专题11:统计概率问题

合集下载

2022年四川各地(成都德阳南充等)中考数学真题按知识点分类汇编 专题11 统计与概率(原卷版)

2022年四川各地(成都德阳南充等)中考数学真题按知识点分类汇编 专题11 统计与概率(原卷版)

专题11 统计与概率1.(2022·成都)在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是()A.56B.60C.63D.722.(2022·自贡)六位同学的年龄分别是13、14、15、14、14、15岁,关于这组数据,正确说法是()A.平均数是14B.中位数是14.5C.方差3D.众数是143.(2022·泸州)费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35,35,40,则这组数据的众数和中位数分别是()A.35,35B.34,33C.34,35D.35,344.(2022·德阳)在学校开展的劳动实践活动中,生物兴趣小组7个同学采摘到西红柿的质量(单位:kg)分别是:5,9,5,6,4,5,7,则这组数据的众数和中位数分别是()A.6,6B.4,6C.5,6D.5,55.(2022·广元)如图是根据南街米粉店今年6月1日至5日每天的用水量(单位:吨)绘制成的折线统计图.下列结论正确的是()A.平均数是6B.众数是7C.中位数是11D.方差是86.(2022·乐山)一个布袋中放着6个黑球和18个红球,除了颜色以外没有任何其他区别.则从布袋中任取1个球,取出黑球的概率是()A.14B.13C.23D.347.(2022·乐山)李老师参加本校青年数学教师优质课比赛,笔试得90分、微型课得92分、教学反思得88分.按照图所显示的笔试、微型课、教学反思的权重,李老师的综合成绩为()A.88B.90C.91D.928.(2022·南充)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差9.(2022·眉山)中考体育测试,某组10名男生引体向上个数分别为:6,8,8,7,7,8,9,7,8,9.则这组数据的中位数和众数分别是()A.7.5,7B.7.5,8C.8,7D.8,810.(2022·凉山)一组数据4、5、6、a、b的平均数为5,则a、b的平均数为()A.4B.5C.8D.1011.(2022·自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池;一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是____________鱼池(填甲或乙)12.(2022·德阳)学校举行物理科技创新比赛,各项成绩均按百分制计,然后按照理论知识占20%,创新设计占50%,现场展示占30%计算选手的综合成绩(百分制),某同学本次比赛的各项成绩分别是:理论知识85分,创新设计88分,现场展示90分,那么该同学的综合成绩是______分.13.(2022·广元)一个袋中装有m个红球,10个黄球,n个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m 与n 的关系是________.14.(2022·遂宁)遂宁市某星期周一到周五的平均气温数值为:22,24,20,23,25,这5个数的中位数是__.15.(2022·南充)老师为帮助学生正确理解物理变化与化学变化,将6种生活现象制成看上去无差别卡片(如图).从中随机抽取一张卡片,抽中生活现象是物理变化的概率是________.16.(2022·成都)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.根据图表信息,解答下列问题:(1)本次调查的学生总人数为_________,表中x 的值为_________;(2)该校共有500名学生,请你估计等级为B 的学生人数;(3)本次调查中,等级为A 的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.17.(2022·自贡)为了解学生每周参加课外兴趣小组活动的累计时间t (单位:小时),学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按03t ≤<,34t ≤<,45t ≤<,5t ≥分为四个等级,分别用A、B、C、D表示;下图是受损的调查统计图,请根据图上残存信息解决以下问题:(1)求参与问卷调查的学生人数n,并将条形统计图补充完整;(2)全校共有学生2000人,试估计学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数;(3)某小组有4名同学,A、D等级各2人,从中任选2人向老师汇报兴趣活动情况,请用画树状图或列表法求这2人均属D等级的概率.18.(2022·泸州)劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.某学校为了解学生参加家务劳动的情况,随机抽取了m名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图.根据题中已有信息,解答下列问题:a________;(1)m=________,=t≤≤范围的学生有多少人?(2)若该校学生有640人,试估计劳动时间在23t≤≤范围的4名学生中有男生2名,女生2名,学校准备从中任意抽取2名交流劳动感(3)劳动时间在2.53受,求抽取的2名学生恰好是一名男生和一名女生的概率.19.(2022·德阳)据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n度,分别写出m,n的值.(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率.20.(2022·广元)为丰富学生课余活动,明德中学组建了A体育类、B美术类、C音乐类和D其它类四类学生活动社团,要求每人必须参加且只参加一类活动.学校随机抽取八年级(1)班全体学生进行调查,以了解学生参团情况.根据调查结果绘制了两幅不完整的统计图(如图所示).请结合统计图中的信息,解决下列问题:(1)八年级(1)班学生总人数是人,补全条形统计图,扇形统计图中区域C所对应的扇形的圆心角的度数为;(2)明德中学共有学生2500人,请估算该校参与体育类和美术类社团的学生总人数;(3)校园艺术节到了,学校将从符合条件的4名社团学生(男女各2名)中随机选择两名学生担任开幕式主持人,请用列表或画树状图的方法,求恰好选中1名男生和1名女生的概率.21.(2022·遂宁)北京冬奥会、冬残奥会的成功举办推动了我国冰雪运动的跨越式发展,激发了青少年对冰雪项目的浓厚兴趣.某校通过抽样调查的方法,对四个项目最感兴趣的人数进行了统计,含花样滑冰、短道速滑、自由式滑雪、单板滑雪四项(每人限选1项),制作了如下统计图(部分信息未给出).请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了______名学生;若该校共有2000名学生,估计爱好花样滑冰运动的学生有______人;(2)补全条形统计图;(3)把短道速滑记为A、花样滑冰记为B、自由式滑雪记为C、单板滑雪记为D,学校将从这四个运动项目中抽出两项来做重点推介,请用画树状图或列表的方法求出抽到项目中恰有一项为自由式滑雪C的概率.22.(2022·乐山)为落实中央“双减”精神,某校拟开设四门校本课程供学生选择:A.文学鉴赏,B.越味数学,C.川行历史,D.航模科技.为了解该校八年级1000名学生对四门校本课程的选择意向,张老师做了以下工作:①抽取40名学生作为调查对象;①整理数据并绘制统计图;①收集40名学生对四门课程的选择意向的相关数据:①结合统计图分析数据并得出结论.(1)请对张老师的工作步骤正确排序______.(2)以上步骤中抽取40名学生最合适的方式是______.A.随机抽取八年级三班的40名学生B.随机抽取八年级40名男生C.随机抽取八年级40名女生D.随机抽取八年级40名学生(3)如图是张老师绘制的40名学生所选课后服务类型的条形统计图,假设全年级每位学生都做出了选择,且只选择了一门课程.若学校规定每个班级不超过40人,请你根据图表信息,估计该校八年级至少应该开设几个趣味数学班.23.(2022·南充)为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:A.阅读数学名著;B.讲述数学故事;C.制作数学模型;D.挑战数学游戏要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图(如图),请根据图表信息解答下列问题:a_______________,b=_______________.(1)=(2)扇形统计图中“B”项目所对应的扇形圆心角为_______________度.(3)在月末的展示活动中,“C”项目中七(1)班有3人获得一等奖,七(2)班有2人获得一等奖,现从这5名学生中随机抽取2人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的2名学生来自不同班级的概率.24.(2022·眉山)北京冬奥组委会对志愿者开展培训活动,为了解某批次培训活动效果,随机抽取了20名志愿者的测试成绩.成绩如下:84 93 91 87 94 86 97 100 88 9492 91 82 89 87 92 98 92 93 88整理上面的数据,得到频数分布表和扇形统计图:请根据以上信息,解答下列问题:(1)C 等级的频数为________,B 所对应的扇形圆心角度数为________;(2)该批志愿者有1500名,若成绩不低于90分为优秀,请估计这批志愿者中成绩达到优秀等级的人数;(3)已知A 等级中有2名男志愿者,现从A 等级中随机抽取2名志愿者,试用列表或画树状图的方法求出恰好抽到一男一女的概率.25.(2022·达州)“防溺水”是校园安全教育工作的重点之一.某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x 表示,共分成四组:A .8085x <,B .8590x <,C .9095x <,D .95100x ),下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96.八年级10名学生的竞赛成绩在C 组中的数据是:92,92,94,94.七、八年级抽取的学生竞赛成绩统计表八年级抽取的学生竞赛成绩扇形统计图根据以上信息,解答下列问题:a__________,b=__________,m=__________;(1)上述图表中=(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);x)的学生人数(3)该校七、八年级共1200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(95是多少?26.(2022·凉山)为丰富校园文化生活,发展学生的兴趣与特长,促进学生全面发展.某中学团委组建了各种兴趣社团,为鼓励每个学生都参与到社团活动中,学生可以根据自己的爱好从美术、演讲、声乐、舞蹈、书法中选择其中1个社团.某班班主任对该班学生参加社团的情况进行调查统计,并绘制成如下两幅不完整的统计图.请根据统计图提供的信息完成下列各题:(1)该班的总人数为人,并补全条形图(注:在所补小矩形上方标出人数);(2)在该班团支部4人中,有1人参加美术社团,2人参加演讲社团,1人参加声乐社团如果该班班主任要从他们4人中任选2人作为学生会候选人,请利用树状图或列表法求选出的两人中恰好有1人参加美术社团、1人参加演讲社团的概率.。

第十一章 概率与统计

第十一章  概率与统计

第十一章 概率与统计两个计数原理1.分类计数原理: 。

分步计数原理: 。

2.王云同学有参考书若干本,其中有5本不同的外语书,4本不同的数学书,3本不同的物理书,他欲带参考书到图书馆阅读,若他从这些参考书中带一本去图书馆,有 种不同的方法;若带外语,数学,物理各一本,有 种不同的带法;若从这些参书中选2本不同学科的参考书带到图书馆,有种不同的带法。

3.设*,x y N ∈,且4x y +≤,则点(,)x y 共有 个.、4.设{1,2,3},{4,5}A B ==,从集合A 到集合B 共可建立不同的函数个数为 . 5.一种号码锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成 个四位数字号码。

6.11n mi ji j a b==⋅∑∑展开后共有 项.例1.(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生争夺数学、物理、化学竞赛的冠军(无并列),有多少种不同的结果? (3)某人要将4封不同的信投入3个不同信箱中,不同的投寄方法有多少种?(4)将3个不贩小球放入4个不同编号的盒子中(一个盒子只放一个小球),不同的放法有多少种?例2.在一次综艺节目的演出中,热心观众坐成四个方阵(如下图),现有4种不同颜色的T 恤衫,要求相邻方阵着不同颜色的T 恤,有多少种不同的着衣方法?例3.(1)用数字0,1,2,3,4可组成多少个不同的三位数?(2)甲、乙、丙3人互相传1只篮球,开始球在甲手中,经过5次传球后,球在甲手中,问共有多少种不同的传球方式?例4.(备选题)设整数4,(,)n P a b ≥是平面直角坐标系xOy 中的点,其中,{1,2,3,,}a b n ∈L ,a b >.(1)记n A 为满足3a b -=的点P 的个数,求n A ; (2)记n B 为满足1()3a b -是整数的点P 的个数,求n B .排列、组合的概念和运算1.排列的定义: ,叫做从n 个不同元素中取出m 个元素的一个排列.2.排列数的定义: ,叫做从n 个不同元素中取出m 个元素的排列数,用符号 表示.3.排列数公式:mn A = = ;m n A = = ;0!=4.组合的定义: ,叫做从n 个不同元素中取出n 个元素的一个组合.5.组合数的定义: ,叫做从n 个不同元素中取出m 个元素的给合数,用符号 表示.6.组合数公式:mn C = = = ;0n C = 7.组合数的两个性质:(1) (2)例1.(1)若17161554mn A =⨯⨯⨯⨯⨯L ,则n = ,m = .(2)若*n N ∈,则(55)(56)(57)(68)n n n n ----L 用排列数符号表示为(3)若33210n n A A =,则n =(4)若75589n nnA A A -=,则n = 例2.(1)若*x N ∈,求123231x x x x C A ---++的所有可能值.(2)求11224n nn n A A -++的值.例3.(1)化学:1!22!33!!n n +⋅+⋅++⋅L (2)化简:12312!3!4!!n n -++++L (3)化简:122nn n n C C nC +++L例4.(备选题)已知(2)p p ≥是给定的某个正整数,数列{}n a 满足:111,(1)()k k a k a p k p a +=+=-,其中1,2,3,,1k p =-L .(1)设4,p =求234,,a a a ; (2)求123p a a a a ++++L .二项式定理及通项公式的应用1.二项式定理:对于*n N ∈,()na b += ,二项式展开式的通项公式为 ,二项式展开式中第r 项的二项式系数为 ,要分清展开式中第一项的系数与该项的二项式系数.2.6(23)a b +的展开式的第3项是 ;6(32)b a +的展开式的第3项是 . 3.15(12)x -的展开式的第1r +项为 .4.37(2)x x +展开式的第4项的二项式系数是 ,第4项的系数是 .5.*n N ∈,式子01122(1)2(1)n n k k n k n n n n n C C C C ---++-++-L L = .例1.求10的展开式中,求:(1)第3项的二项式系数及系数;(2)含2x 的项及系数;(3)常数项、有理项.例2.(1)已知9a x ⎛- ⎝的展开式中3x 的系数为94,求常数a 的值 (2)求2521(2)x x++的展开式中2x 项 (3)求64(1)(1)x x -+展开式中3x 的系数例3.(1)求100.998的近似值(精确到0.01) (2)当n 为正奇数时,求112215555n n n n n n n C C C ---++++L 被7除所得的余数.(3)当*3,n n N ≥∈,求证:221nn >+例4.(备选题)是否存在等比数列{}n a ,使12121(1)2nn nnn na C a C a C --+++=L 对一切*n N ∈都成立?如存在,求出n a ;如不存在,请说明理由.二项式系数的性质及应用1.二项式系数的性质(1)对称性:在()na b +展开式中, 的两项的二项式系数相等.(2)增减性与最大值;当12n k +<时,二项式系数是逐渐 的,由对称性知它的后半部分是逐渐的,且在中间取得最大值,当n 是偶数时,中间的一项 取得最大值;当n 是奇数时,中间两项 相等,且同时取得最大值.(3)二项式系数的和:012nn n n n C C C C ++++L = ;022135n n n n n n C C C C C C +++=+++L L = .2.在()nx y +的展开式中,若第7项的系数最大,则n 等于 .3.若29323636012,(2),n n n n n C C x a a x a x a x ++=-=++++L 则011n a a a -+++L = ;12323n a a a na ++++L = .4.函数1010()(1cos )(1cos )(0)f x x x x π=++-≤≤的最大值为 .5.若1)nx的展开式中各项系数和为P ,所有二项式系数和为2,272,r n S P S C +=最大,则r .例1.(1)求7(2)x y +展开式中系数最大的项;(2)求7(2)x y -展开工中系数最大的项.例2.求12(13)x -的展开式中 (1)各项二项式系数之和; (2)奇数项二项式系数和; (3)各项系数和; (4)各项系数绝对值的和.例3.已知数列{}n a 的首项为1,011222111231()(1)(1)(1)(1)n n n n n n n n n n n n n n p x a C x a xC x a x C x a C x x a C x ----+=-+-+-++-+L .(1)若数列{}n a 是公比为2的等比数列,求(1)p -的值;(2)若数列{}n a 是公差为2的等差数列,求证:()p x 是关于x 的一次多项式.例4.(备选题)(1)当*k N ∈时,求证:(1(1k k ++-是正整数;(2)试证明大于2(1n +的最小整数能被12n +整除*()n N ∈ .排列、组合的应用题(1)1.特殊元素、特殊位置的“优先安排法” 2.正难则反:排除法(去杂法)3.相邻问题:捆绑法4.不相邻问题:插空法5.顺序一定问题:除法6.至多、至少问题:正面与反面的选择7.染色问题:“树型图法”、恰当的分类与准确的分步8.相同元素问题:隔板法例1.4男3女坐成一排,下列各小题分别有多少种排法?(1)某人必须在中间(2)某两人只能在两端(3)某人不在中间和两端(4)甲、乙两人必须相邻(5)甲、乙两人不相邻(5)甲、乙两人必须相隔1人(7)4男必须相邻(8)4男必须相邻,3女也必须相邻(9)3女不相邻(10)4男不相邻(11)4男不在两端(12)甲在乙左边(13)3男不等高,按高矮自左向右顺序排列例2.用0、1、2、3、4、5六个数字分别可以组成多少个符合下列条件的没有重复数字的自然数?(1)四位偶数(2)四位奇数(3)是25的倍数的六位数(4)比240135大的六位数(5)个位数字比十位数字小的五位数例3.某旅行社有导游9人,其中3人只会英语,2人只会日语,其余4人既会英语又会日语,现要从中选6人,其中3人做英语导游,另外3人做日语导游,则不同的选择方法有多少种?例4.(备选题)将4个编号1、2、3、4的小球放入4个编号为1、2、3、4的盒子中,(1)每盒子至多一球,有多少种放法?(2)恰好有一个空盒,有多少种放法?(3)每个盒子放一球,并且恰好有一球的编号与盒子的编号相同,有多少种放法?(4)把4个不同的小球换成4个相同的小球,恰有一个空盒子,有多少种放法?(5)把4个不同的小球换成20个相同的小球,要求每个盒子内的球数不少于它的编号数,有多少种放法?排列、组合的应用题(2)1.某天某班的课程表要排语文、数学、外语、物理、化学、体育六门课程,如果第一节不排体育,最后一节不排数学,一共有种不同的排法。

统计与概率问题

统计与概率问题

统计与概率问题统计与概率是数学中重要的分支,它涉及到数据收集、分析和解释的方法,以及在不确定性条件下对事件发生的可能性进行预测的能力。

本文将探讨几个与统计与概率相关的问题,并以解决这些问题的方法来阐述这一主题的重要性。

1. 抽样与调查抽样与调查是统计学中常用的数据收集方法。

抽样是从整体中选择一部分个体来进行研究,以便对整体进行推断。

调查则是通过问卷、面谈等方式,收集相关数据。

例如,为了研究人口的收入情况,可以进行一项全国范围的调查,或者采用随机抽样的方式选取一部分人口进行调查。

通过抽样与调查,可以得到对整体情况的估计结果。

2. 概率计算概率是描述事件发生可能性的数值,在统计与概率中扮演着核心角色。

概率的计算可以通过频率法和数学方法来进行。

频率法根据实验或观察的结果,统计事件发生的次数,计算事件发生的频率。

数学方法则通过分析事件的属性和相关的数学模型,预测事件发生的概率。

例如,掷硬币的问题中,我们可以通过实验得到正面朝上的频率,从而推断出正面朝上的概率。

3. 随机变量与概率分布随机变量是在概率问题中起到承载随机现象的作用的变量。

它可以是离散型的,例如掷骰子的点数;也可以是连续型的,例如人的身高。

概率分布则是描述随机变量的取值及取值的概率分布情况。

常见的概率分布包括二项分布、正态分布等。

通过对随机变量和概率分布的研究,可以对随机现象的发生规律进行建模和预测。

4. 统计推断统计推断是通过对样本数据的分析,对总体的性质和特征进行推断的过程。

根据样本数据的特点,使用概率模型和统计方法来估计总体参数和进行假设检验。

例如,我们可以通过对400只猫的体重进行测量,推断整个猫群体的平均体重,并通过假设检验判断这个推断是否具有统计显著性。

5. 相关性与回归分析相关性和回归分析是用来探究变量之间关系的统计方法。

相关性分析可以衡量两个变量之间的相关程度,包括正向相关和负向相关。

回归分析则是建立一个数学模型,通过自变量对因变量进行预测。

应用概率统计习题十一答案

应用概率统计习题十一答案

习题11答案11.1 一种物质吸附另一种物质的能力与温度有关.在不同温度下吸附的重量Y ,测得结果列于下表中.设对于给定x ,Y 为正态变量,方差与x 无关. C mg 试求吸附量Y 关于温度x 的一元回归方程.解: 其中9n =,由此得 3.36667x =,10.1222y =,2(1)8 1.637513.1xx x S n s =-=⨯=,2(1)814.3114.4yy y S n s =-=⨯=38.3867xy S =则 38.3867ˆ 2.930313.1xyxx S b S === ˆˆ0.2568ay bx =-= 故y 关于温度x 的一元回归方程为ˆ0.2568 2.9303yx =+ 11.2 合成纤维抽丝工段第一导丝盘的速度是影响丝的质量的重要参数,今发现它和电流的周波有密切关系,生产中测量数据如下表设对周波x ,速度Y 是正态变量,方差与x 无关,求速度Y 关于周波x 的一元回归方程,并对回归方程进行显著性检验,求出050.5x =处y 的预报值0ˆy和预报区间(0.05α=).解: (1)其中10n =,由此得49.61x =,16.86y =,20.221x s =,20.027y s =2(1)90.221 1.989xx x S n s =-=⨯=,1018364.921049.6116.860.674xy i ii S x y nx y ==-=-⨯⨯=∑ 则 0.674ˆ0.33891.989xyxx S b S ==≈ ˆˆ0.0471a y bx =-= 故y 关于x 的一元回归方程为ˆ0.04710.3389yx =+ (2)由于 1.989xx S =,ˆ0.3389b= 故22ˆ()(0.3389) 1.9890.2284xxS b S 回==⨯= 2(1)90.02710.244yy y S n s =-=⨯=22ˆ()0.244(0.3389) 1.9890.0156e yy xxQ S b S =-=-⨯= yy S 的自由度为9,e Q 的自由度为8故方差分析表为方差来源 平方和 自由度 均方 F 比 回 归 0.22839 1 0.22839 117.08 残差误差 0.01561 8 0.00195合 计 0.24400 9由于0.05α=,0.05117.08 5.32(1,8)F F =>=,故回归效果显著(3)预设值00.04710.338950.517.16345y =+⨯=(4)由于0.025(8) 2.306t =,49.61x =,050.549.610.89x x -=-=20.0156ˆ0.019528e Q n σ===-,ˆ0.044σ=故0()(50.5) 2.3060.12419x δδ==⨯= 所以预报区间为(17.16345-0.12419,17.6345+0.12419)即为(17.03926,17.28764)。

浙江专用2021届高考数学一轮复习专题十一概率与统计11.4抽样方法与总体分布的估计试题含解析

浙江专用2021届高考数学一轮复习专题十一概率与统计11.4抽样方法与总体分布的估计试题含解析

§11。

4 抽样方法与总体分布的估计基础篇固本夯基【基础集训】考点一随机抽样1.在简单随机抽样中,某一个个体被抽到的可能性()A。

与第几次有关,第一次可能性最大 B。

与第几次有关,第一次可能性最小C.与第几次无关,与抽取的第几个样本有关D.与第几次无关,每次可能性相等答案D2.某单位员工按年龄分为A,B,C三组,其人数之比为5∶4∶1,现用分层抽样的方法从总体中抽取一个容量为20的样本,已知C组中甲、乙二人均被抽到的概率是1,则该单位员工总数为45()A。

110B。

100 C.900D。

800答案B3.《中国诗词大会》的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示。

若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成绩,按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手"称号的人数为()A.2B.4C.5D。

6答案B4.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工人.答案10考点二用样本估计总体5.甲、乙两组数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数相同的是()A。

极差 B.方差C。

平均数 D.中位数答案C6。

为比较甲、乙两地某月11时的气温情况,随机选取该月5天11时的气温数据(单位:℃)制成如图所示的茎叶图,已知甲地该月5天11时的平均气温比乙地该月5天11时的平均气温高1 ℃,则甲地该月5天11时的气温数据的标准差为()甲乙9 82 6 892 m 03 1 1 A 。

2 B 。

√2 C 。

10 D 。

√10答案 B7.某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,且质量指标值大于或等于100的产品为优质产品。

(江苏版)备战高考数学模拟试卷分项 专题11 概率统计-人教版高三全册数学试题

(江苏版)备战高考数学模拟试卷分项 专题11 概率统计-人教版高三全册数学试题

第十一章 概率统计 1. 【南师附中2017届高三模拟二】从集合{}1,2,3,4,5,6,7,8,9中任取两个不同的数,则其中一个数恰是另一个数的3倍的概率为__________.【答案】112【解析】从集合{}1,2,3,4,5,6,7,8,9中任取两个不同的数,有98362n ⨯==种情形,其中一个是另一个的三倍的事件有()()()1,3,2,6,3,9,共3种情形,所以由古典概型的计算公式可得其概率是313612P ==,应填答案112。

2. 【南师附中2017届高三模拟二】射击运动员打靶,射5发,环数分别为9,10,8,10,8,则该数据的方差为__________.【答案】45【解析】因为910810895x ++++==,所以[]2140111155s =++++=,应填答案45。

3. 【南师附中2017届高三模拟一】从2,3,4中任取两个数,其中一个作为对数的底数,另一个作为对数的真数,则对数值大于1的概率是__________.【答案】124.【南师附中2017届高三模拟一】随机抽取年龄在[)[)[]10,20,20,30,......50,60年龄段的市民进行问卷调查,由此得到的样本的频数分布直方图如图所示,采用分层抽样的方法从不小于40岁的人中按年龄阶段随机抽取8人,则[]50,60年龄段应抽取人数为__________.【答案】2【解析】由题设提供的直方图可以看出年龄在[]40,60内的人数为()0.0150.005100.02(n n n +⨯=是样本容量),则0.028400n n =⇒=,故年龄在[]50,60内的人数为0.005100.052n n ⨯==,应填答案2。

5. 【某某中学2018届高三10月月考】记函数定义域为,在区间上随机取一个数,则的概率是_______. 【答案】点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动X 围.当考察对象为点,点的活动X 围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.6. 【某某中学2018届高三上学期开学考试】某校在市统测后,从高三年级的1000名学生中随机抽出100名学生的数学成绩作为样本进行分析,得到样本频率分布直方图,如图所示,则估计该校高三学生中数学成绩在之间的人数为__________.【答案】660【解析】由样本频率分布直方图,知:该校高三学生中数学成绩在之间的频率为:,∴估计该校高三学生中数学成绩在之间的人数为:.故答案为660.7. 【海安县2018届高三上学期第一次学业质量测试】已知一个边长为2的正方形及其外接圆.现随机地向圆内丢一粒豆子,则豆子落入正方形内的概率为_________.【答案】8.【海安县2018届高三上学期第一次学业质量测试】某校高一年级共有800名学生,根据他们参加某项体育测试的成绩只做了如图所示的频率分布直方图,则成绩不低于80分的学生人数为_________.【答案】240【解析】由题设中提供的频率分布直方图可以看出:不低于80分的学生人数为()0.020.0110800240m=+⨯⨯=,应填答案240。

(上海专用)2018版高考数学总复习专题11概率与统计分项练习.

(上海专用)2018版高考数学总复习专题11概率与统计分项练习.

第十一章 概率与统计一.基础题组1. 【2017高考上海,9】已知四个函数:①y x =-;②1y x=-;③3y x =;④12y x =.从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点” 的概率为 . 【答案】13【解析】考查函数图象交点的个数:y x =- 与1y x=- 有2个交点;y x =- 与3y x = 有1个交点;y x =- 与12y x = 有1个交点; 1y x=-与3y x = 有0个交点;1y x=-与12y x = 有0个交点;3y x =与12y x = 有2个交点;结合古典概型公式可得:所选两个函数的图像有且仅有一个公共点的概率为2163p == . 2.【2016高考上海理数】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是_________(米). 【答案】1.76 【解析】试题分析:将这6位同学的身高按照从低到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76. 【考点】中位数的概念【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力. 3.【2016高考上海理数】如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点j i A A ,,点P 满足0i j OP OA OA ++=,则点P 落在第一象限的概率是_____________.【答案】528【解析】试题分析:共有28C 28=种基本事件,其中使点P 落在第一象限的情况有23C 25+=种,故所求概率为528. 【考点】排列组合、古典概型、平面向量的线性运算【名师点睛】本题主要考查古典概型概率的计算.解答本题时,关键在于能够准确地确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好地考查考生的数学应用意识、基本运算求解能力、数形结合思想等.4.【2016高考上海文数】某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______. 【答案】16【考点】古典概型【名师点睛】本题主要考查古典概型概率的计算.解答本题时,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好地考查考生的数学应用意识、基本运算求解能力等.5. 【2015高考上海理数】赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1ξ和2ξ分别表示赌客在一局赌博中的赌金和奖金,则12ξξE -E = (元). 【答案】0.2【解析】赌金的分布列为所以11(12345)35E ξ=++++=奖金的分布列为所以223111.4(1234)2.8510510E ξ=⨯⨯+⨯+⨯+⨯=12ξξE -E =0.2【考点定位】数学期望【名师点睛】一般地,若离散型随机变量X 的分布列为:则称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,均值E (X )是一个实数,由x 的分布列唯一确定,即X 作为随机变量是可变的,而E (X )是不变的,它描述X 值的取值平均状态.6. 【2014上海,理10】为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示). 【答案】115【考点】古典概型.7. 【2014上海,理13】某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩游戏的得分.若()ξE =4.2,则小白得5分的概率至少为 .【答案】0.2【解析】设ξ=1,2,3,4,5的概率分别为12345,,,,P P P P P ,则由题意有123452345 4.2P P P P P ++++=,123451P P P P P ++++=,对于1234234P P P P +++,当4P 越大时,其值越大,又41P <,因此1234234P P P P +++4≤5(1)P -,所以554(1)5 4.2P P -+≥,解得50.2P ≥.【考点】随机变量的均值(数学期望),排序不等式.8. 【2014上海,文13】为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示). 【答案】115【解析】任意选择3天共有310120C =种方法,其中3天是连续3天的选法有8种,故所求概率为8112015P ==. 【考点】古典概型.9. 【2013上海,理8】盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是______(结果用最简分数表示). 【答案】1318【解析】9个数5个奇数,4个偶数,根据题意所求概率为1-2529C 13C 18=.10. 【2013上海,文6】某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为______. 【答案】78 【解析】平均成绩=40607580100100⋅+⋅=78. 11. 【2013上海,文11】盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是______(结果用最简分数表示).【答案】57【解析】考查排列组合;概率计算策略:正难则反。

2020高考数学解答题核心素养题型《专题11 概率与统计综合问题》+答题指导)(解析版)

2020高考数学解答题核心素养题型《专题11 概率与统计综合问题》+答题指导)(解析版)

专题11 概率与统计综合问题【题型解读】几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件、互斥事件常作为解答题的一问考查,也是进一步求分布列、期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】 (2018·天津卷)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16,现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ①用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望;②设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率. 【答案】见解析【解析】(1)由题意得,甲、乙、丙三个部门的员工人数之比为3∶2∶2.由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人、2人、2人. (2)①随机变量X 的所有可能取值为0,1,2,3. P (X =k )=C k 4C 3-k3C 37(k =0,1,2,3).所以随机变量X 的分布列为随机变量X 的数学期望E (X )=0×35+1×35+2×35+3×35=7.②设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A =B ∪C ,且B 与C 互斥. 由①知,P (B )=P (X =2),P (C )=P (X =1), 故P (A )=P (B ∪C )=P (X =2)+P (X =1)=67.所以事件A 发生的概率为67.【素养解读】本题考查分层抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式,考查分析问题和解决问题的能力,体现了数学运算和数据分析等核心素养.试题难度:中.【突破训练1】 (2017·天津卷)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【答案】见解析【解析】(1)随机变量X 的所有可能取值为0,1,2,3.P (X =0)=⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14=14,P (X =1)=12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×13×⎝⎛⎭⎪⎫1-14+⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×14=1124,P (X =2)=⎝⎛⎭⎪⎫1-12×13×14+12×⎝ ⎛⎭⎪⎫1-13×14+12×13×⎝ ⎛⎭⎪⎫1-14=14,P (X =3)=12×13×14=124.所以随机变量X 的分布列为所以E (X )=0×4+1×24+2×4+3×24=12.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P (Y =0)P (Z =1)+P (Y =1)P (Z =0) =14×1124+1124×14=1148. 所以这2辆车共遇到了1个红灯的概率为1148.▶▶题型二 离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,常有解答题的考查,属于中档题.复习中应强化应用类习题的理解与掌握,弄清随机变量的所有取值,它是正确求随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中应强化解答题的规范性训练.【例2】 (2018·北京卷)电影公司随机收集了电影的有关数据,经分类整理得到下表:假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk =1”表示第k 类电影得到人们喜欢,“ξk =0”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差Dξ1,Dξ2,Dξ3,Dξ4,Dξ5,Dξ6的大小关系.【答案】见解析【解析】 (1)设“从电影公司收集的电影中随机选取1部,这部电影是获得好评的第四类电影”为事件A . 因为第四类电影中获得好评的电影有200×0.25=50(部), 所以P (A )=50140+50+300+200+800+510=502 000=0.025.(2)设“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”为事件B ,则P (B )=0.25×(1-0.2)+(1-0.25)×0.2=0.35.(3)由题意可知,定义随机变量如下:ξk =⎩⎪⎨⎪⎧0,第k 类电影没有得到人们喜欢,1,第k 类电影得到人们喜欢,则ξk 显然服从两点分布,故Dξ1=0.4×(1-0.4)=0.24,Dξ2=0.2×(1-0.2)=0.16, Dξ3=0.15×(1-0.15)=0.127 5,Dξ4=0.25×(1-0.25)=0.187 5, Dξ5=0.2×(1-0.2)=0.16, Dξ6=0.1×(1-0.1)=0.09.综上所述,Dξ1>Dξ4>Dξ2=Dξ5>Dξ3>Dξ6.【素养解读】本题考查统计中的概率计算、随机变量的方差计算,考查运算求解能力,体现了数据分析、数学运算等核心素养.试题难度:中.【突破训练2】 (2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列.(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值? 【答案】见解析【解析】(1)由题意知,X 所有可能取值为200,300,500, 由表格数据知P (X =200)=2+1690=0.2,P (X =300)=3690=0.4, P (X =500)=25+7+490=0.4, 因此X 的分布列为当300≤n ≤500时,若最高气温不低于25,Y =6n -4n =2n ; 若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1 200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n,因此E(Y)=2n×0.4+(1 200-2n)×0.4+(800-2n)×0.2=640-0.4n.当200≤n<300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此E(Y)=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.所以当n=300时,Y的数学期望达到最大值,最大值为520元.▶▶题型三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】(2017·全国卷Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下.(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率;(2)填写下面的列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;附:K 2=(a +b)(c +d)(a +c)(b +d).【答案】见解析【解析】(1)记B 表示事件“旧养殖法的箱产量低于50 kg”,C 表示事件“新养殖法的箱产量不低于50 kg”. 由题意知P (A )=P (BC )=P (B )P (C ). 旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62, 故P (B )的估计值为0.62.新养殖法的箱产量不低于50 kg 的频率为 (0.068+0.046+0.010+0.008)×5=0.66, 故P (C )的估计值为0.66.因此,事件A 的概率估计值为0.62×0.66=0.409 2. (2)根据箱产量的频率分布直方图得如下列联表.K 2=100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg 的直方图面积为(0.004+0.020+0.044)×5=0.34<0.5,箱产量低于55 kg 的直方图面积为(0.004+0.020+0.044+0.068)×5=0.68>0.5, 故新养殖法箱产量的中位数的估计值为 50+0.5-0.340.068≈52.35(kg).【素养解读】本题考查频率分布直方图、独立性检验、中位数、相互独立事件的概率,考查学生的阅读理解能力、数据处理能力.主要体现了数据分析,数学运算等核心素养.【突破训练3】 (2017·北京卷)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望E (ξ);(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小(只需写出结论). 【答案】见解析【解析】(1)由题图知,在服药的50名患者中,指标y 的值小于60的有15人. 所以从服药的50名患者中随机选出一人,此人指标y 的值小于60的概率为1550=0.3.(2)由题图知,A ,B ,C ,D 四人中,指标x 的值大于1.7的有2人:A 和C . 所以ξ的所有可能取值为0,1,2.P (ξ=0)=C 22C 24=16,P (ξ=1)=C 12C 12C 24=23,P (ξ=2)=C 22C 24=16.所以ξ的分布列为故ξ的期望E (ξ)=0×6+1×3+2×6=1.(3)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据方差. 题型四 统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差等)的考查,解答题中也有所考查.【例4】 (2018·全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^=-30.4+13.5t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t . (1)分析利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?请说明理由. 【答案】见解析【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y ^=-30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施资源额的预测值为y ^=99+17.5×9=256.5(亿元). (2)利用模型②得到的预测值更可靠.理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =-30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势,2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y ^=99+17.5t 可以较好地描述2010年的数据建立基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. (以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.)【素养解读】本题以统计图为背景,考查线性回归方程,考查运算求解能力和数形结合思想,体现了数学运算的核心素养.【突破训练4】 下图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2019年我国生活垃圾无害化处理量. 附注:参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17(y i -y)2=0.55,7≈2.646.参考公式:相关系数r =∑i =1n(t i -t)(y i -y )∑i =1n(t i -t )2∑i =1n(y i -y)2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为b ^=∑i =1n(t i -t)(y i -y )∑i =1n(t i -t )2,a ^=y -b ^t .【答案】见解析【解析】(1)由折线图中数据和附注中参考数据得t =4,∑i =17(t i -t )2=28,∑i =17(y i -y -)2=0.55,∑i =17(t i -t -)(y i -y -)=∑i =17t i y i -t -∑i =17y i =40.17-4×9.32=2.89,r ≈2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y -=9.327≈1.331及(1)得b ^=∑i =17(t i -t -)(y i -y -)∑i =17(t i -t -)2=2.8928≈0.103,a ^=y --b ^t -=1.331-0.103×4≈0.92.所以y 关于t 的回归方程为y ^=0.92+0.10t .将2019年对应的t =9代入回归方程,得y ^=0.92+0.10×9=1.82.所以预测2019年我国生活垃圾无害化处理量约为1.82亿吨.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年江苏省各地中考数学模拟优质试题分项版解析汇编专题11:统计概率问题一、选择题1.【昆山市一模】某课外兴趣小组为了解所在地区的老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样较合理的是()A、在公园调查了1000名老年人的健康状况B、在医院调查了1000名老年人的健康状况C、调查了100名小区内老年邻居的健康状况D、禾U用派出所的户籍网随机调查了该地区10%的老年人的健康状况2.【昆山市二模】有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛•某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()A、平均数B、中位数C、众数D、方差3.【泰兴市二模】下列说法不正确的是()A、了解全市中学生对泰州三个名城”含义的知晓度的情况,适合用抽样调查B、若甲组数据方差S甲=0.39,乙组数据方差S乙=0.27,则乙组数据比甲组数据稳定1C、某种彩票中奖的概率是,买100张该种彩票一定会中奖100D、数据一1、1.5、2、2、4的中位数是2 •4.【高邮市二模】校篮球队所买10双运动鞋的尺码统计如表:则这双运动鞋尺码的众数和中位数分别为()A、4cm, 26cmB、4cm, 26.5cmC、26.5cm, 26.5cmD、26.5cm, 26cm5.【扬州市宝应县一模】五箱苹果的质量分别为(单位:千克):18, 20 , 21, 22, 19.则这五箱苹果质量的平均数和中位数分别为()A、19 和20B、20 和19C、20 和20D、20 和216.【扬州市江都市一模】有一组数据:3, 4, 5, 6, 6,则下列四个结论中正确的是()A 、 这组数据的平均数、众数、中位数分别是 4.8 , 6, 6B 、 这組数据的平均数、众数、中位数分别是 5, 5, 5C 、 这组数据的平均数、众数、中位数分别是 4.8 , 6, 5D 、 这组数据的平均数、众数、中位数分别是 5, 6, 67.【南京市建邺区二模】为调查某班学生每天使用零花钱的情况,张华随机调查了 20名同学,结果如下表:则这20名同学每天使用的零花钱的众数和中位数分别是()A 、3, 3B 、3, 3.5C 、3.5,3.5D 、3.5,3C 、2B 、 一个不透明的袋中装有 8个红球,从中摸出一个球是红球 ”是随机事件C 、 为了了解我市今年夏季家电市场中空调的质量,不宜采用普查的调查方式进行D 、销售某种品牌的凉鞋,销售商最感兴趣的是该品牌凉鞋的尺码的平均数 11.【仪征市一模】 为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭周垃圾袋的使用量,结果如下: 乙9,11,8,7,14,10,8,9,7 (单位:个),关于 这组数据下列结论正确的是()A .极差是6B .众数是7C .中位数是8D .平均数是1012. 【宿迁市泗阳县】2月份,泗阳某周的日最高气温统计如下(单位:C ): 2、4、5、3、4、6、乙则这七天中日最高气温的众数和中位数分别是()A . 4C ,4CB . 5C ,4CC . 4 C ,3CD .4 C ,4.5 C 13. 【盐城市大丰市一模】 某市3月下旬抽样六天的最高气温如下(单位C ): 18,19, 20,21,19, 23,对这组数据下列说法错误的是()8.【苏州市一模】 一组数据1,3,2,0,3,0,2的中位数是(9.【徐州市一模】 一组数据—1,2,3, —1,0的中位数和众数分别是(10. 2,— 1B . 0,— 1C . 1.5,0D 、一 1,【徐州市二模】 F 列说法正确的是(打开电视机, 它正在播广告”是必然事件A、平均数是20B、众数是19C、中位数是21D、都不正确14.【南京市高淳区二模】在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的中位数和众数分别是()分数50 60 70 80 90 100人数 1 2 8 13 14 4A、70, 80B、70, 90C、80,90D、90,10015.【泰州市姜堰区一模】如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况•则这些车的车速的众数、中位数分别是()A、8, 6B、8, 5C、52, 53D、52, 5216.【泰州市姜堰区一模】跳远训练时,甲、乙两同学在相同条件下各跳10次,统计得,他们的平均成绩相同,甲的方差为0.3m2,乙方差为0.4m2,那么成绩较为稳定的是(填甲”或乙”.17.【铜山县】甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙T平均数(环〉g. 2乩29.2虫2方差(环0.0350,0150.0250, 027则这四人中成绩发挥最稳定的是()18.【泰兴市二模】已知m为一9,—6, - 5, - 3,—2, 2, 3, 5, 6, 9中随机取的一个数,则m4> 100的概率为()1 3 1 3A、B、C、D、—5 10 2 5B .乙C .丙D •丁19.【无锡市崇安区一模】抛一枚均匀硬币,落地后正面朝上”这一事件是()A、必然事件B、随机事件C、确定事件D、不可能事件20.【江阴市青阳片一模】下列事件是确定事件的是()A、阴天一定会下雨B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C、打开电视机,任选一个频道,屏幕上正在播放新闻联播D、在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书1 1 21.【苏州市吴江区一模】在平面直角坐标系中,一次函数y=x的图象、反比例函数y图x 象以及二次函数y=x2- 6x的对称轴围成一个封闭的平面区域(含边界),从该区域内所有格点(横、纵坐标均为整数的点称为格点)中任取3个,贝U该3点恰能作为一个三角形的三个顶点的概率是()1A.-2O O二、填空题1.【南京市建邺区一模】一组数据4、5、6、7、8的方差为$2,另一组数据3、5、6、7、9的方差为S22,那么S/ _______________ S22(填'”、“=或/”).2.【江阴市青阳片一模】数据5, 6, 7, 4, 3的方差是_________________________ .3.【南京市高淳区一模】某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3: 3: 4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分, 90分和85分,则他本学期数学学期综合成绩是 _____________ 分.4.【南京市鼓楼区一模】某同学6次引体向上的测试成绩(单位:个)分别为16、18、20、17、16、18,这组数据的中位数是________________ .5.【苏州市一模】某校在九年级的一次模拟考试中,随机抽取50名学生的数学成绩进行分析,其中有10名学生的成绩达110分以上,据此估计该校九年级650名学生中这次模拟考试数学成绩达110分以上的约有名学生.6.【徐州市二模】小明从市环境监测网随机查阅了若干天的空气质量数据作为样本进行统计,分别绘制了如图的条形统计图和扇形统计图,根据图中提供的信息,可知扇形统计图中表示空气质量为优的扇形的圆心角的度数为_______________量类别7.【常州市武进区一模】 __________________________________________ 已知一组数据为1, 2, 1 , 2, 4, 2,则这组数据的众数是 ____________________________________ 方差是 _______ .甲、乙两个旅行团的游客人数相同,且每个团游客的平均年龄都是32岁,导游小白更喜欢带游客年龄相近的甲团队,则这两个团队游客年龄的方差: S2甲S 乙.(填 '”、z”或“=”9.【苏州市吴江区一模】 班30位女生所穿鞋子的尺码•数据如下(单位:码)码号 33 34 35 36 37 人数761511记众数为 a ,中位数为 b ,贝U a+b= ___________________10. 【南京市浦口区一模】 某校九年级(1 )班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是 _____________ 岁.11. 【昆山市一模】 在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只1有3个红球,且一次摸出一个球是红球的概率为-,那么袋中的球共有个.312. 【昆山市二模】 一个不透明盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球 2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率 是 _____________________ .13. 【盐城市滨海县一模】 在一个不透明的袋中装有除颜色外其余均相同的 n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,把它放回袋中,搅匀后,再摸出一球, …通过多次试验后,发现摸到黑球的频率稳定于0.5,则n 的值大约是 __________ .14. 【高邮市二模】小军家的玩具店进了一箱除颜色外都相同的塑料球共1000个,小军将箱中的球搅匀后,随机摸出一个球记下颜色,放回箱中;搅匀后再随机摸出一个球记下颜色,誤天数(天)181 1—…-3 ... ---- »优艮轻污染空汽质8.【宿迁市泗阳县一模】放回箱中;…多次重复上述实验后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是______________ 个.15.【扬州市宝应县一模】甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6, 7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张•若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游•(填公平”或不公平”)学校安排三辆车,组织九年级学生团员去敬老院慰问老人,其中 小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为17.【南京市高淳区一模】 同时抛掷两枚材质均匀的硬币, 则正面都向上的概率为 18.【苏州市一模】 在3 >3的方格中,A 、B 、C 、D 、E 、F 分别位于如图所示的小正方形的顶点上,从C 、D 、E 、F 四点中任意取一点,以所取得一点及点16.【扬州市江都市一模】A 、B 为顶点画三角形,则2个红球和3个白球,搅匀后从中任意摸出 三、解答题1个球,摸出的球是红球的概率是 1.【昆山市一模】 2014年5月12日,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农民工收入持续快速增长•某地区农民工人均月收入增长率如图 1,并将人均月收入绘制成如下图的不完整的条形统计图.农民工人月收入墳枫牽统计图农民工人均月收入统计图年份(1) 2013年农民工人均月收入的增长率是多少?(2) 2011年农民工人均月收入是多少? 所画三角形为等腰三角形的概率是C,装有除颜色外都相同的(3)小明看了统计图后说: 农民工2012年的人均月收入比 2011年的少了. ”你认为小明的说法正确吗?请说明理由.2. 【昆山市二模】 某校为了调查学生书写汉字的能力, 从八年级800名学生中随机抽选了 50 名学生参加测试,这 50名学生同时听写50个常用汉字,若每正确听写出一个汉字得 1分, 根据测试成绩绘制出不完整的频数分布表和频数分布直方图如图表:频数分布養亠请结合图表完成下列各题:(1) 求表中a 的值;(2) 请把频数分布直方图补充完整;(3) 若测试成绩不低于 40分为优秀,请你估计该校八年级汉字书写优秀的人数? (4)第一组中的A 、B 、C 、D 四名同学为提高汉字书写能力,分成两组,每组两人进行对抗练习,请用列表法或画树状图的方法,求A 与B 名同学能分在同一组的概率.3.【泰兴市二模】校园手机”现象越来越受到社会的关注•小丽在 统计实习”活动中随机调 查了学校若干名学生家长对 中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:频数分布直方图组别*成绩X 分4频数(人 数)4第1组口4卩第2组心 3W#第3组心35C40+16第4组口 40<K <4^*第5组3 45<K <50-1“25 30 35 40 45 50 测试成绩家长--中学生帚手机到学校态度統计表非堂壁睡玄箜成无所谓不赞成选项(1)求这次调查的家长总数及家长表示无所谓”的人数,并补全图①;(2)求图②中表示家长无所谓”的圆心角的度数;(3)从这次接受调查的家长中,随机抽查一个,恰好是不赞成”态度的家长的概率是多少.4.【南京市鼓楼区二模】某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总数排列名次,在规定时间内每人踢100个以上(含100个)为优秀,下表是成绩最好的甲、乙两班各5名学生的比赛数据•(单位:个)1号2号3号4号5号总数甲班89 100 96 118 97 500乙班100 96 110 90 104 500统计发现两班总数相等,此时有人建议,可以通过考查数据中的其他信息来评判. 试从两班比赛数据的中位数、方差、优秀率三个方面考虑,你认为应该选定哪一个班为冠军?5.【无锡市崇安区一模】如图所示,A、B两个旅游点从2011年至2015年清明小长假”期间的旅游人数变化情况分别用实线和虚线表示,请解答以下问题:(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求A、B两个旅游点从2011年到2015年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人.A旅游点决定提高门票价格来控制游客数量•已知游客数量y (万人)与门票价格x (元)之间满足函数关系y=5•若要使A旅游点的游客人数不超过1004万人,则门票价格至少应提高多少元?(1 )你认为大米手机5月份的销售量必定是三个品牌手机中最高的吗?通过计算说明你的理由. (2)若各品牌手机2015年4月的销售量如下:求该卖场5月份三个品牌手机销售量的平均增长率.7.【江阴市青阳片一模】国家规定中小学生每天在校体育活动时间不低于1小时”为此,某市就你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t v 0.5h; B 组:0.5h Wv 1h; C 组:1h Wv 1.5h; D 组:t> 1.5(1)C组的人数是,并补全直方图;(2 )本次调查数据的中位数落在组____________ 内;(3)若该辖区约有24000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?8.【盐城市滨海县一模】你今天光盘了吗?”这是国家倡导厉行节约,反对浪费以来的时尚流行语,某校团委随机抽取部分了学生,对他们是否了解关于光盘行动”的情况进行调查, 调查结果有三种:A、了解很多;B、了解一点;C、不了解•团委根据调查的数据进行整理,绘制了尚不完整的统计图如下,图1中C区域的圆心角为36°请根据统计图中的相关的信息,解答下列问题:(1)求本次活动共调查了多少名学生?(2)请补全图2,并求出图1中,B区域的圆心角度数;(3)若该校有2400名学生,请估算该校不是了解很多的学生人数.9.【高邮市二模】学校为统筹安排大课间体育活动,在各班随机选取了一部分学生,分成四类活动:篮球” 羽毛球”、乒乓球”、其他”进行调查,整理收集到的数据,绘制成如下的两幅统计图.人(3)该校共有1100名学生,请估计喜欢 篮球”的学生人数.图2・各类箔动人数所占百分比统计图吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康、有消息称,我国准备从 2011年元月一日起在公众场所实行禁烟”为配合 禁烟”行动,某校组你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结 果整理后制成了如下统计图:磯制警示音代品药物戒: 戒烟戒烟戒ig 戒烟式根据统计图解答:(1) 同学们一共随机调查了多少人? (2) 请你把统计图补充完整; (3)如果在该社区随机咨询一位市民,那么该市民支持强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持警示戒烟”这种方式?11.【扬州市江都市一模】 某校九年级(1 )班所有学生参加 2010年初中毕业生升学体育测 试,根据测试评分标准,将他们的成绩进行统计后分为A 、B 、C 、D 四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1 )学校采用的调查方式是 ;学校在各班随机选取了 _______ 名学生; (2)补全统计图中的数据:羽毛球人、乒乓球人、其他人、其他织同学们在某社区开展了 A AS 60 30图1*各类君动人敎编计罔10.【扬州市宝应县一篮球站% 其他丄%/ 、羽毛球21号 乓球1S%\ /彗代品120(3)在扇形统计图中,等级___________ B部分所占的百分比是,等级C对应的圆心角的度数为;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有人.12.【南京市高淳区一模】为了倡导节约用水,从我做起”,某市政府决定对市直机关500户家庭的用水情况作一次调查.市政府调查小组随机抽查了其中的100户家庭去年一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)写出这100个样本数据的众数和中位数;(3)试估计该市直机关500户家庭中月平均用水量不超过12吨的约有多少户?13.【南京市高淳区一模】低碳环保,你我同行”,两年来,南京市区的公共自行车给市民出行带来切实方便,电视台记者在某区街头随机选取了市民进行调查,调查的问题是您大概多九使用一次公共自行车?”,将本次调查结果归为四种情况: A •每天都用;B •经常使用;C.偶尔使用;D •从未使用•将这次调查情况整理并绘制如下两幅统计图:根据图中的信息,解答下列问题:(1) _______________________ 本次活动共有位市民参与调查;(2)补全条形统计图;(3)根据统计结果,若该区有46万市民,请估算每天都用公共自行车的市民约有多少人?14.【南京市建邺区二模】据报道,历经一百天的调查研究,南京PM2.5源解析已经通过专家论证•各种调查显示,机动车成为PM2.5的最大来源,一辆车每行驶20千米平均向大气里排放0.035千克污染物.校环保志愿小分队从环保局了解到南京100天的空气质量等级情况,并制成统计图和表:2014年南京市100天空气质量等级天数统计表空气质量等级优良轻度污染中度污染重度污染严重污染天数(天) 10 a 12 8 25 b(1)________________ 表中a= _____ , b= ,图中严重污染部分对应的圆心角__________ n= __________ °(2)请你根据“2014年南京市100天空气质量等级天数统计表”计算100天内重度污染和严重污染出现的频率共是多少?(3 )小明是社区环保志愿者,他和同学们调查了机动车每天的行驶路程,了解到每辆车每天平均出行25千米.已知南京市2014年机动车保有量已突破200万辆,请你通过计算,估计2014年南京市一天中出行的机动车至少要向大气里排放多少千克污染物?2014年南京市100天空气质全等级天数统计图15【徐州市一模】某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了50扇形图名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图, 其中科普类册数占这50名学生借阅总册数的40% .类别科普类教辅类文艺类其他册数(本) 168 105 m 32(1)__________________________________ 表格中字母m的值等于;(2)____________________________________________________________ 扇形统计图中教辅类”所对应的圆心角a的度数为________________________________________ °(3)该校2014年八年级有600名学生,请你估计该年级学生共借阅教辅类书籍约多少本?样本情况的扇形统计图16.【徐州市二模】八(2)班组织了一次经典朗读比赛,甲、乙两队各甲7 8 9 7 10 10 9 10 10 10 乙10 8 7 9 8 10 10 9 10 9(1)甲队成绩的中位数是________ 分,乙队成绩的众数是________ 分;(2 )计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是________________1.4分2,则成绩较为整齐的是队.17.【仪征市一模】房山某中学改革学生的学习模式,变老师要学生学习”为学生自主学习培养了学生自主学习的能力. 小华与小明同学就最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下的两个统计图. 请根据下面两个不完整的统计图回答以下问题:(1 )这次抽样调查中,共调查了 ______________ 名学生;(2)补全两幅统计图;10人的比赛成绩如(3)根据抽样调查的结果,估算该校1000名学生中大约有多少人选择小组合作学习”?18.【常州市武进区一模】某校举行汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确字数x 人数A 0$v 8 10B 8 $v 16 15C 16 $v 24 25D 24 $V 32 mE 32 $V 40 n根据以上信息解决下列问题:(1)在统计表中,m- ,n-,并补全条形统计图(2)_____________________________________________ 扇形统计图中C组”所对应的圆心角的度数是____________________________________________ •(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学19.【宿迁市泗阳县】为了迎接2015宿迁市市长杯”阳光体育联赛,丰富学生的课外活动,車生羊二丰式人訂珅计孚曾團孚主字习巧式人覲爲花筑计團我县某校团委对部分学生进行了一次问卷调查你最喜欢的体育活动是什么?”(每人限选项).根据收集到的数据,绘制如图统计图(不完整):请根据图中提供的信息,完成下列问题:图②(1)在这次问卷调查中,一共抽查了_________ 名学生;(2)请将条形统计图补充完整;(3)若全校有I860名学生,则全校学生中,最喜欢球类”活动学生约有多少人?20.【江阴市要塞片二模】某市2012年国民经济和社会发展统计公报显示,2012年该市新开工的住房有商品房、廉租房、经济适用房和公共租赁房四种类型. 老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全图 1 ;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一•由于购买人数超过房子套数,购买者必须通过电脑摇号产生•如果对2012年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果计划2014年新开工廉租房建设的套数要达到720套,那么2013〜2014这两年新开工廉租房的套数的年平均增长率是多少?21.【盐城市大丰市】去年以来,我国中东部地区持续出现雾霾天气. 我市某记者为了了解霾天气的主要成因”,随机调查了部分市民,并对调查结果进行整理,绘制了如下尚不完整 的统计表:请根据图表中提供的信息解答下列问题:(1) 填空:m= ___ , n= _____ ,扇形统计图中 E 组所占百分比为 _____________ ; (2) 若该市人口约有 75万人,请你估计其中持 D 组 观点”的市民人数; (3) 若在这次接受调查的市民中,随机抽查一人,则此人持C 组 观点”的概率是多少?22. 【南京市高淳区二模】 某校举行全体学生 汉字听写”比赛,每位学生听写汉字 39个. 机抽取了部分学生的听写结果,绘制成如下的图表.4500 斗000Hi3000 2500 2000 1500 100050037751500商品房簾瑕房经济 适用房珥第房住房酒 公共矩 當房 24%^3cnW组别 观点频数 A 大气气压低,空气不流动120B 地面灰尘多,空气湿度底C 汽车尾气排抜D 工厂造成的污染180 E其它90调查结果扇形统计團组别正确字数龙人数30'人数各组别人数分布比例QWg10-—1— _ AB8^x<16152015C16^x<242510]Q V v D24=^x<32m-匕n A B C(1)统计表中的m= , n= ,并补全条形统计图;(2)扇形统计图中C组”所对应的圆心角的度数是;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.23.【泰州市姜堰区一模】某校九年级所有学生参加2015年初中毕业生升学体育测试,为了解情况,从中抽取了部分学生的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)计算一共抽取了多少名学生的测试成绩并将条形统计图补充完整;(2 )在扇形统计图中,等级C对应的圆心角的度数为多少度?(3 )若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有多少人?24.【铜山县】为了解某校初三学生英语口语检测成绩等级的分布情况,随机抽取了该校若干名学生的英语口语检测成绩,按A, B, C, D四个等级进行统计分析,并绘制可如下尚不完整的统计图;请根据以上统计图提供的信息,解答下列问题:(1)______________________ 本次抽取的学生有名;(2)补全条形统计图;(3)__________________________________________ 在抽取的学生中C级人数所占的百分比是_________________________________________________ ;(4)根据抽样调查结果,请你估计某校860名初三学生英语口语检测成绩等级为A级的人25.【苏州市吴江区一模】苏州某中学为了迎接第53届世乒赛,在九年级举行了乒乓球知识竞赛”从全年级600名学生的成绩中随机抽选了100名学生的成绩,根据测试成绩绘制成以下不完整的频数分布表和频数分布直方图:请结合图表完成下列各题:(1)求表中a的值:(2 )请把频数分布直方图补充完整九年级有多少位同学可以获得乒宝”?26.【南京市浦口区一模】国家环保局统一规定,空气质量分为5级•当空气污染指数达0—50时为1级,质量为优;51 - 100时为2级,质量为良;101 —200时为3级,轻度污染;201 - 300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图. 请根据图中信息,解答组别*成绩X分2频数(人数八第1纵50=ex<60-第2紹GOWicVFO匸第3组*70^y<80<第4纵80^x00-32^第5组*90<x<100*頻数分布亶方图频数(人数)1 1 I || I •32 ................... •…24(3)若测试成绩不低于90分的同学可以获得第53届世乒赛吉祥物乒宝”,请你估计该校数.频率分布表:。

相关文档
最新文档