为交换半群 .
(2) 若 e∈S 是关于 运算的幺元,则称 V 是含幺半群
,也叫做 独异点. 独异点 V 记作 V = <S, , e>
5
独异点的幂
6.1
半 群 与 群
独异点的幂运算定义 x0 = e xn+1 = xn x,


<Z,+> 和 <R,+>是无限群 <Zn,>是有限群,也是 n 阶群 Klein四元群 G = {e, a, b, c}是 4 阶群
上述群都是交换群 n 阶 (n≥2) 实可逆矩阵集合关于矩阵乘法构 成的群是非交换群.
15
群中的术语(续)
6.1
半 群 与 群
定义 设G是群,x∈G,n∈Z,则 x 的 n 次幂 xn 定义为
n∈ N
幂运算规则
x n x m = x n +m (xn)m= xnm
m, n∈N
6
交换半群和独异点的实例
6.1
半 群 与 群 例1 (1)<N,+,0>,<Z,+,0>,<Q,+,0>,<R,+,0>都是交 换半群,也是独异点,+ 是普通加法. (2)设 n 是大于 1 的正整数,<Mn(R),+>和<Mn(R),· >都是 独异点,其中+和 ·分别表示矩阵加法和矩阵乘法. 加 法构成交换半群,乘法不是交换半群. (3)<P(B),,>为交换半群和独异点,其中为集合的对 称差运算. (4)<Zn, ,0>为交换半群与独异点,其中 Zn = {0, 1, …, n1}, 为模 n 加法. (5)<AA, ,IA>为独异点,不是交换半群,其中 为函数 的复合运算.
20
群的性质---运算表排列规则
相关文档
最新文档