6几个典型的代数系统PPT课件

合集下载

第6章 几个典型的代数系统 [离散数学离散数学(第四版)清华

第6章 几个典型的代数系统 [离散数学离散数学(第四版)清华

0 0
a
R,
则TS,且T对矩阵乘法·是封闭的。
∴ <T, ·>是V1=<S, ·>的子半群。
11/2/2020 8:50 AM
第三部分:代数结构(授课教师:向胜军)
6
在<T, ·>中存在自己的幺元
1 0
00 ,因为
a 0
00 T, 有
a 0
00
1 0
00
a 0
00,
1 0
00 a0
00
a 0
00,
第三部分:代数结构(授课教师:向胜军)
13
定理1:
设G为群,则G中的幂运算满足 (1) 对xG,(x-1)-1=x. (2) 对x, yG,(xy)-1=y-1x-1. (3) 对xG,xnxm=xn+m. (4) 对xG,(xn)m=xnm. m, n是整数。
11/2/2020 8:50 AM
第三部分:代数结构(授课教师:向胜军)
(x ·y)= (x) ·(y),
但是
1 0
10 10
00,

1 0
00 不是独异点V2的幺元,
∴ 不是独异点V2的自同态。
11/2/2020 8:50 AM
第三部分:代数结构(授课教师:向胜军)
9
DEFINITION 3.
设<G, ◦>是代数系统,◦为二元运算。如果◦ 是可结合的,存在幺元eG,并且对G中的 任意元素x都有x-1G,则称G为群。
14
定理2:
设G为群,对a, bG,方程ax=b和 ya=b在G中有解,且有唯一解。
第六章 几个典型的代数系统
§1 半群与群 §2 环与域 §3 格与布尔代数

几个典型的代数系统

几个典型的代数系统

第六章几个典型的代数系统本章讨论几类重要的代数结构:半群、群、环、域、格与布尔代数等.我们先讨论最简单的半群.6.1 半群定义 6.1称代数结构<S,*>为半群(semigroups),如果*运算满足结合律.当半群<S,*>含有关于*运算的么元,则称它为独异点(monoid),或含么半群.例6.1 <I+,+>,<N,·>,<∑*,并置>都是半群,后两个又是独异点.半群及独异点的下列性质是明显的.定理6.1设<S,*>为一半群,那么(1)<S,*>的任一子代数都是半群,称为<S,*>的子半群.(2)若独异点<S,*,e>的子代数含有么元e,那么它必为一独异点,称为<S,*, e>的子独异点.证明简单,不赘述.定理6.2设<S,*>,<S’,*’>是半群,h为S到S’的同态,这时称h为半群同态.对半群同态有(1)同态象<h(S),*’>为一半群.(2)当<S,*>为独异点时,则<h(S),*’>为一独异点.定理6.3设<S,*>为一半群,那么(1)<S S,○ >为一半群,这里S S为S上所有一元函数的集合,○为函数的合成运算.(2)存在S到S S的半群同态.证(l)是显然的.为证(2)定义函数h:S→S S:对任意a∈Sh(a)= f af a:S→S 定义如下: 对任意x∈S,f a(x)= a*x现证h为一同态.对任何元素a,b∈S.h(a*b)=f a*b (l1-1)而对任何x∈S,f a*b(x)= a*b*x = f a(f b(x))= f a○f b (x)故f a*b = f a○f b ,由此及式(l1-1)即得h(a*b)= f a*b = f a○f b =h(a)○h(b)本定理称半群表示定理。

《代数系统群》课件

《代数系统群》课件
《代数系统群》PPT课 件
汇报人:PPT
目录
添加目录标题
01
代数系统群概述
02
代数系统群的分类
03
代数系统群的运算
04
代数系统群的子群与 商群
05
代数系统群的同态与 同构
06
添加章节标题
代数系统群概述
代数系统群的定义
代数系统:由集合和定义在集合上的二元运算构成 群:具有封闭性、结合性和单位元的三元组 代数系统群:具有代数系统作为其元素的群 代数系统群的定义:代数系统群是一个具有封闭性、结合性和单位元的代数系统
代数系统群的表 示理论
群表示的定义与性质
单击添加标题
群表示的定义:群表示是将 群中的元素映射到某个域
(如实数域或复数域)中的 线性变换,使得变换的乘法 运算对应于群中的乘法运算。
单击添加标题
群表示的性质:群表示具有一 些重要的性质,如封闭性、可 交换性、可结合性等。封闭性 是指群中的每个元素都可以被 表示为某个域中的线性变换; 可交换性是指表示的乘法运算 满足交换律;可结合性是指表
代数系统群的基本性质
代数系统群的 定义
代数系统群的 分类
代数系统群的 性质
代数系统群的 应用
代数系统群的应用
代数系统群在计算机科学中的应用 代数系统群在数学物理中的应用 代数系统群在信息科学中的应用 代数系统群在金融工程中的应用
代数系统群的分 类
循环群
定义:循环群是一种特殊的代数系统群,由一个元素生成的子群构成 性质:循环群的阶数等于其生成元素的阶数 循环群的运算:循环群的运算可以通过其生成元素的运算来定义 应用:循环群在数学和计算机科学中都有广泛的应用
代数系统群的子 群与商群

离散数学及其应用课件:典型代数系统简介

离散数学及其应用课件:典型代数系统简介

典型代数系统简介
9.3.2 布尔代数的概念与性质 定义9.20 如果一个格是有补分配格,则称它为布尔格或
布尔代数。布尔代数通常记为<B,∨,∧,',0,1>,其中“¢”为求 补运算。
典型代数系统简介
典型代数系统简介
定义9.21 设<B,*,·>是一个格代数系统,*和·是B 上的两 个二元运算,如果*和·满足交换律、分配律、同一律和互补 律,则称<B,*,·>为布尔代数。
(2)若 H 是G 的子群,且 H ⊂G,则称 H 是G 的真子群,记作
H <G。 定理9.6 假设G 为群,H 是G 的非空子集,则 H 是G 的子
群当且仅当下面的条件成立:
(1)∀a,b∈H 必有ab∈H; (2)∀a∈H 有a-1∈H。 证明 必要性是显然的。为证明充分性,只需证明e∈H。 因为 H 非空,必存在a∈H。由条件(2)知a-1∈H,再根据条件(1)
典型代数系统简介
典型代数系统简介
定义9.10 令<R,+,·>是环,若环中乘法·适合交换律,则称R 是交换环。若环中乘法·存在单位元,则称R 是含幺环。 注意
(1)在环中通常省略乘法运算·; (2)为了区别含幺环中加法幺元和乘法幺元,通常把加法 幺元记作0,乘法幺元记作1。可以证明加法幺元0恰好是乘法 的零元。 (3)环中关于加法的逆元称为负元,记为-x;关于乘法的逆 元称为逆元,记为x-1。
有aa-1∈H,即e∈H。
典型代数系统简介
定理9.7 假设G 为群,H 是G 的非空子集,H 是G 的子群当
且仅当∀a,b∈H 有ab-1∈H。
证明 根据定理9.6必要性显然可得出,这里只证充分性。
因为 H 非空,必存在a∈H。根据已知条件得aa-1∈H,即e∈H。 任取a∈H,由e,a∈HH得ea-1∈H,即a-1∈H。任取a,b∈H,知b1∈H .再利用给定条件得a (b-1)-1∈,即ab∈H。

第六章 几种典型的代数系统

第六章 几种典型的代数系统
因为关于二元运算 的幺元是唯一的,所以 我们有时不再列举幺元 e,而简单地说< S, > 是幺半群。因为在幺半群中只有一个二元运 算 ,所以我们把关于 的幺元称为幺半群的 幺元。
➢ < N, + >, < Z, + >, < Q, + >,< R, + > 都 是无限交换幺半群,幺元是 0。< Z+, + > 不 是幺半群。
定理6.1 群中元素 x 的逆元 x1 的逆元是 x, 即 (x1) 1 = x。 证明 因为 xx1= x1x = e,所以 (x1) 1 = x 。 定理6.2 群中的二元运算满足消去律。 证明 群中的每个元素都有逆元。由定理5.4立 即得出结论。
定理6.3 幺元是群中唯一的幂等元。 证明 ee = e,e 是幂等元。设 a 是群中的任意 幂等元,则 aa = ae。因为群中的二元运算满 足消去律,所以 a = e。
定义6.3 若幺半群 < G, , e > 中的每个元素都有 逆元,f 是 G 上的求逆元运算,即 f(x) = x1,则 称代数系统 < G, , f, e > 为群。若群中的二元运 算是可交换的,则称它为交换群,也称为阿贝 尔群。若群中的集合是有限集,则称该群为有 限群,否则称为无限群。若有限群中的集合有 n 个元素,则称该有限群为 n 阶群。一阶群, 即幺元是群中唯一元素的群称为平凡群。
例如, < Z, +, , 0 > 是无限交换群,称其为整 数加法群。
定义实函数集 RR 上的二元运算 + 如下:
对于任意 f, gRR,(f + g)(x) = f(x) + g(x)。

代数系统的基本概念.ppt

代数系统的基本概念.ppt
由逆元定义知,若x-1存在,则 x-1*x=x*x-1=e。
第5章 代数系统的基本概念
证明 设xr和xl分别是x对*运算的右逆元和左逆元, 故有
xl*x=x*xr=e 由于*可结合,于是
xl=xl*e=xl*(x*xr)=(xl*x)*xr=e*xr=xr
故xl=xr。
假设x1 -1,x2 -1均是对*的逆元,则
第5章 代数系统的基本概念
第5章 代数系统的基本概念
5.1 二元运算及其性质 5.2 代数系统 *5.3 代数系统的同态与同构 5.4 例题选解 习题五
第5章 代数系统的基本概念
5.1 二元运算及其性质
集合和它上面的运算所遵从的算律构成了代 数系统。 集合中的代数运算实质上是集合中的一类函数。
定义5.1.1 设A是集合,函数f:An→A称为集 合A上的n元代数运算(operators),整数n称为 运算的阶(order)。
证明 首先,θ≠e,否则S中另有元素a,a不是么元 和零元,从而
第5章 代数系统的基本概念
【例5.1.2】 下面均是二元运算的例子。 (1)在Z集合上(或Q,或R),f:Z×Z→Z,
〈x,y〉∈Z2,f(〈x,y〉)=x+y(或f(〈x,y〉)=x-y 或f(〈x,y〉)=x·y),如f(〈2,3〉)=5。 (2)A为集合,P(A)为其幂集。f:P(A)×P(A)→P(A)。 f可以是∩、∪、-、 。 (3)A={0,1}。f:A×A→A。f可以是∧、∨、→、 。
显然对于二元运算*,若*是可交换的,则 任何左(右)可逆的元素均可逆。
第5章 代数系统的基本概念
定理5.1.3 设*是集合S中的一个可结合的 二元运算,且S中对于*有e为幺元,若x∈S是 可逆的,则其左、右逆元相等,记作x -1,称 为元素x对运算*的逆元(inverseelements)且 是唯一的。(x的逆元通常记为 x -1;但当运 算被称为"加法运算"(记为+)时,x的逆元 可记为-x。)

代数系统PPT教学讲义

代数系统PPT教学讲义

例:运算可看作是一个具有输入端与输出端的黑盒
子,图4.1a表示为一元运算而图4.1b则表示为二元
运算.一元运算中对应的是一个输入端与一个输出
端.
输出
输出
二元运算中则对应两个
输入端与一个输出端.
输入
输入
(a)
(b)
图4.1运算是一个黑盒子
10
第4章 代数系统概论
定 义 4.2 代 数 系 统 : 非 空 集 合 S 上 的 K 个 运 算 1, 2,…,k一元或二元运算所构成的封闭系统称为代
练习
设V1=<R,+>, V2=<R,·>,其中R和R分别为实数集与非 零实数集,+ 和 ·分别表示普通加法与乘法.令 f : R→R,f x= ex 则 f 是V1到V2的单同态.
若令g: R →R,gx= ex,则g是V2到V1的 _______
31
第4章 代数系统概论
对三种同态作详细的分析: 1.同构 定理4.3:代数系统A与B同构则系统中的六个性质结 合律、交换律、分配律及单位元、零元、逆元的 存在能双向保持. 2.满同态 定理4.4:代数系统A与B满同态则系统中的六个性质 结合律、交换律、分配律及单位元、零元、逆元 的存在能单向保持.
那么 3∗4 = 3, 0.5∗3 = 0.5
6
运算表
运算表:表示有穷集上的一元和二元运算
aa11 aa22 …… aann
aa11 aa11aa11 aa11aa22 …… aa11aann
aa22 aa22aa11 aa22aa22 …… aa22aann
..
……
..
……
..
……
aann aannaa11 aannaa22 …… aannaann

离散数学第六章

离散数学第六章

6.1.6 循环群和置换群
§循环群 在循环群G=<a>中, 生成元a的阶与群G的阶是一样 的. 如果a是有限阶元, |a|=n, 则称G为n阶循环群. 如 果a是无限阶元, 则称G为无限阶循环群. 例如: <Z,+>是无限阶循环群; <Z6,>是n阶循环群. 注意:(1) 对9 无限阶循环群G=<a>, G的生成元是a和a-1; (2) 对n阶循环群G=<a>=<e,a,…,an-1>,G的生成元是at 当且仅当t与n互素, 如12阶循环群中, 与12互素的数 有1、5、7、11. 那么G的生成元有a1=a、a5、a7、 a11. (3) N阶循环群G=<a>, 对于n的每个正因子d, G恰好有 一个d阶子群H=<an/d>.
6.1.3 子群
例如, 群<Z6,>中由2生成的子群包含2的各次 幂, 20=e=0, 21=2, 22=22=4, 23=222=0, 所 以由2生成的子群:<2>={0,2,4}.
对于Klein四元群G={e,a,b,c}来说, 由它的每个 元素生成的子群是 <e>={e}, <a>={e,a}, <b>={e,b}, <c>={e,c}
6.1.6 循环群和置换群
§循环群
定义6.7 在群G中, 如果存在aG使得 G={ak|kZ} 则称G为循环群, 记作G=<a>,称a为G的生成元. ☆ 循环群必定是阿贝尔群, 但阿贝尔群不一定 是循环群. 证明: 设<G,*>是一个循环群, 它的生成元是a, 那么,对于任意x,yG, 必有r,sZ, 使得 x=as,y=at, 而且x*y=as*at=as+t=at*as=y*x 由此可见<G,*>是一个阿贝尔群. 例如,<Z,+>是一个循环群, 其生成元是1或-1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如 整数集I的加法群 <I,+>, 非零实数R—{0}的乘法群<R—{0},×>,
就是我们最熟悉的交换群。
不是所有的群都是交换群
7
有限群和无限群
Algebra 代数
设 G, 是一个群。如果 G 是一个有限集,那么称
G, 为有限群, G 中元素的个数通常称为该有限 群的阶数,记为 G ;如果 G 是无限集,则称 G, 为无限群。
14
子群
Algebra 代数
设 G, 是一个群,S 是 G 的非空子集,如果 S, 也
构成群,则称 S, 是 G, 的一个子群。
子群的判断方法
定理 6 设 G, 是一个群, S 是 G 的非空子集,如
果 x, y S, xy1 S, 则 S, 是 G, 的子群。
定理 7 设 G, 是一个群, B 是 G 的非空子集,如果 B 是
定理 5 群 G, 的运算表中的每一行或每一列都 是 G 的元素的一个置换。
13
表 5-4 是它的复合表。 表 5-4
f0
f1
f2
f3
f0
f0
f1
f2
f3
f1
f1
f2
f3
f0
f2
f2
f3
f0
f1
f3
f3
f0
f1
f2
Algebra 代数
从上表可见,它上面的任何不同的两行或两列不仅均不 相同,而且每一行或每一列中均不出现重复的元素。或 者说它的复合表的每一行或每一列都是属于群的全部元 素的一个全排列。
由此定理知:群的运算表中没有两行(或两列)是相同的。 为了进一步考察群的运算表所具有的性质,现在引进置换的 概念。
12
置换
Algebra 代数
设 S 是一个非空有限集合,从集合 S 到 S 的一个双 射称为 S 的一个置换。
集合S上的每一次置换产生一个S中元素的全排列, 每一个全排列对应着一个置换
注意,存在着非结合的代数系统,不为半群 例如 I, R, / 都不为半群
2
Algebra 代数
独异点 含有幺元的半群称为独异点。(也称单元半群) 可换半群 运算满足交换律的半群称为可换半群 定理 1 设 S, 是独异点,对于任意 a,b S , 若 a , b 均有逆元,则
(i) a1 1 a
一个有限集,那么,只要运算 在 B 上封闭, B, 必定是
G, 的子群。
15
Algebra 代数
例 I, 是一个群,设 IE {x x 2n, n I} , 证明 IE , 是 I, 的一个子群。
例 设 G4 {p p1, p2, p3, p4 pi {0,1}}, 是 G4 上的二元运算,定义为,对任意
(ii)a b 有逆元,并且有 a b 1 b1 a 1 。
3
子半群、子独异点
Algebra 代数
例 偶数加法半群〈E,+〉是整数加法半群〈I,+〉的 子半群吗?是独异点吗?
一个独异点 S, 对它的任一个元素 a ,定义其幂:
a0 e, a1 a, a2 a * a, ..., a j1 a j * a 利用结合律,得 an * am anm ; (an )m anm
Algebra 代数
证明当群的阶为 1 时,它的唯一元素视作幺元,
否则不是群 设|G|>1 且群<G,*>有零元θ。 那么群中任何元素 x∈G,都有 x*θ=θ*x=θ≠e 所以,零元θ就不存在逆元,这与<G,*>是群矛盾 故假设不成立,即无零元
10
Algebra 代数
定理 3 设 G, 是一个群,对于 a,b G , 必存在唯一的 x G ,使得 a x b 。 证明 1)存在性 设 a 的逆元为 a-1,令 x a1 b 则 a x a (a1 b) (a a1) b eb b
复合运算在 F 上是封闭的并满足结合律, f (0) 是复 合运算 的幺元, f (0) 的逆元是它自身, f (i) 的逆元 (i 1, 2,3) 是 f (4i) 。于是 F, 是一个群。
阿贝尔群
Algebra为 交换群,交换群也称为阿贝尔群。
4
Algebra 代数

设 G, 是一个代数系统,其中 G 是非空集合, 是G 上
的一个二元运算,如果 (1) 运算 是可结合的。 (2) 存在幺元 e 。
(3) 对于每一个元素 x G ,存在着它的逆元 x1 则称 G, 是一个群。
(1)半群
(1)(2)独异点
5
Algebra 代数
例设 X={1,2,3,4},函数 f : X X 由下式给出:
上例中所述的 F, 就是一个有限群,且 F 4
8
Algebra 代数
至此,我们可以概括地说:代数系统仅仅是一个具 有封闭二元运算的非空集合;半群是一个具有结合 运算的代数系统;独异点是具有幺元的半群;群是 每个元素都有逆元的独异点。即有:
{群} {独异点} {半群} {代数系统}
9
定理 2 群中不可能有零元。
6.1半群与群
Algebra 代数
半群
若 S, 是一个代数系统,且运算 是可结合的,则
称 S, 为半群。
例如: <Z,+>,<R,+>
1
例代数系统 I, max 为一个半群?
max(a, max,(b, c)) max(max(a,b), c) 同理〈I, min〉是一个半群
Algebra 代数
X x1, x2 , x3, x4 ,Y y1, y2 , y3, y4 G4
X Y x1y1, x2y2, x3y3, x4y4 证明〈G4,○+ 〉是群; 〈{〈0,0,0,0〉,〈1,1,1,1〉},○+ 〉是群 〈G4,○+ 〉的子群
2)唯一性 若另有一解 x1 ,满足 a x1 b, 则 a1 (a x1) a1 b , 即 x1 a1 b 。
11
Algebra 代数
定理 4 设 G, 是一个群,对于任意的 a,b, c G ,如果有 a b a c 或者 b a c a , 则必有 b c 。(即在群中消去律成立)
f {1, 2 , 2,3 , 3, 4 , 4,1 }
设 f (0) 是 X 上的恒等函数,我们来构造 f f f (2) , f (2) f f (3) , f (3) f f (4) 等等,
那么就会发现 f (4) f (0) 。令集合 F { f (0) , f (1) , f (2) , f 。 (3)} 则 F 及 F 上的复合运算能构成群吗?
相关文档
最新文档