最新几个典型的代数系统
《离散数学》第五章

⊕4b)⊕4c=
a
c), 满足结合律。 ⊕4(b ⊕4c),即⊕4满足结合律。
0是单位元,0的逆元是 ,1和3互为逆元,2的逆 是单位元, 的逆元是 的逆元是0, 和 互为逆元 互为逆元, 的逆 是单位元 元是2。 是一个群。 元是 。 <Z4; 4>是一个群。 ⊕ 是一个群
14
定义5-8:如果群 如果群<G; * >的运算 是可交换的,则称该群为 的运算*是可交换的 定义 的运算 是可交换的,
5
三、 子半群和子独异点
定义5-5 定义
<S; >的子代数,则称<T; >是<S; >的子半群。 ; 的子代数,则称 ; 是 ; 的子半群。 的子代数 的子半群
∗
设<S; >是一个半群 ,若 <T; ; 是一个半群 ; ∗
∗
例6
= {2n | n ∈ N} N3 = {3n | n ∈ N}, N4 = {4n | n ∈ N}, L
交换群或阿贝尔群。 交换群或阿贝尔群。
15
二、循环群
1.群中元素的幂 对于任意a∈ , 对于任意 ∈G, a0=e,
anƮ=e, ( a−1)n+1 = (a−1)n ∗ a−1 (n=0,1,2,…) (*) ) 引进记号 a−n = (a−1)n = a−1 ∗ a−1 ∗ ⋅ ⋅ ⋅ ∗ a−1 ( n个a-1 ) 个 因此( 因此( )式可表示为 (a −1 )0 = e, a−n−1 = a−n * a−1 对于任意整数
1
5.1 半群和独异点 一、半群 半群 定义5-1 定义
二元运算, 二元运算,如果 是半群。 是半群。∗ > < s; 是一个非空集合, 设S是一个非空集合, 是S上的一个 是一个非空集合 上的一个 是可 结 合 的 , 则 称 代 数 系 统
离散数学及其应用课件:典型代数系统简介

典型代数系统简介
9.3.2 布尔代数的概念与性质 定义9.20 如果一个格是有补分配格,则称它为布尔格或
布尔代数。布尔代数通常记为<B,∨,∧,',0,1>,其中“¢”为求 补运算。
典型代数系统简介
典型代数系统简介
定义9.21 设<B,*,·>是一个格代数系统,*和·是B 上的两 个二元运算,如果*和·满足交换律、分配律、同一律和互补 律,则称<B,*,·>为布尔代数。
(2)若 H 是G 的子群,且 H ⊂G,则称 H 是G 的真子群,记作
H <G。 定理9.6 假设G 为群,H 是G 的非空子集,则 H 是G 的子
群当且仅当下面的条件成立:
(1)∀a,b∈H 必有ab∈H; (2)∀a∈H 有a-1∈H。 证明 必要性是显然的。为证明充分性,只需证明e∈H。 因为 H 非空,必存在a∈H。由条件(2)知a-1∈H,再根据条件(1)
典型代数系统简介
典型代数系统简介
定义9.10 令<R,+,·>是环,若环中乘法·适合交换律,则称R 是交换环。若环中乘法·存在单位元,则称R 是含幺环。 注意
(1)在环中通常省略乘法运算·; (2)为了区别含幺环中加法幺元和乘法幺元,通常把加法 幺元记作0,乘法幺元记作1。可以证明加法幺元0恰好是乘法 的零元。 (3)环中关于加法的逆元称为负元,记为-x;关于乘法的逆 元称为逆元,记为x-1。
有aa-1∈H,即e∈H。
典型代数系统简介
定理9.7 假设G 为群,H 是G 的非空子集,H 是G 的子群当
且仅当∀a,b∈H 有ab-1∈H。
证明 根据定理9.6必要性显然可得出,这里只证充分性。
因为 H 非空,必存在a∈H。根据已知条件得aa-1∈H,即e∈H。 任取a∈H,由e,a∈HH得ea-1∈H,即a-1∈H。任取a,b∈H,知b1∈H .再利用给定条件得a (b-1)-1∈,即ab∈H。
第六章 几种典型的代数系统

➢ < N, + >, < Z, + >, < Q, + >,< R, + > 都 是无限交换幺半群,幺元是 0。< Z+, + > 不 是幺半群。
定理6.1 群中元素 x 的逆元 x1 的逆元是 x, 即 (x1) 1 = x。 证明 因为 xx1= x1x = e,所以 (x1) 1 = x 。 定理6.2 群中的二元运算满足消去律。 证明 群中的每个元素都有逆元。由定理5.4立 即得出结论。
定理6.3 幺元是群中唯一的幂等元。 证明 ee = e,e 是幂等元。设 a 是群中的任意 幂等元,则 aa = ae。因为群中的二元运算满 足消去律,所以 a = e。
定义6.3 若幺半群 < G, , e > 中的每个元素都有 逆元,f 是 G 上的求逆元运算,即 f(x) = x1,则 称代数系统 < G, , f, e > 为群。若群中的二元运 算是可交换的,则称它为交换群,也称为阿贝 尔群。若群中的集合是有限集,则称该群为有 限群,否则称为无限群。若有限群中的集合有 n 个元素,则称该有限群为 n 阶群。一阶群, 即幺元是群中唯一元素的群称为平凡群。
例如, < Z, +, , 0 > 是无限交换群,称其为整 数加法群。
定义实函数集 RR 上的二元运算 + 如下:
对于任意 f, gRR,(f + g)(x) = f(x) + g(x)。
离散数学第六章

6.1.6 循环群和置换群
§循环群 在循环群G=<a>中, 生成元a的阶与群G的阶是一样 的. 如果a是有限阶元, |a|=n, 则称G为n阶循环群. 如 果a是无限阶元, 则称G为无限阶循环群. 例如: <Z,+>是无限阶循环群; <Z6,>是n阶循环群. 注意:(1) 对9 无限阶循环群G=<a>, G的生成元是a和a-1; (2) 对n阶循环群G=<a>=<e,a,…,an-1>,G的生成元是at 当且仅当t与n互素, 如12阶循环群中, 与12互素的数 有1、5、7、11. 那么G的生成元有a1=a、a5、a7、 a11. (3) N阶循环群G=<a>, 对于n的每个正因子d, G恰好有 一个d阶子群H=<an/d>.
6.1.3 子群
例如, 群<Z6,>中由2生成的子群包含2的各次 幂, 20=e=0, 21=2, 22=22=4, 23=222=0, 所 以由2生成的子群:<2>={0,2,4}.
对于Klein四元群G={e,a,b,c}来说, 由它的每个 元素生成的子群是 <e>={e}, <a>={e,a}, <b>={e,b}, <c>={e,c}
6.1.6 循环群和置换群
§循环群
定义6.7 在群G中, 如果存在aG使得 G={ak|kZ} 则称G为循环群, 记作G=<a>,称a为G的生成元. ☆ 循环群必定是阿贝尔群, 但阿贝尔群不一定 是循环群. 证明: 设<G,*>是一个循环群, 它的生成元是a, 那么,对于任意x,yG, 必有r,sZ, 使得 x=as,y=at, 而且x*y=as*at=as+t=at*as=y*x 由此可见<G,*>是一个阿贝尔群. 例如,<Z,+>是一个循环群, 其生成元是1或-1.
离散数学第六章

第六章几个典型的代数系统6.1 半群与群引言:简略介绍群论产生的背景1. 图形的对称性如正三角形、正方形(一般地正n 边形)、长方形、 等腰三角形、等腰梯形等;三维空间中的正四面体、 正方体、长方体等都各有自己的对称性。
画图解释:2.用根式求解代数方程的根(1)一元二次方程:20x bx c ++=⇒122b x -±=,。
注:①约公元前2000年即出现二次方程求根问题; ②约公元9世纪时,阿拉伯人花拉子米首次得到上述求根公式。
(2)三次及四次方程的求根公式一般三次方程: 320x ax bx c +++=。
先作变换:用3a x -代替x 后可化成 3x mx n +=(不含二次项), (*)其中 332,3327a ab a m b n c =-=--。
利用恒等式:333()3()u v uv u v u v -+-=-,把它与(*)比较得:33,3,x u v uv m u v n =-=-=。
由后面两个关于33,u v 的方程可得u x u v v ⎫⎪=⎪⇒=-= (即*方程的解) 以上求解三次方程的公式叫做卡丹公式, 出现在公元1545年出版的著作《大书》中。
关于四次方程的求根公式这里从略,可以肯定的是, 四次一般方程也有求根公式,并且也叫卡丹公式。
(3从1545年之后的近300年间,人们都没能找到五次(当然,这并不排除对 某些特殊的五次及五次以上的方程可以求出它们的根)。
直到1830年由法国人Galois (伽珞瓦)解决,证明出:五次及五次以上的一般方程不存在用加、减、乘、除及开方表示的求根公式,所用方法就是现在已广为接受的群的思想。
可是在当时,很多同时代的大数学家都无法理解和接受他的思想方法。
3.群在其它方面的应用:如编码理论、计算机等。
一.群的定义及简单性质1定义:设,G ⋅是一个具有二元运算⋅的代数系统,如果⋅同时满足(1)结合律:即,,a b c G ∀∈,()()a b c a b c ⋅⋅=⋅⋅总成立;(2)存在单位元(也称为幺元,记为e ),即 ,;a e e a a a G ⋅=⋅=∀∈(3)中每个元素a 都有逆元(记为1a -):即存在1a G -∈,使得11a a a a e --⋅=⋅=,则称G 关于运算⋅构成一个群。
几个典型的代数系统

本章讨论几类重要的代数结构:半群、群、环、域、格与布尔代数等.我们先讨论最简单的半群.半群定义称代数结构<S,>为半群(semigroups),如果运算满足结合律.当半群<S,>含有关于运算的么元,则称它为独异点(monoid),或含么半群.例 <I+,+>,<N,·>,< ,并置>都是半群,后两个又是独异点.半群及独异点的下列性质是明显的.定理设<S,>为一半群,那么(1)<S,>的任一子代数都是半群,称为<S,>的子半群.(2)若独异点<S,,e>的子代数含有么元e,那么它必为一独异点,称为<S, , e>的子独异点.证明简单,不赘述.定理设<S,>,<S’,’>是半群,h为S到S’的同态,这时称h为半群同态.对半群同态有(1)同态象<h(S),’>为一半群.(2)当<S,>为独异点时,则<h(S),’>为一独异点.定理设<S,>为一半群,那么(1)<S S,○ >为一半群,这里S S为S上所有一元函数的集合,○为函数的合成运算.(2)存在S到S S的半群同态.证(l)是显然的.为证(2)定义函数h:S→S S:对任意a Sh(a)= f af a:S→S 定义如下: 对任意x S,f a(x)= a x现证h为一同态.对任何元素a,b S.h(a b)=f a b (l1-1)而对任何x S,f a b(x)= a b x = f a(f b(x))= f a○f b (x)故f a b = f a○f b ,由此及式(l1-1)即得h(a b)= f a b = f a○f b =h(a)○ h(b)本定理称半群表示定理。
它表明,任一半群都可以表示为(同态于)一个由其载体上的函数的集合及函数合成运算所构成的半群。
离散数学 第四章 4

(3)
S={1,2,3,…,n}到自身的双射称为 元置换, 到自身的双射称为n元置换 到自身的双射称为 元置换 记为σ 记为σ,可表示为
2 n 1 σ = σ (1) σ (2) σ ( n )
上的双射即置换的个数共n!个 上置换 注:S上的双射即置换的个数共 个,S上置换 上的双射即置换的个数共 的全体记作S 的全体记作 n
2 设f是含有格中元素以及符号 是含有格中元素以及符号=,≤,≥,∨和∧ 是含有格中元素以及符号 , 的公式, 是将f中的符号分别替换成 的公式,令f*是将 中的符号分别替换成 , 是将 中的符号分别替换成=, ≥ ,≤, ∧与∨所得到的公式,则称 为f的对偶 所得到的公式,则称f*为 的对偶 命题。 命题。 3 对偶原理:f* f 对偶原理:
第六章
几个典型的代数系统
半群与群
格与布尔代数
6.1 半群与群
是一个代数系统, 设V=(G, )是一个代数系统 是一个代数系统 上的二元运算, 是G上的二元运算 上的二元运算 1 若 在G上成立结合律 则称 为半群。 上成立结合律 则称V为半群。 上成立结合律,则称 如:〈Z+, +〉, 〈N, +〉, 〈Z,+〉 〉 〉 〉 2 若 在G上成立结合律 且有单位元,则称 为 上成立结合律 上成立结合律, 有单位元,则称V为 独异点(含幺半群) 独异点(含幺半群)。 如: N, +〉, 〈Z,+〉 〈 〉 〉
轮换其乘法
例 设f=(15342), g=(125)(34) 求fg, g f, f-1, g-1
(4) 设M是非空集合 有n个元素 上所有置换 是非空集合,有 个元素 个元素,M上所有置换 是非空集合
的集合关于置换的乘法(函数的复合运算 构成 的集合关于置换的乘法 函数的复合运算)构成 函数的复合运算 一个群,称为 元对称群, 称为n元对称群 一个群 称为 元对称群, 它的任何子群称为n元置换群 元置换群。 它的任何子群称为 元置换群。 例题: 元对称群。 例题 S3是3元对称群。 元对称群
《离散数学》几个典型的代数系统-2(环域格)

格的并运算与交运算
并运算
在格中,任意两个元素的上确界称为它们的 并,并运算满足幂等律、交换律和结合律。
交运算
在格中,任意两个元素的下确界称为它们的 交,交运算也满足幂等律、交换律和结合律。
子格与商格
子格
格的一个非空子集,如果它关于原有的二元 运算也构成一个格,则称该子集为格的一个 子格。
商格
在格中定义一个等价关系,将格划分为若干 个互不相交的等价类,然后在这些等价类上 定义新的二元运算,所得到的集合和运算构
PSK等调制方式都是基于代数系统的理论基础。
代数系统在计算机图形学中的应用
几何变换
代数系统中的矩阵和向量等概念在计算机图形学中得到了 广泛应用,如平移、旋转、缩放等几何变换都可以通过矩 阵运算来实现。
图形渲染
基于代数系统的图形渲染技术,如光线追踪、纹理映射等, 提高了计算机图形的真实感和视觉效果。
示例
整数集Z、有理数集Q、实数集R、复数集C等在加法和乘法 运算下都构成环;矩阵环、多项式环等也是常见的环的例子 。
环的零元与幺元
零元
环中关于加法运算的单位元称为零元, 通常用0表示。对于任意元素a∈R, 都有a+0=a和0+a=a。
幺元
如果环中存在一个元素e,使得对于任 意元素a∈R,都有e·a=a和a·e=a,则 称e为环的幺元。并非所有环都有幺元, 有幺元的环称为幺环。
《离散数学》几个典型的代数系统 -2环域格
目录
• 环的基本概念与性质 • 域的基本概念与性质 • 格的基本概念与性质 • 环、域、格之间的关系与转换 • 代数系统在计算机科学中的应用 • 总结与展望
01 环的基本概念与性质
环的定义及示例