RC波形变换电路

合集下载

脉冲信号的产生与转换

脉冲信号的产生与转换

数字电子技术基础第一节预备知识RC电路在脉冲+V +充电放电+V DD+V充电+V第二节单稳态触发器(1)电路有一个稳态和一个暂稳态。

(2)在外来触发脉冲作用下,电路由稳态翻转到暂稳态。

(3)暂稳态是一个不能长久保持的状态,经过一段时间后,电路会自动返回到稳态。

暂稳态的持续时间与触发脉冲无关,仅决定于电路本身的参数。

112. 加负触发脉冲电路翻转为暂稳态 当t =t 1时,u I 产生负跳变,使u 01由低电平跳变为高电平, 由于电容两端电压u C 不能突变,因而使u R 产生同样的正跳变,G 2的输出u 02从高电平变为低电平,这是一个强列正反馈过程: 1 0 ► 0 ► 1 正反馈过程: u I ↓→u 01↑→u R ↑→u 02↓ ┗ ━ ━ ━ ━┛ 结果使得电路迅速进入G1门关闭、G2门打开的暂稳状态。

暂稳状态3. 电路自动返回稳态 电路在暂稳态期间,u 01为高电平,经R 到地不断对电容充电,使u C 按指数规律上升,u R 按指数规律下降,当u R 下降到G 2门的阈值电压时,电路将产生下列的正反馈过程: 1 1 ► 0正反馈过程:C 充电→u C ↑→u R ↓→u 02↑→u 01↓ ┗━━━━━┛ 结果使得电路自动返回到G 1打开、G 2关闭的稳态。

暂稳态的持续时间,即输出脉冲宽度t w 与充电时间常数RC 的大小有关,RC 越大,t W 越宽。

脉冲宽度:t W ≈0.7RC1 1t re =(3~5)RC fmax =1/(t w+t re)三、单稳态触发器的应用单稳态触发器在数字电路中一般用于整形(把不规则的波形转换成宽度、幅度都相等的波形)、定时(产生一定宽度的矩形波)、以及延时(把输入信号延迟一定时间后输出)等。

数字电子技术基础习题第三节多谐振荡器1. 第一暂稳态及其自动翻转的过程 假定在接通电源的瞬间,电路最初处于G 1关闭、G 2打开状态(设这时为电路的第一暂稳态),即u 01=1,u 02=0。

rc并联电路波形

rc并联电路波形

rc并联电路波形
在一个RC并联电路中,波形的表现取决于输入信号的频率和幅度,以及RC电路的时间常数。

时间常数(τ)由电容器的电容值和电阻器的阻值决定。

当输入信号的频率远高于时间常数(τ),即输入信号的周期远小于RC电路的响应时间,电路表现出类似于传输功能的特征,即输入信号会直接透过电路,几乎没有衰减或滞后,输出波形与输入波形近似一致但可能有一定的相位差。

当输入信号的频率接近或低于时间常数(τ),即输入信号的周期与RC电路的响应时间相接近或大于响应时间,电路则会表现出滤波和延迟的特性。

以下是几种常见输入信号频率下RC并联电路的波形特征:
1.高频信号(周期远小于时间常数):输出波形与输入波形
近似一致,但可能会有一定的相位差,输出电压幅度基本上与输入电压幅度相等。

2.中频信号(周期接近时间常数):输出波形会有一定的衰
减和相位延迟,幅度会比输入信号小,且相位会发生相对的延迟。

3.低频信号(周期大于时间常数):输出波形会被更明显地
滤波和延迟,幅度衰减较大,相位延迟较明显。

需要注意的是,RC并联电路的频率响应曲线呈现一个高通滤波器的特点,即在低频时会有相对较大的衰减,而在高频时
基本上不受阻塞。

因此,在低频输入信号下,输出波形的幅度衰减会更为明显。

总的来说,RC并联电路的波形取决于输入信号的频率和幅度,以及RC电路的时间常数。

高频信号将几乎不受阻碍地传输,中频信号会有衰减和相位延迟,而低频信号将被滤波和延迟。

波形振荡

波形振荡

值是固定的,有的只有一
个阈值,有的具有两个阈
值。
一、固定幅度比较器
(1) 过零比较器和电压幅度比较器
过零电 压比较器是 典型的幅度 比较电路, 它的电路图 和传输特性 曲线如图 14.01所示。
(a)
(b)
(a)电路图
(b)传输特性曲线
Байду номын сангаас
图14.01 过零电压比较器
将过零电压比较器的一个输入端从接地改接到
采用反并联二极管的稳幅电路如图11.04所示。
(a) 稳幅电路
(b) 稳幅原理图
引益电联起 下R出 小 出D位 二增 降二二 于 幅较电器 极式幅 ,极极 工 度当小路下 管中过 最管管 作 小V,o的半 的程 后工大工 在 。图ARv电部 等"。达作1f时作A较p1、是压.的效当到在,0在小4B电增电平输稳A二C反,点、位、益阻均并出定极于所B器D为联值电幅幅管点是对点二上。阻度度支,V应所极半Ao值R大的路下电的v管对'f3部。到目=的降=路的等应的R1一的交稳。的效3的+电幅定。流/由增电/R等R阻电R"程电图益'阻p效Dp路值,度流(较,电RRb,R,较4)大所3阻D可R增大是,以',p看是,并输
如果正反馈量大,则增幅,输出幅度越来 越大,最后由三极管的非线性限幅,这必然产 生非线性失真。
反之,如果正反馈量不足,则减幅,可能 停振,为此振荡电路要有一个稳幅电路。
为了获得单一频率的正弦波输出,应该有 选频网络,选频网络往往和正反馈网络或放大
电路合而为一。选频网络由R、C和L、C等电
抗性元件组成。正弦波振荡器的名称一般由选 频网络来命名。正弦波发生电路的组成
RC串并联网络的电路如图11.02(a) 所示。RC 串联臂的阻抗用Z1表示,RC并联臂的阻抗用Z2表 示。其频率响应如下:

RC积分电路

RC积分电路
二、讲授新课(55min)
1.工作原理
3.举例
三、课堂小结(15min)
四、布置作业(10min)
河北经济管理学校教案
教案内容
1、课堂导入与提问(10min)
RC积分电路也是R-C串联电路,与微分电路相比,只是将R—C电路对调,即从电容C上取出电压。时间常数τ远大于输入矩形波
的脉宽,即t》tw。积分电路是将矩形波变换成锯齿波或三角波的波形变换电路。
3、课堂小结(15min)
积分电路特点
(1)积分电路可以使输入方波转换成三角波或者斜波
(2)积分电路电阻串联在主电路中,电容在干路中
(3)积分电路的时间常数t要大于或者等于10倍输入脉冲宽度
(4)积分电路输入和输出成积分关系
四、布置作业(10min)
课后思考:P218复习思考题
2) t1<t<t2时
电容开始充电,Vc按照指数规律上升,Vi = Vc + VR.由于τ>>tw,电容充电非常缓慢.
3) t=t2时
VI由Vm→0,相当于输入端被短路,电容原先充有左正右负电压VI(VI<Vm,这是因为τ>>tW,即充电时间很长,使得充电电压未来得及充到Vm最大电压,就开始放电了)经R缓慢放电,VO(VC)按指数规律下降。
这样,输出信号就是锯齿波,近似为三角形波,τ>>tW是本电路必要条件,因为他是在方波到来期间,电容只是缓慢充电,VC还未上升到Vm时,方波就消失,电容开始放电,以免电容电压出现一个稳定电压值,而且τ越大,锯齿波越接近三角波。输出波形是对输入波形积分运算的结果,他是突出输入信号的直流及缓变分量,降低输入信号的变化量。这样的积分电路配合施密斯触发器的应用便可以得到标准矩形波的延时电路。

一文讲解RC电路耦合、相移、滤波、微分、积分

一文讲解RC电路耦合、相移、滤波、微分、积分

一文讲解RC电路耦合、相移、滤波、微分、积分所谓RC电路,就是电阻R和电容C组成的一种分压电路。

如下图1所示:输入电压加于RC串联电路两端,输出电压取自于电阻R 或电容 C。

由于电容的特殊性质,对下图 (a)和 (b)不同的输出电压取法,呈现出不同的频率特性。

由此 RC电路在电子电路中作为信号的一种传输电路,根据需要的不同,在电路中实现了耦合、相移、滤波等功能,并且在阶跃电压作用下,还能实现波形的转换、产生等功能。

所以,看起来非常简单的 RC电路,在电子电路中随处可见,有必要对它的基本应用加以讨论。

图1 基本RC电路1、RC耦合电路RC耦合电路即阻容耦合电路, 是多级放大器级间耦合方式的基本形式. 如下图 2所示为两级放大器, 第一级的输出电压就是通过如下图 3所示的 RC阻容耦合电路加到第二级上的,其中C = C2, R 为 R5 与 rbe2 + ( 1+β) R6 的并联, Ui就是第一级的空载输出电压, Uo就是第二级的输入电压. 实际上整个放大器的输入耦合电路、输出耦合电路都是一个输出电压取自于电阻的如图3所示的 RC耦合电路. 对这种耦合电路输出电压可表示为:当传输信号的频率很高时,即:f>fL时:Uo=Ui,即第二级得到的输入电压等于第一级的输出电压,耦合电容相当于通路.即这种情况下,RC耦合电路将被传输的信号无衰减地、且无相移地由上级耦合到下级.当被传输信号的频率降低到f=fL时:输出电压的大小等于输入电压大小的1/且相位超前45度.由通频带的概念,这就是下界频率.由上可见,RC电路作为耦合电路,能否将被传送的信号顺利地耦合下去,完全由被传送信号频率和RC电路的参数比较后决定的.一般来说,RC电路的时间τ=RC远大于被传送信号的周期T,即被传输信号的频率远大于由电路参数决定的下界频率时,这种RC耦合电路中的电容相当于通路.图2 两级放大电路图3 RC耦合电路2、RC相移电路RC电路作为二端传输网络,若输出电压取自于电阻,则输出电压的相位超前;若输出电压取自于电容,则输出电压的相位落后.这种超前或落后最大可达90度,但此时输出电压的幅值也趋近于0.一般在电路中,使之信号通过RC电路,既有一定的相移,又有一定的电压幅值,这样RC电路就成了一个相移电路.在电路中,根据需要的不同,将若干节RC电路串联去实现对某一频率的信号进行一定角度的相位移动.图4是一个RC相移式正弦波振荡器电路.三节RC相移电路在振荡电路中既是正反馈网络,又是选频网络,合理选其电路参数,对某一频率的信号通过RC相移电路,使之每一节的平均相移为60度,总相移为180度,从而满足振荡平衡条件,对这一频率的信号发生振荡.3、滤波电路滤波电路是一种能使有用频率信号顺利通过,而对无用频率信号起抑制和衰减作用的电子电路.由于电容阻低频通高频的基本性质,滤波电路的基本组成部分仍是一个RC电路,当输出电压取自于电阻时,它就是一个高通滤波器;当输出电压取自于电容时,它就是一个低通滤波器.为了隔断负载对RC电路的影响,常将RC电路和集成运放组合起来组成有源滤波器,如图5所示为一阶有源低通滤波器电路.将图中的R和C 的位置互换,即得到一阶有源高通滤波器.为了使被抑制的频率成分在截止频率以外衰减更快,可以将几节 RC电路串联使用,而得到高阶有源滤波器,也可将不同性质的RC电路相互串并联使用,得到所谓带通滤波器和带阻滤波器等.图4 RC相移振荡电路图5 一阶低通滤器4、微分电路和积分电路前面三个问题讨论的是不同频率的正弦信号通过RC电路时,电路所反映出的性质.当电路中信号电压发生阶跃变化时,由于电容的充放电的性质,使之被传输的信号发生另一种变化,这就微分电路和积分电路.4.1 微分电路所谓微分电路仍是一节RC电路,输出电压取之于电阻R.当输入电压为阶跃变化的矩形脉冲时,且RC电路的充放电时间常数τ=RC<TK(脉冲宽度)时,能将输入的矩形脉冲变成宽度为τ的尖脉冲.如图6所示,由于时间常数远小于脉冲宽度,脉冲上升沿来到时,电容通过电阻R充电,很快充满,电路中的电流变为零,输出电压变为零,由此在R 上得到一个与上升沿相对应的正的尖脉冲.当脉冲下降沿来到时,电容通过电阻R反向放电,同理放电过程很快,在电阻R上得到一个与下降沿对应的负的尖脉冲.由于通过电容的电流为:图6 微分电路将矩形脉冲变成尖脉冲即输出电压近似与输入电压的微分成正比,微分电路由此得名.为使输出电压不受负载的影响,RC电路跟运放组合接成如图7所示的形式,由于运放反向端虚地,输出电压取之于反馈电阻R.微分电路的本质仍是RC电路,运放在此起隔离和缓冲作用.图7 由运放组成的微分电路4.2 积分电路与微分电路相反,积分电路中输出电压取之与电容.如图8所示,当RC电路的时常数τ=RC>TK(脉冲宽度)时,能将输入的矩形脉冲变成幅度随时间线性变化的锯齿波.由于RC电路的充放电时间常数τ远大于脉冲宽度TK,脉冲上升沿来到时,电容通过电阻R充电,远没有充满,即刚经过充电曲线的起始部分,脉冲下降沿来到,电容又开始放电,远没有放完,又在上升沿作用下充电,由此在电容上得到随时间近似成线性变化的锯齿波电压.图8 积分电路将矩形脉冲变为锯齿波因为τ>TK在输入矩形脉冲的持续时间内,电容上的电压上升不多,即:Uo<UR,则:由此得到:即输出电压与输入电压的积分成正比,由此得名积分电路.同理,为使RC积分电路不受负载的影响,同样跟运放组合接成如图9形式的电路.运放反向端虚地,输出电压取之于电容.可见积分电路的本质仍是RC 电路,运放在此起隔离和缓冲作用.由上讨论可知:微分电路和积分电路从本质来说都是一节RC电路,微分电路中输出电压取之于电阻,其时间常数远小于脉冲宽度.积分电路中输出电压取之于电容,其时间常数远大于脉冲宽度.图9 由运放组成的积分电路除了上述的四种情况以外,还有一种重要的应用,即根据电容充放电时其两端电压的变化情况,在电路中起延时开关作用,在波形产生电路中和定时电路中有着广泛的应用.5、结论RC电路的本质就是一个分压电路,电路中的传输信号、电路状态发生变化时的跃信号都可作为RC 电路的输入电压,根据需要的不同从电阻R或电容C取出输出电压,并根据电容C的充放电性质,巧妙地选取电路参数和电路结构,使RC电路成为电路中信号传输的桥梁,波形变换的转换器,选取有用信号的滤波器或选频网络。

RC电路、施密特触发器

RC电路、施密特触发器

2010-9-14
2
复习
MSI时序逻辑电路的分析步骤?
2010-9-14
3
第6章 脉冲波形的产生与变换
脉冲信号:指突然变化的电压或电流。 脉冲电路的研究重点:波形分析。 数字电路的研究重点:逻辑功能。 获得脉冲波形的方法主要有两种: 1.利用脉冲振荡电路产生; 2.是通过整形电路对已有的波形进行整形、变 换,使之符合系统的要求。
回差 T T+- T-(通常 T+> T-) - - 3. 重要参数 改变R 的大小可以改变回差U 改变 1和R2的大小可以改变回差 T
2010-9-14
图6-8 施密特触发器的工作波形及电压传输特性 (b)电压传输特性 回差U = U -U (通常U >U ) 回差 (a)工作波形 通常
19
6.2.2 集成施密特触发器
图6-13 脉冲鉴幅
2010-9-14 25
作业题
6-1
2010-9-14
26
2010-9-14
15
当uI=0V时, G1截止、G2导通,输出为UOL, 即uO=0V。只要满足uI1<UTH,电路就会处于这种 状态(第一稳态)。 当uI上升,使得uI1 =UTH时,电路会产生如下正 反馈过程:
2010-9-14
16
电路会迅速转换为G1 导通、G2 截止,输出为 UOH,即uO=VDD 的状态(第二稳态)。此时的uI值 称为施密特触发器的上限触发转换电平UT+ 。显然, u
以下主要讨论几种常用脉冲波形的产生与变换 电路:(功能、特点及其主要应用简介) 1. RC电路:对矩形波进行微分、积分变换, 或作脉冲分压器; 2. 施密特触发器:主要用以将非矩形脉冲变换 成上升沿和下降沿都很陡峭的矩形脉冲; 3. 单稳态触发器:主要用以将脉冲宽度不符合 要求的脉冲变换成脉冲宽度符合要求的矩形脉冲; 4. 多谐振荡器:产生矩形脉冲; 5. 555定时器。

波形产生电路与变换电路



F

可分解为: A F 1

称为振幅平衡条件。 (n = 0 , 1, 2, …)
A F 2n
称为相位平衡条件。
第八章 波形产生电路与变换电路
说明:对相位平衡条件:
A F (o i ) (F o ) F i
FU 即有: Z U Z U Z [F 1]e

1 F 2R 2 T 2T1 2 ln 2RC ln(1 ) 1 F R3
第八章 波形产生电路与变换电路
1 F 2R 2 T 2T1 2 ln 2RC ln(1 ) 1 F R3 1 1 则: f T 2R 2 2RC ln(1 ) R3
即:反馈电压与原输入电压的相位差,也就是信号通过基本放 大器、反馈网络的总相移。所以相位平衡条件就是反馈电压和原输 入电压要同相位,即为正反馈。判断的方法就是瞬时极性法。只有 这两个条件同时满足时,电路才能维持自激振荡。振幅平衡条件可 以通过对电路参数的调节容易满足,所以相位平衡条件是电路能否 产生振荡的关键。 3、自激振荡的建立和起振条件: (1)自激振荡的建立:实际上,振荡器在开始起振时不需要信 号源,靠电路中电路接通时的电扰动,这种电扰动中存在着丰富的 成份,包含频率为fo 正弦信号。 (2)选频网络:为了使频率为fo 正弦信号放大—反馈—再放 大——输出,振荡器中还必须有一个选频网络。
图 8 - 12ICL8038管脚图(顶视图)
第八章 波形产生电路与变换电路
§8.3 正弦波产生电路
一、正弦波振荡器的基本原理
1、自激振荡的基本原理及框图:
如下图:输入信号通过基本放大器得 到输出信号,引入负反馈,调节电路参 数,使之反馈信号等于原输入信号,这 样反馈信号就能代替原输入信号,我们 把这样一个没有输入就有输出的闭环系 统称为自激振荡器。

一阶rc电路频率响应_概述及解释说明

一阶rc电路频率响应概述及解释说明1. 引言1.1 概述在电路理论和应用中,频率响应是一个非常重要的概念。

频率响应描述了电路对输入信号中不同频率成分的响应情况,它能够帮助我们理解电路对不同频率信号的滤波、放大或衰减效果。

本文将围绕一阶RC电路的频率响应展开讨论。

一阶RC电路是最简单且常见的电路之一,由一个电阻(R)和一个电容(C)组成。

它具有简单的结构和特性,因此在教学、实验和实际应用中广泛使用。

1.2 文章结构本文分为五个主要部分。

首先,在引言部分我们将介绍文章的背景和目标。

然后,在第二部分我们将简要地介绍一阶RC电路的基本原理以及频率响应的重要性,并探讨在实际应用中它们的作用。

第三部分将详细定义和解释频率响应,并介绍一些常用的测量方法,包括响应曲线和相位差曲线的测量。

接下来,在第四部分我们将深入分析一阶RC电路的频率响应特性。

通过理论推导和公式解释,我们将理解频率对幅度和相位的影响规律,并介绍指数衰减特性以及其解释说明。

最后,在第五部分中,我们将对实验结果进行验证与分析,讨论一阶RC电路在实际应用中可能遇到的局限性以及改进方向。

最后,我们将总结本文的主要内容,并展望未来研究工作的方向。

1.3 目的本文的目标是提供读者对一阶RC电路频率响应概述及解释说明的全面认识。

通过具体介绍一阶RC电路的基本原理、频率响应的定义和测量方法,以及其特性分析,读者可以深入了解该电路在不同频率下输出信号的变化规律。

同时,本文也将探讨该电路在实际应用中的优势与局限性,并提出改进方向和未来研究工作展望。

通过阅读本文,读者能够更好地理解和运用一阶RC电路,在相关领域中进行设计、分析和优化。

2. 一阶RC电路简介2.1 RC电路基本原理一阶RC电路是由一个电阻(Resistor, R)和一个电容(Capacitor, C)组成的简单电路。

在这种电路中,电流通过电阻时会受到阻碍并形成压降,同时通过电容时则会被存储或释放。

这种结构使得一阶RC电路能够对输入信号进行滤波、积分和微分等操作。

脉冲 波形的产生和变换


第一节佛教
2.佛教的基本教义 (1)四谛说 四谛是佛教各派共同承认的
基础教义。所谓“谛”,有“真理”或“ 实在”,的意思,是印度哲学通用的概念 。“四谛”就是佛教中的四条真理,即苦 谛、集谛、灭谛和道谛。由于这四条是神 圣的真理,所以“四谛”又称为“四圣谛 ”。其核心是宣扬整个世界和全部人生为 无边之苦海。四谛又可分为两部分,苦、 集二谛说明人生的本质及其形成的原因, 灭、道二谛指明人生解脱的归宿和上解一页脱下一之页 返回
部派佛教时期(约前4世纪中叶一1世纪中 叶)公元前4世纪至公元1世纪,即释迎牟 尼去世后的100年到400年间,佛教教团 出现了分裂。最初分为尊崇传统、保守旧 规的上座部和较为进取、强调改革上和一页发下一展页 返回
第一节佛教
大乘佛教时期(约1世纪中叶7世纪)大约在 公元1世纪左右,佛教发生了大的分化, 分出大乘佛教和小乘佛教。从此,佛教发 展进入了一个新的阶段。“乘”,是“承 载”或“道路”的意思,大乘是大道,小 乘即是小道。小乘和大乘两派,对佛教教 义的解释和理解有分歧。小乘保持原来的 教义,以释迎牟尼为教主,以《阿含经》 为主要经典。大乘则对原有的教义有所修 正、有所发展,认为三世十方有无数佛, 并以《般若经》、《维摩经》、《法华经
藏传佛教主要是印度密教与藏区本教融合 形成的具有西藏地方色彩的佛教,俗称喇 嘛教。流传于中国的藏、蒙古、裕固、纳 西等民族地区,以及不丹、锡金、尼泊尔 、蒙古和俄罗斯的布里亚特等国家和地区 。它的经典属于藏语,故亦称藏语上系一页佛下一教页 返回
第一节佛教
3.佛教在中国的传播 佛教自印度传入中国以后,经过流传发展
波形的分析及其应用。 4.了解555定时器内部结构框图、基本原理及典型应用。
返回
第一节 概述

rl电路实验报告

rl电路实验报告RC一阶电路的响应测试实验报告实验七RC一阶电路的响应测试一、实验目的1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。

2. 学习电路时间常数的测量方法。

3. 掌握有关微分电路和积分电路的概念。

4. 进一步学会用示波器观测波形。

二、原理说明1. 动态网络的过渡过程是十分短暂的单次变化过程。

要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。

为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。

只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。

2.图7-1(b)所示的RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。

3. 时间常数τ的测定方法:用示波器测量零输入响应的波形如图7-1(a)所示。

根据一阶微分方程的求解得知uc=Ume-t/RC=Ume-t/τ。

当t=τ时,Uc(τ)=0.368Um。

此时所对应的时间就等于τ。

亦可用零状态响应波形增加到0.632Um所对应的时间测得,如图13-1(c)所示。

Umc Um0.632 ca) 零输入响应(b) RC一阶电路(c) 零状态响应图7-14. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。

一个简单的RC 串联电路,在方波序列脉冲的重复激励下,当utt满足τ=RCT时(T为方波脉冲的重复周期),且由R两端的电压作为响应输出,则该2电路就是一个微分电路。

因为此时电路的输出信号电压与输入信号电压的微分成正比。

如图7-2(a)所示。

利用微分电路可以将方波转变成尖脉冲。

C (a)微分电路(b) 积分电路图7-2若将图7-2(a)中的R与C位置调换一下,如图13-2(b)所示,由C 两端的电压作为响应输出,且当电路的参数满足τ=RCT,则该RC电路称为积分电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:RC波形变换电路
课时:讲二课时
教学要求:
理解RC波形变换电路的工作原理;
掌握时间常τ的计算。

教学过程:
一、RC微分电路
1、功能:将矩形波变换成宽度很窄的一对正负尖峰脉冲波。

2、电路条件:(1)输出信号取自RC电路的电阻R的两端;(2)电路的时
间常数τ应远小于输入的矩形波脉冲宽度t p。

3、工作原理P250
4、电路特点:突出变化量,压低恒定量。

二、RC积分电路
1、功能:将矩形波变换成三角波。

2、电路条件:(1)输出信号取自RC电路的电容C的两端;(2)电路的时间常数τ应远大于输入的矩形波脉冲宽度t p。

3、工作原理P251
4、电路特点:突出恒定量,压低变化量。

相关文档
最新文档