辽宁省鞍山市2020-2021学年八年级上学期期末考试数学试题
人教版 2020-2021学年第一学期八年级数学上册期末模拟测试题(含答案)

2020-2021学年第一学期八年级数学上册期末模拟测试题一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( )A .1B .2C .3D .52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( ) A .13 B .8 C .25 D .643.如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则此“QQ ”笑脸右眼B 的坐标是( )A .(0,3)B .(0,1)C .(-1,2)D .(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( )A .a =4,b =0B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( ) A .该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分7.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP =20°,∠ACP=50°,则∠A+∠P的度数是( )A.70°B.80°C.90°D.100°8.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③不等式kx+b<x+a的解集为x<3中,正确的个数是( )A.0 B.1 C.2 D.39.下列说法:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c(a>b=c),那么a2∶b2∶c2=2∶1∶1,其中正确的是( )A.①②B.①③C.①④D.②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( )A.y=4n-4 B.y=4n C.y=4n+4 D.y=n2二、填空题(每小题3分,共18分)11.16的平方根是____;-125的立方根是____.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为____.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为____.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是____.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为____m .16.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2;(3)23(375-12-27); (4)(3+2-1)(3-2+1).18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题:(1)请分别计算甲、乙、丙的得票数;(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.22.在△ABC中,∠BAC=∠BCA,CD平分∠ACB,CE⊥AB,交AB的延长线于点E,∠BCE=48°,求∠CDE的度数.23.如图,在数轴上与3,5对应的点分别是A,B,点C也在数轴上,且AB=AC,设点C表示的数为x.(1)求x的值;(2)计算|x-3|+6x+5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案?25.如图,一次函数y=-34x+3的图象与x轴和y轴分别交于点A和点B,将△AOB沿直线CD对折,使点A和点B重合,直线CD与x轴交于点C,与直线AB交于点D.(1)求A,B两点的坐标;(2)求OC的长;(3)设P是x轴上一动点,若使△PAB是等腰三角形,写出点P的坐标.参考答案一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( C )A.1 B.2 C.3 D.52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( B )A.13 B.8 C.25 D.643.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则此“QQ”笑脸右眼B的坐标是( A)A.(0,3) B.(0,1) C.(-1,2) D.(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( C )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( A ) A .a =4,b =0 B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( D )A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分7.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP =20°,∠ACP =50°,则∠A +∠P 的度数是( C )A .70°B .80°C .90°D .100°8.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③不等式kx +b <x +a 的解集为x <3中,正确的个数是( B )A .0B .1C .2D .39.下列说法:①如果a ,b ,c 为一组勾股数,那么4a ,4b ,4c 仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a ,b ,c(a >b =c),那么a 2∶b 2∶c 2=2∶1∶1,其中正确的是( C )A .①②B .①③C .①④D .②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y 为第n 层(n 为正整数)圆点的个数,则下列函数关系中正确的是( B )A .y =4n -4B .y =4nC .y =4n +4D .y =n 2二、填空题(每小题3分,共18分)11.16的平方根是__±2__;-125的立方根是__-5__.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为__-1__.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为__152__.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是__2.5__.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为__480__m .17.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2; 解:- 2. 解:95.(3)23(375-12-27); (4)(3+2-1)(3-2+1). 解:60. 解:2 2.18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.解:⎩⎨⎧x =2,y =-1. 解:⎩⎨⎧x =9,y =6. 解:⎩⎨⎧x =1,y =1.解:⎩⎨⎧x =1,y =-2,z =-1.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;解:因为点P (a -1,-b +2)关于x 轴的对称点为M ,所以M (a -1,b -2),因为点P (a -1,-b +2)关于y 轴的对称点为N ,所以N (-a +1,-b +2),因为点M 与点N 的坐标相等,所以a -1=-a +1,b -2=-b +2,解得a =1,b =2.(2)猜想点P 的位置并说明理由.解:点P 的位置是原点.理由:因为a =1,b =2,所以点P (a -1,-b +2)的坐标为(0,0),即P 点为原点.20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.解:由题意,易知AD ∥BC ,所以∠2=∠3.因为△BC′D 与△BCD 关于直线BD 对称,所以∠1=∠2.所以∠1=∠3.所以EB =ED.设EB =x ,则ED =x ,AE =AD -ED =8-x.在Rt △ABE 中,AB 2+AE 2=BE 2,所以42+(8-x )2=x 2.所以x =5.所以DE =5.所以S △BED =12DE·AB =12×5×4=10.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题: (1)请分别计算甲、乙、丙的得票数;解:甲的票数是200×34%=68(票),乙的票数是200×30%=60(票),丙的票数是200×28%=56(票).(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.解:甲的平均成绩:68×2+92×5+85×32+5+3=85.1(分),乙的平均成绩:60×2+90×5+95×32+5+3=85.5(分),丙的平均成绩:56×2+95×5+80×32+5+3=82.7(分),因为乙的平均成绩最高,所以应该推荐乙.22.在△ABC 中,∠BAC =∠BCA ,CD 平分∠ACB ,CE ⊥AB ,交AB 的延长线于点E ,∠BCE =48°,求∠CDE 的度数.解:∵CE ⊥AB ,∴∠E =90°.在△BEC 中,∠CBE =180°-∠E -∠BCE =42°,∵∠BAC =∠BCA ,∠CBE =∠BAC +∠BCA ,∴∠BAC =∠BCA =12∠CBE =21°,又∵CD平分∠ACB ,∴∠ACD =12∠ACB =10.5°,∴∠CDE =∠ACD +∠BAC =10.5°+21°=31.5°.23.如图,在数轴上与3,5对应的点分别是A ,B ,点C 也在数轴上,且AB =AC ,设点C 表示的数为x.(1)求x 的值;解:因为数轴上A ,B 两点表示的数分别为3和5,且AB =AC ,所以3-x =5-3,解得x =23- 5.(2)计算|x -3|+6x +5.解:原式=|23-5-3|+623-5+5=5-3+3= 5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎨⎧b =300,30k 2+b =600,解得⎩⎨⎧k 2=10,b =300.所以y 2=10x +300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.25.如图,一次函数y =-34x +3的图象与x 轴和y 轴分别交于点A 和点B ,将△AOB沿直线CD 对折,使点A 和点B 重合,直线CD 与x 轴交于点C ,与直线AB 交于点D.(1)求A ,B 两点的坐标;解:令y =0,则x =4;令x =0,则y =3,故点A 的坐标为(4,0),点B 的坐标为(0,3).(2)求OC 的长;解:设OC =x ,则AC =CB =4-x ,∵∠BOA =90°,∴OB 2+OC 2=CB 2,32+x 2=(4-x )2,解得x =78,∴OC =78.(3)设P 是x 轴上一动点,若使△PAB 是等腰三角形,写出点P 的坐标.解:设P 点坐标为(x ,0),当PA =PB 时,(x -4)2=x 2+9,解得x =78;当PA =AB 时,(x -4)2=42+32,解得x =9或x =-1;当PB =AB 时,x 2+32=42+32,解得x =-4(x =4,舍去).∴P 点坐标为(错误!,0),(-1,0)或(9,0),(-4,0).1、三人行,必有我师。
2020-2021学年辽宁省鞍山市台安县八年级(上)质检数学试卷(10月份)(解析版)

2020-2021学年辽宁省鞍山市台安县八年级第一学期质检数学试卷(10月份)一、选择题1.小芳有两根长度为6cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm2.如图,在△ABC中,D是BC延长线上一点,∠B=50°,∠ACD=110°,则∠A=()A.50°B.60°C.70°D.80°3.如图,AD是△ABC的中线,AB=5,AC=3,△ABD的周长和△ACD的周长差为()A.6B.3C.2D.不确定4.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.5.如图,已知AD=CB,再添加一个条件使△ABC≌△CDA,则添加的条件不能是()A.AB=CD B.AD∥BC C.∠BCA=∠DAC D.∠B=∠D6.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL7.如图所示,在△ABC中,∠A=∠B=50°,AK=BN,AM=BK,则∠MKN的度数是()A.50°B.60°C.70°D.100°8.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.4B.3C.2D.1二、填空题9.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.10.一个多边形的每一个外角都等于18°,它是边形.11.如图,已知△ABC≌△BAD,若∠DAC=20°,∠C=88°,则∠DBA=度.12.如图,∠B+∠C+∠D+∠E﹣∠A等于.13.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B'处,则∠ADB'等于.14.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,已知DE=6cm,AD=9cm,则BE的长为.15.下面四个命题:①面积相等的两个直角三角形全等;②两边及其中一边上的中线分别相等的两个三角形全等;③斜边和斜边上的中线分别相等的两个直角三角形全等;④两角及第三个角的平分线分别相等的两个三角形全等.其中正确的命题为.(填序号)16.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),则B点的坐标是.三、解答题(共8小题,满分0分)17.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.18.如图,已知△ABC≌△ADE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=50°,求∠DGF的度数.19.已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.20.如图,已知点P是四边形ABCD的外角∠CDE和外角∠DCF的平分线的交点.若∠A =149°,∠B=91°,求∠P的度数.21.如图,已知B,D在线段AC上,且AD=CB,BF=DE,∠AED=∠CFB=90°求证:(1)△AED≌△CFB;(2)BE∥DF.22.如图所示,∠ABC=42°,∠1=∠2+10°,∠ACD=64°,∠ACD的平分线与BA的延长线交于点E.(1)请你判断BE与CD的位置关系,并说明理由;(2)∠ABC的平分线交CE于点F,求∠3的度数.23.如图,四边形ABCD中,AD∥BC,点E,F分别在AD,BC上,AE=CF,过点A,C 分别作EF的垂线,垂足分别为点G,H.(1)求证:△AGE≌△CHF;(2)连接AC交EF于点M,求证:AC与EF互相平分.24.如图1,已知正方形ABCD,把一个直角与正方形叠合,使直角顶点与正方形的一个顶点重合,当直角的一边与BC相交于点E,另一边与CD的延长线相交于点F时.(1)证明:BE=DF;(2)如图2,作∠EAF的平分线交CD于点G,连接EG,证明:BE+DG=EG.参考答案一、选择题1.小芳有两根长度为6cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm解:设木条的长度为xcm,则9﹣6<x<9+6,即3<x<15,故她应该选择长度为12cm的木条.故选:C.2.如图,在△ABC中,D是BC延长线上一点,∠B=50°,∠ACD=110°,则∠A=()A.50°B.60°C.70°D.80°解:由三角形的外角的性质可知,∠A=∠ACD﹣∠B=60°,故选:B.3.如图,AD是△ABC的中线,AB=5,AC=3,△ABD的周长和△ACD的周长差为()A.6B.3C.2D.不确定解:∵AD是△ABC中BC边上的中线,∴BD=DC=BC,∴△ABD和△ADC的周长的差,=(AB+BC+AD)﹣(AC+BC+AD),=AB﹣AC,=5﹣3,=2,故选:C.4.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.解:B,C,D都不是△ABC的边BC上的高,故选:A.5.如图,已知AD=CB,再添加一个条件使△ABC≌△CDA,则添加的条件不能是()A.AB=CD B.AD∥BC C.∠BCA=∠DAC D.∠B=∠D解:在△ABC与△CDA中,AD=CB,AC=CA,A、添加AB=CD,由全等三角形的判定定理SSS可以使△ABC≌△CDA,故本选项不符合题意.B、添加AD∥BC,则∠BCA=∠DAC,由全等三角形的判定定理SAS可以使△ABC≌△CDA,故本选项不符合题意.C、添加∠BCA=∠DAC,由全等三角形的判定定理SAS可以使△ABC≌△CDA,故本选项不符合题意.D、添加∠B=∠D,由全等三角形的判定定理SSA不可以使△ABC≌△CDA,故本选项符合题意.故选:D.6.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA).故选:B.7.如图所示,在△ABC中,∠A=∠B=50°,AK=BN,AM=BK,则∠MKN的度数是()A.50°B.60°C.70°D.100°解:在△AMK和△BKN中,∵,∴△AMK≌△BKN(SAS),∴∠AMK=∠BKN,∵∠A=∠B=50°,∴∠AMK+∠AKM=130°,∴∠BKN+∠AKM=130°,∴∠MKN=50°,故选:A.8.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.4B.3C.2D.1解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图2所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM∵△AOC≌△BOD,∴∠COM=∠BOM,∵MO平分∠BMC,∴∠CMO=∠BMO,在△COM和△BOM中,,∴△COM≌△BOM(ASA),∴OB=OC,∵OA=OB∴OA=OC与OA>OC矛盾,∴③错误;正确的个数有3个;故选:B.二、填空题9.三角形三边长分别为3,2a﹣1,4.则a的取值范围是1<a<4.解:∵三角形的三边长分别为3,2a﹣1,4,∴4﹣3<2a﹣1<4+3,即1<a<4.故答案为:1<a<4.10.一个多边形的每一个外角都等于18°,它是二十边形.解:∵一个多边形的每个外角都等于18°,∴多边形的边数为360°÷18°=20.则这个多边形是二十边形.故答案为:二十.11.如图,已知△ABC≌△BAD,若∠DAC=20°,∠C=88°,则∠DBA=36度.解:∵△ABC≌△BAD,∴∠D=∠C=88°,∠DBA=∠CAB,∴∠DBA=(180°﹣20°﹣88°)=36°,故答案为:36°,12.如图,∠B+∠C+∠D+∠E﹣∠A等于180°.解:∵∠B+∠C=∠CGE=180°﹣∠1,∠D+∠E=∠DFG=180°﹣∠2,∴∠B+∠C+∠D+∠E﹣∠A=360°﹣(∠1+∠2+∠A)=180°.故答案为:180°.13.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B'处,则∠ADB'等于40°.解:在△ABC中,∵∠ACB=100°,∠A=20°,∴∠B=180°﹣∠ACB﹣∠A=60°.∵△ABC沿CD折叠,B点落在AC边上的B'处,∴△BCD≌△B′CD.∴∠CB′D=∠B=60°.∵∠CB′D=∠A+∠ADB',∴∠ADB'=∠CB′D﹣∠A=60°﹣20°=40°.故答案为:40°.14.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,已知DE=6cm,AD=9cm,则BE的长为3cm.解:∵BE⊥CE,AD⊥CE,∠ACB=90°,∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE,在△ACD与△BCE中,,∴△ACD≌△BCE(AAS),∴BE=CD,AD=CE,∵DE=6cm,AD=9cm,∴BE=AD﹣DE=9﹣6=3(cm),故答案为:3cm.15.下面四个命题:①面积相等的两个直角三角形全等;②两边及其中一边上的中线分别相等的两个三角形全等;③斜边和斜边上的中线分别相等的两个直角三角形全等;④两角及第三个角的平分线分别相等的两个三角形全等.其中正确的命题为②④.(填序号)解:①面积相等的两个直角三角形不一定全等,本说法不正确;②利用SSS定理和SAS定理可知,两边及其中一边上的中线分别相等的两个三角形全等,本说法正确;③斜边和斜边上的中线分别相等的两个直角三角形不一定全等,本说法不正确;④利用AAS定理可知,两角及第三个角的平分线分别相等的两个三角形全等,本说法正确;故答案为:②④.16.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),则B点的坐标是(1,4).解:过A和B分别作AD⊥OC于D,BE⊥OC于E,∵∠ACB=90°,∴∠ACD+∠CAD=90°∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴DC=BE,AD=CE,∵点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),∴OC=2,AD=CE=3,OD=6,∴CD=OD﹣OC=4,OE=CE﹣OC=3﹣2=1,∴BE=4,∴则B点的坐标是(1,4),故答案为:(1,4).三、解答题(共8小题,满分0分)17.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.解:设这个多边形的边数是n,依题意得(n﹣2)×180°=3×360°﹣180°,n﹣2=6﹣1,n=7.∴这个多边形的边数是7.18.如图,已知△ABC≌△ADE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=50°,求∠DGF的度数.解:∵△ABC≌△ADE,∠AED=105°,∠B=50°,∴∠ACB=∠AED=105°,∠D=∠B=50°,∴∠ACF=180°﹣∠ACB=75°,∵∠CAD=15°,∴∠AFC=180°﹣∠CAF﹣∠ACF=90°,∴∠DGF=∠AFC﹣∠D=90°﹣50°=40°.19.已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.【解答】证明:∵AC∥DE,∴∠ACB=∠E,∠ACD=∠D,∵∠ACD=∠B,∴∠D=∠B,在△ABC和△EDC中,∴△ABC≌△CDE(AAS).20.如图,已知点P是四边形ABCD的外角∠CDE和外角∠DCF的平分线的交点.若∠A =149°,∠B=91°,求∠P的度数.解:延长DA,CB交于点M,∵∠DAB=∠M+∠ABM,∠CBA=∠M+∠BAM,∴∠DAB+∠CBA=∠M+∠ABM+∠M+∠BAM=∠M+180°,∵∠DAB=149°,∠CBA=91°,∴149°+91°=∠M+180°,解得∠M=60°,∵∠EDC=∠M+∠BCD,∠FCD=∠M+∠ADC,∴∠EDC+∠FCD=∠M+∠BCD+∠M+∠ADC=180°+∠M=240°,∵点P是四边形ABCD的外角∠CDE和外角∠DCF的平分线的交点,∴∠PCD+∠PCD=120°,∵∠PCD+∠PDC+∠P=180°,∴∠P=60°.21.如图,已知B,D在线段AC上,且AD=CB,BF=DE,∠AED=∠CFB=90°求证:(1)△AED≌△CFB;(2)BE∥DF.【解答】证明(1)∵∠AED=∠CFB=90°,在Rt△AED和Rt△CFB中,∴Rt△AED≌Rt△CFB(HL).(2)∵△AED≌△CFB,∴∠BDE=∠DBF,在△DBE和△BDF中,∴△DBE≌△BDF(SAS),∴∠DBE=∠BDF,∴BE∥DF.22.如图所示,∠ABC=42°,∠1=∠2+10°,∠ACD=64°,∠ACD的平分线与BA的延长线交于点E.(1)请你判断BE与CD的位置关系,并说明理由;(2)∠ABC的平分线交CE于点F,求∠3的度数.解:(1)结论:BE∥CD.理由如下:在三角形ABC中,∠ABC+∠1+∠2=180°,∴42°+∠2+∠2+10°=180°,∴∠2=64°,又∵∠ACD=64°,∴∠2=∠ACD,∴BE∥CD.(2)∵∠ACD=64°,CE平分∠ACD,∴∠DCE=∠ACE=×64°=32°,由(1)知,∠2=64°,∴∠1=∠2+10°=64°+10°=74°,∴∠BCE=∠1+∠ACE=74°+32°=106°,∵BF平分∠ABC,∴∠CBF=∠ABC=21°,∴∠3=∠CBF+∠BCF=21°+106°=127°.23.如图,四边形ABCD中,AD∥BC,点E,F分别在AD,BC上,AE=CF,过点A,C 分别作EF的垂线,垂足分别为点G,H.(1)求证:△AGE≌△CHF;(2)连接AC交EF于点M,求证:AC与EF互相平分.【解答】(1)证明:∵AG⊥EF,CH⊥EF,∴∠G=∠H=90°,∴AG∥CH,∵AD∥BC,∴∠DEF=∠BFE,∵∠AEG=∠DEF,∠CFH=∠BFE,∴∠AEG=∠CFH,在△AGE和△CHF中,,∴△AGE≌△CHF(AAS);(2)证明:连接AH、CG,如图所示:由(1)得:△AGE≌△CHF,∴AG=CH,GE=HF,∵AG∥CH,∴四边形AHCG是平行四边形,∴GM=HM,∴GM﹣GE=HM﹣FH,即EM=FM,∴AC与EF互相平分.24.如图1,已知正方形ABCD,把一个直角与正方形叠合,使直角顶点与正方形的一个顶点重合,当直角的一边与BC相交于点E,另一边与CD的延长线相交于点F时.(1)证明:BE=DF;(2)如图2,作∠EAF的平分线交CD于点G,连接EG,证明:BE+DG=EG.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAD=∠B=∠ADC=90°,∵∠EAF=90°,即∠EAD+∠FAD=90°,而∠EAD+∠BAE=90°,∴∠BAE=∠DAF,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴BE=DF;(2)证明:∵△ABE≌△ADF,∴AE=AF,∵∠EAF的平分线交CD于G点,∴∠EAG=∠FAG,在△AEG和△FAG中,∴△AEG≌△FAG(SAS)∴GE=GF,∵GF=DG+DF,而BE=DF,∴BE+DG=EG;。
2020--2021学年上学期人教版 八年级数学试题

2020-2021上学期人教版八年级数学期末试卷一.选择题(共12小题)1.在预防新冠疫情期间,到公共场所都要佩戴口罩,据了解口罩的规格有两种:儿童款(长14cm)和成人款(长17cm),其中超过标准长度的数量记为正数,不足的数量记为负数.质量监督局检查了四个药店的儿童口罩,结果如下,从长度的角度看,最接近标准的儿童口罩是()A.+0.09B.﹣0.21C.+0.15D.﹣0.062.若|a|=a,则a表示()A.正数B.负数C.非正数D.非负数3.已知方程x2﹣3x=0,下列说法正确的是()A.方程的根是x=3B.只有一个根x=0C.有两个根x1=0,x2=3D.有两个根x1=0,x2=﹣34.x、y、c是有理数,则下列判断错误的是()A.若x=y,则x+2c=y+2c B.若x=y,则a﹣cx=a﹣cyC.若x=y,则=D.若=,则x=y5.点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是()A.(﹣2,3)或(﹣2,﹣3)B.(﹣2,3)C.(﹣3,2)或(﹣3,﹣2)D.(﹣3,2)6.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是()A.(1,0)B.(0,1)C.(﹣1,1)D.(﹣1,﹣2)7.下列属于圆柱体的是()A.B.C.D.8.沿图中虚线旋转一周,能围成的几何体是()A.B.C.D.9.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋10.下列说法:①已知△ABC中,AB=6,AC=8,则中线AD的取值范围是1≤AD≤7;②两边和一角对应相等的两个三角形全等;③如果两个三角形关于某直线成轴对称,那么它们是全等三角形;④一腰上的中线也是这条腰上的高的等腰三角形是等边三角形.其中正确的有()A.1个B.2个C.3D.4个11.某校为了解七年级14个班级学生吃零食的情况,下列做法中,比较合理的是()A.了解每一名学生吃零食情况B.了解每一名女生吃零食情况C.了解每一名男生吃零食情况D.每班各抽取7男7女,了解他们吃零食情况12.把25枚棋子放入右图的三角形内,那么一定有一个小三角形中至少放入()枚.A.6B.7C.8D.9二.填空题(共6小题)13.如果汽车向东行驶30千米记作+30千米,那么向西行驶20千米记作千米.14.若x=﹣1为方程x2﹣m=0的一个根,则m的值为.15.点M(﹣2,3)到x轴和y轴的距离之和是.16.个完全相同的圆锥形铁块,可以熔铸成一个与它们等底等高的圆柱.17.如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.18.小芸为了解同学们最感兴趣的在线学习方式,设计了如下的调查问题(选项不完整):你最感兴趣的一种在线学习方式是()(单选)A.B.C.D.其他她准备从“①在线听课,②在线讨论,③在线学习2~3小时,④用手机在线学习,⑤在线阅读”中选取三个作为该问题的备选答案,合理的选取是.(填序号)三.解答题(共9小题)19.在抗洪抢险过程中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天航行路程记录如下:(单位:千米)15,﹣7,18,9,﹣3,6,﹣8(1)通过计算说明B地在A地的什么位置;(2)已知冲锋舟每千米耗油0.5升,油箱容量为40升,若冲锋舟在救援前将油箱加满,请问该冲锋舟在救援过程中是否还需要补充油?20.把下列各数填在相应的括号内:﹣,0,﹣30,,+20,﹣2.6,π,0.,0.3030030003…(每两个3之间逐次增加一个0).正有理数集合:{…};负数集合:{…};整数集合:{…}.21.阅读理解题:下面是小明将等式x﹣4=3x﹣4进行变形的过程:x﹣4+4=3x﹣4+4,①x=3x,②1=3.③(1)小明①的依据是.(2)小明出错的步骤是,错误的原因是.(3)给出正确的解法.22.关于x的方程x﹣2m=﹣3x+4与2﹣x=m的解互为相反数.(1)求m的值;(2)求这两个方程的解.23.已知当m,n都是实数.且满足2m=8+n时,称p(m﹣1,)为“开心点”.(1)判断点A(5,3),B(4,10)是否为“开心点”,并说明理由;(2)若点M(a,2a﹣1)是“开心点”,请判断点M在第几象限?并说明理由.24.综合与实践某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为acm的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒),请你动手操作验证并完成任务.(纸板厚度及接缝处忽略不计)动手操作一:根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为bcm的小正方形,再沿虚线折合起来.问题解决:(1)该长方体纸盒的底面边长为cm;(请你用含a,b的代数式表示)(2)若a=24cm,b=6cm,则长方体纸盒的底面积为多少cm2;动手操作二:根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为bcm的小正方形和两个同样大小的小长方形,再沿虚线折合起来.拓展延伸:(3)该长方体纸盒的体积为多少cm3?(请你用含a,b的代数式表示)25.如图,△ABC中,∠ABC=45°,点A关于直线BC的对称点为P,连接PB并延长.过点C作CD⊥AC,交射线PB于点D.(1)如图①,∠ACB为钝角时,补全图形,判断AC与CD的数量关系:;(2)如图②,∠ACB为锐角时,(1)中结论是否仍成立,并说明理由.26.甲、乙两种水稻试验品种连续5年的平均单位面积产量(单位:t/hm2)如表,试根据这组数据估计哪一种水稻品种好.品种第1年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8 27.若从1,2,3,…,n中任取5个两两互素的不同的整数a1,a2,a3,a4,a5,其中总有一个整数是素数,求n的最大值.2020-2021上学期人教版八年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】根据题意可知绝对值最小的即为最接近标准的儿童口罩,即可得出答案.【解答】解:根据题意得:|﹣0.06|<|+0.09|<|+0.15|<|﹣0.21|,故选:D.2.【分析】根据绝对值的意义解答即可.【解答】解:∵|a|=a,∴a为非负数,故选:D.3.【分析】本题应对方程进行变形,提取公因式x,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程变形为:x(x﹣3)=0,∴x=0或x﹣3=0,∴x=0或x=3,故选:C.4.【分析】根据等式的性质一一判断即可.【解答】解:A、根据等式的性质1可得出,若x=y,则x+2c=y+2c,原变形正确,故此选项不符合题意;B、根据等式的性质1和2得出,若x=y,则a﹣cx=a﹣cy,原变形正确,故此选项不符合题意;C、由x=y得出=必须c≠0,当c=0时不成立,故本选项符合题意;D、根据等式的性质2可得出,若=,则x=y,原变形正确,故此选项不符合题意;故选:C.5.【分析】根据题意,判断出点P所在的象限,再根据点到y轴的距离是点的横坐标的绝对值,到x轴的距离是点的纵坐标的绝对值,判断即可.【解答】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(﹣2,3)或(﹣2,﹣3),故选:A.6.【分析】由点A,B,C,D的坐标可得出四边形ABCD为矩形及AB,AD的长,由矩形的周长公式可求出矩形ABCD的周长,结合2019=202×10﹣1可得出细线的另一端在线段AD上且距A点1个单位长度,结合点A的坐标即可得出结论.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=2,AD=3,四边形ABCD为矩形,∴C矩形ABCD=(3+2)×2=10.∵2019=202×10﹣1,∴细线的另一端在线段AD上,且距A点1个单位长度,∴细线的另一端所在位置的点的坐标是(1,1﹣1),即(1,0).故选:A.7.【分析】根据圆柱体的形状解答即可.【解答】解:A、图形是正方体,不符合题意;B、图形是梯形,不符合题意;C、图形属于圆柱体,符合题意;D、图形是圆,不符合题意;故选:C.8.【分析】根据“面动成体”可知,将长方形沿着长边所在的直线旋转一周,形成的几何体是圆柱,得出判断即可.【解答】解:将长方形沿着一边旋转一周,所形成的几何体是圆柱,故选:B.9.【分析】利用轴对称画出图形即可.【解答】解:如图所示:,该球最后落入的球袋是4号袋,故选:D.10.【分析】根据三角形的三边关系,全等三角形的判定,等边三角形的判定,轴对称的性质一一判断即可.【解答】解:①已知△ABC中,AB=6,AC=8,则中线AD的取值范围是1≤AD≤7,错误,应该是中线AD的取值范围是1<AD<7.②两边和一角对应相等的两个三角形全等,错误,SSA不一定全等.③如果两个三角形关于某直线成轴对称,那么它们是全等三角形,正确.④一腰上的中线也是这条腰上的高的等腰三角形是等边三角形,正确.故选:B.11.【分析】根据样本抽样的原则要求,逐项进行判断即可.【解答】解:根据样本抽样具有普遍性、代表性和可操作性,选项D比较合理,选项A为普查,没有必要,也不容易操作;选项B、C仅代表男生或女生的情况,不能反映全面的情况,不具有代表性,故选:D.12.【分析】把4个小三角形看作4个抽屉,把25枚棋子看作25个元素,那么每个抽屉需要放25÷4=6…1,所以每个抽屉需要放6枚,剩余的1枚无论怎么放,总有一个抽屉里至少有6+1=7,所以,至少有一个小三角形内至少要放7枚棋子,即可得出结论.【解答】解:25÷4=6……1,6+1=7(枚),故选:B.二.填空题(共6小题)13.【分析】根据正数和负数表示相反意义的量,向东行驶记为正,可得向西行驶的表示方法.【解答】解:如果汽车向东行驶30千米记作+30千米,那么向西行驶20千米记作﹣20千米.故答案为:﹣20.14.【分析】把x=﹣1代入方程得1﹣m=0,然后解一元一次方程即可.【解答】解:把x=﹣1代入方程得1﹣m=0,解得m=1.故答案为1.15.【分析】根据点的坐标与其到坐标轴的距离的关系进行解答.【解答】解:点M(﹣2,3)到x轴的距离为:3,到y轴的距离为:2,故点M(﹣2,3)到x轴和y轴的距离之和是:3+2=5.故答案为:5.16.【分析】根据圆柱的体积是同底同高的圆锥的体积的三倍解答即可.【解答】解:因为圆柱的体积是同底同高的圆锥的体积的三倍,所以3个完全相同的圆锥形铁块,可以熔铸成一个与它们等底等高的圆柱.故答案为:3.17.【分析】如图,以AB为x轴,AD为y轴,建立平面直角坐标系,根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,发光电子回到起始的位置,即可求解.【解答】解:如图以AB为x轴,AD为y轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2020÷6=336…4,当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(2,0),∴它与AB边的碰撞次数是=336×2+1=673次,故答案为:673.18.【分析】根据题意可得“①在线听课,②在线讨论,⑤在线阅读”合理.【解答】解:根据题意可知:①在线听课,②在线讨论,⑤在线阅读,作为该问题的备选答案合理,故答案为:①②⑤.三.解答题(共9小题)19.【分析】(1)求出所有正负数之和,可以判断B点位置;(2)求所有正负数的绝对值之和,即为行程总和,在确定所需油量即可求解.【解答】解:(1)15﹣7+18+9﹣3+6﹣8=30(千米),答:B地在A地东面30千米;(2)15+7+18+9+3+6+8=66(千米),66×0.5=33<40,答:不需补充.20.【分析】按照有理数的分类填写即可.【解答】解:正有理数集合:{,+20,0.…}负数集合:{,﹣30,﹣2.6…}整数集合:{0,﹣30,+20…}故答案为:,+20,0.;,﹣30,﹣2.6;0,﹣30,+20.21.【分析】根据等式的性质解答即可.【解答】解:(1)小明①的依据是等式的两边都加(或减)同一个数(或整式),结果仍得等式;(2)小明出错的步骤是③,错误的原因是等式两边都除以0;(3)x﹣4=3x﹣4,x﹣4+4=3x﹣4+4,x=3x,x﹣3x=0,﹣2x=0,x=0.故答案为:等式的两边都加(或减)同一个数(或整式),结果仍得等式;③;等式两边都除以0.22.【分析】(1)先分别解关于x的一次方程得到x=m+1和x=2﹣m,再利用相反数的定义得到m+1+2﹣m=0,然后解关于m的方程即可;(2)把m的值分别代入x=m+1和x=2﹣m中得到两方程的解.【解答】解:(1)解方程x﹣2m=﹣3x+4得x=m+1,解方程2﹣x=m得x=2﹣m,根据题意得,m+1+2﹣m=0,解得m=6;(2)当m=6时,x=m+1=×6+1=4,即方程x﹣2m=﹣3x+4的解为x=4;当m=6时,x=2﹣m=2﹣6=﹣4,即方程2﹣x=m的解为x=﹣4.23.【分析】(1)根据A、B点坐标,代入(m﹣1,)中,求出m和n的值,然后代入2m=8+n检验等号是否成立即可;(2)直接利用“开心点”的定义得出a的值进而得出答案.【解答】解:(1)点A(5,3)为“开心点”,理由如下,当A(5,3)时,m﹣1=5,,得m=6,n=4,则2m=12,8+n=12,所以2m=8+n,所以A(5,3)是“开心点”;点B(4,10)不是“开心点”,理由如下,当B(4,10)时,m﹣1=4,,得m=5,n=18,则2m=10,8+18=26,所以2m≠8+n,所以点B(4,10)不是“开心点”;(2)点M在第三象限,理由如下:∵点M(a,2a﹣1)是“开心点”,∴m﹣1=a,,∴m=a+1,n=4a﹣4,代入2m=8+n有2a+2=8+4a﹣4,∴a=﹣1,2a﹣1=﹣3,∴M(﹣1,﹣3),故点M在第三象限.24.【分析】(1)根据折叠可得答案;(2)将a=24,b=6代入底面积的代数式计算即可;(3)根据图2的裁剪,折叠后,表示出长、宽、高进而用代数式表示体积.【解答】解:(1)根据折叠可知,底面是边长为(a﹣2b)(cm)的正方形,故答案为:(a﹣2b);(2)将a=24,b=6代入得,(a﹣2b)2=(24﹣2×6)2=144(cm2)答:长方体纸盒的底面积为144cm2;(3)裁剪后折叠成长方体的长为:(a﹣2b)cm,宽为cm,高为bcm,所以,折叠后长方体的体积为(a﹣2b)××b,即,b(a﹣2b)2,答:长方体的体积为b(a﹣2b)2.25.【分析】(1)结论:AC=CD.想办法证明,AC=CP,CD=CP即可.(2)结论不变,证明方法类似(1).【解答】解:(1)结论:AC=CD.理由:如图①中,设AB交CD于O,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACO=∠DBO=90°,∵∠AOC=∠DOB,∴∠D=∠A,∴∠D=∠P,∴CD=CP,∴AC=CD.故答案为:AC=CD.(2)结论不变.理由:如图②中,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACD=∠DBA=90°,∴∠ABD+∠ACD=180°,∴∠A+∠BDC=180°,∵∠CDP+∠BDC=180°,∴∠A=∠CDP∴∠CDP=∠P,∴CD=CP,∴AC=CD.26.【分析】首先求得平均产量,然后求得方差,进行比较即可.【解答】解:根据表格中的数据求得甲的平均数=(9.8+9.9+10.1+10+10.2)÷5=10;乙的平均数=(9.4+10.3+10.8+9.7+9.8)÷5=10,甲种水稻产量的方差是:[(9.8﹣10)2+(9.9﹣10)2+(10.1﹣10)2+(10﹣10)2+(10.2﹣10)2]=0.02,乙种水稻产量的方差是:[(9.4﹣10)2+(10.3﹣10)2+(10.8﹣10)2+(9.7﹣10)2+(9.8﹣10)2]=0.244.∴0.02<0.244,∴产量比较稳定的水稻品种是甲.因为甲、乙两种水稻单位面积产量的平均数相等,甲种方差小于乙种方差,所以甲种水稻品种好.27.【分析】只有1和它本身两个因数的数,就是质数(或素数).除了1和它本身以外,还有别的因数的数,就是合数.因为5个整数两两互素,它们的约数只能取2、3、5、7、11,又因为是合数,只能是约数的平方.所以可求解.【解答】解:若n≥49,取整数1,22,32,52,72,这五个整数是五个两两互素的不同的整数,但没有一个整数是素数,∴n≤48,在1,2,3,……,48中任取5个两两互素的不同的整数,若都不是素数,则其中至少有四个数是合数,不妨假设,a1,a2,a3,a4为合数,设其中最小的素因数分别为p1,p2,p3,p4,由于两两互素,∴p1,p2,p3,p4两两不同,设p是p1,p2,p3,p4中的最大数,则p≥7,因为a1,a2,a3,a4为合数,所以其中一定存在一个,aj≥p2≥72=49,与n≤48矛盾,于是其中一定有一个是素数,综上所述,正整数n的最大值为48.。
2020-2021学年辽宁省沈阳七中八年级上学期期末数学复习卷 (含答案解析)

2020-2021学年辽宁省沈阳七中八年级上学期期末数学复习卷一、选择题(本大题共10小题,共30.0分)1.观察下列图形,是轴对称图形的是()A. B. C. D.2.下列计算正确的是()A. (3x)2=6x2B. 3a2⋅2a3=6a6C. (a2)6=(a4)3D. (−a)3÷(−a)2=a3.如果将分式2x中的字母x与y的值分别扩大为原来的10倍,那么这个分式的值() x+yA. 扩大为原来的10倍B. 扩大为原来的20倍D. 不改变C. 缩小为原来的1104.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为()A. 3.1×10−10米B. 3.1×10−9米C. −3.1×109米D. 0.31×10−8米5.分式1有意义,则x的取值范围是()x−1A. x>1B. x≠1C. x<1D. 一切实数6.在平面直角坐标系中,已知O为坐标原点,点P的坐标为(5,12),则OP的长为().A. 5B. 12C. 13D. 147.如图所示,AC和BD交于点O,若OA=OD,用“SAS”证明△AOB≌△DOC还需().A. AB=DCB. OB=OCC. ∠C=∠DD. ∠AOB=∠DOC8.下列各式由左边到右边的变形中,是分解因式的为A. a(x+y)=ax+ayB. x2−4x+4=x(x−4)+4C. x2−16+3x=(x+4)(x−4)+3xD. 10x2−5x=5x(2x−1)9. 如图,△ABC 中,AB =5,AC =6,BC =4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是( )A. 8B. 9C. 10D. 11 10. 已知13m −12n =1,则4n+3mn−6m 9m+6mn−6n 的值是( )A. −53B. −54C. 58D. 53 二、填空题(本大题共6小题,共18.0分)11. 当x ______ 时,分式x 2−4x+2无意义;当x ______ 时,分式x 2−4x+2值为零.12. 因式分解:4m 2−n 2= .13. 木工做一个长方形桌面,量得桌面的长为45cm ,宽为28cm ,对角线为53cm ,这个桌面______.(填“合格”或“不合格”).14. 分解因式:x 2−2x +1=______.15. 如图,已知边长为a ,b 的长方形,若它的周长为24,面积为32,则a 2b +ab 2的值为________.16. 如图,在△ABC 中,∠B =45°,∠BAC =30°,AB =2√3+2,AD 是∠BAC 的平分线,若E 、F分别是AD 、AC 上的动点,则EC +EF 的最小值是_____________________.三、计算题(本大题共2小题,共12.0分)17.学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?18.(本题10分)等腰Rt△ABC中,CA=CB,∠CAB=90°,∠ABC=∠ACB=45°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E;(1)如图(1),若A(0,1),B(2,0),求C 点的坐标;(2)如图(2),当等腰Rt △ABC 运动到使点D 恰为AC 中点时,连接DE ,求证:∠ADB =∠CDE .四、解答题(本大题共8小题,共64.0分)19. 先化简,再求值:(2x +3y)2−(2x +3y)(2x −3y),其中x =13,y =−12.20. 计算:(1)m 2m−2+42−m (2)2b 2a−b −a −b .21.解下列方程:(1)2x =3x+1(2)xx−2+22−x=222.如图,已知AD=AE,AB=AC,求证:△ABE≌△ACD.23.如图,∠AOB=90∘,线段OA=18m,OB=6m,一机器人Q在点B处.(1)若BC=AC,求线段BC的长.(2)在(1)的条件下,若机器人Q从点B出发,以3m/min 的速度沿着▵OBC的三条边逆时针走一圈回到点B,设行走的时间为tmin,则t为何值时,▵OBQ是以Q点为直角顶点的直角三角形?24.如图,四边形ABCD的对角线AC,BD相交于点E,BE=DE,∠BAD+∠BCA=180°,∠BAC=2∠ACD.(1)求证:EC=EA+AB;(2)若AB=x,EA=y,试探究x与y之间的数量关系(列出等式即可),并说明理由.25.如图1,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D为边AB的中点,DE⊥AB交边AC于点E,(1)AE______ EB(填“>”、“=”、“<”)(2)求AE的长;(3)如图2,点P从点B出发以每秒1个单位长度向点C运动;同时点Q从点C出发以每秒2个单位长度向点A运动,设运动时间为t秒.①在点P、Q运动过程中,四边形CPDQ的面积是否发生变化,并说明理由;②当t为何值时,△DEQ为等腰三角形.26.五边形ABCDE中,BC=DE,AE=DC,∠C=∠E,DM⊥AB于M,试说明M是AB中点.-------- 答案与解析 --------1.答案:A解析:本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.根据轴对称图形的概念求解.解:A.是轴对称图形,故本选项正确;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误.故选A.2.答案:C解析:解:A、(3x)2=9x2,故此选项错误;B、3a2⋅2a3=6a5,故此选项错误;C、(a2)6=(a4)3,正确;D、(−a)3÷(−a)2=−a,故此选项错误;故选:C.分别利用积的乘方运算法则以及单项式乘以单项式和幂的乘方运算法则以及同底数幂的除法运算法则化简进而判断即可.此题主要考查了积的乘方运算以及单项式乘以单项式和幂的乘方运算以及同底数幂的除法运算等知识,正确掌握运算法则是解题关键.3.答案:D解析:解:原式=20x10x+10y =2xx+y故选D.根据分式的基本性质即可求出答案.本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4.答案:B解析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000000031=3.1×10−9,故选:B.5.答案:B解析:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.分母为零,分式无意义;分母不为零,分式有意义.解:由分式1有意义,得x−1x−1≠0.解得x≠1,故选B.6.答案:C解析:本题考查的是勾股定理及坐标与图形性质.根据题意画出图形,利用勾股定理即可求解.解:如图所示:∵P(5,12),∴OP=√52+122=13.故选C.7.答案:B解析:此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键,由OA =OD ,加上对顶角相等,再加上OB =OC ,即可利用SAS 得证.解:在△AOB 和△DOC 中,{OA =OD ∠AOB =∠DOC OB =OC, ∴△AOB≌△DOC(SAS),则还需添加的添加是OB =OC ,故选B .8.答案:D解析:本题主要考查因式分解的定义.根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.这类问题的关键在于能否正确应用分解因式的定义来判断.解:A.是多项式乘法,故选项错误;B .右边不是积的形式,x 2−4x +4=(x −2)2,故选项错误;C .右边不是积的形式,故选项错误;D .提公因式法,故D 选项正确.故选D.9.答案:C解析:本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.由线段垂直平分线的性质,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.解:∵边AB的垂直平分线交AC于点D,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.10.答案:B解析:本题考查分式的运算,解题的关键是熟练运用整体的思想以及分式的运算法则,本题属于基础题型.根据分式的运算法则即可求出答案.解:当13m −12n=1时,∴2n−3m=6mn∴原式=2(2n−3m)+3mn−3(2n−3m)+6mn=12mn+3mn −18mn+6mn=−5 4故选:B.11.答案:=−2;=2解析:解:(1)若分式无意义,则x+2=0,故x=−2,(2)分式的值为0,即x2−4=0且x+2≠0,故x=2.分式无意义的条件是分母等于0.分式值是0的条件是分子等于0,分母不等于0.本题考查的是分式有意义的条件,值是0的条件,是一个比较简单的问题.12.答案:(2m+n)(2m−n)解析:此题考查了平方差公式进行因式分解,熟练掌握平方差公式是解本题的关键.原式利用平方差公式分解即可.解:原式=(2m+n)(2m−n).故答案为:(2m+n)(2m−n).13.答案:合格解析:解:∵长都为45cm,宽都为28cm,∴此四边形是平行四边形,∵桌面的长为45cm,宽为28cm,对角线为53cm,且452+282=532,∴此四边形的一个角为90°,∴此四边形是矩形.∴这个桌面合格.故答案为:合格.由桌面的长为45cm,宽为28cm,对角线为53cm,利用勾股定理的逆定理即可判定90°的角,继而求得答案.此题考查了矩形的判定以及勾股定理的逆定理.注意掌握勾股定理的逆定理的应用是解此题的关键.14.答案:(x−1)2解析:本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.直接利用完全平方公式分解因式即可.解:x2−2x+1=(x−1)2.故答案为(x−1)2.15.答案:384解析:本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了数学整体思想和正确运算的能力.先把所给式子提取公因式ab,再整理为与题意相关的式子,代入求值即可.解:由题意易得a+b=12,ab=32,∴a2b+ab2=ab(a+b)=384.故答案为384.16.答案:2解析:本题考查的是轴对称−最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.作CP⊥AB,垂足为P,交AD于E点,过E点作EF⊥AC,垂足为F.则CE+EF为所求的最小值,根据AD是∠BAC的平分线可知EF=EP,再由含30°角的直角三角形的性质即可得出结论.解:如图,作CP⊥AB,垂足为P,交AD于E点,过E点作EF⊥AC,垂足为F.∵AD是∠BAC的平分线,∴EF=EP,∴EF+CE=EP+CE=CP,∴CP是点C到直线AB的最短距离(垂线段最短),∴CP 就是CE +EF 的最小值,∵∠B =45°,∠BAC =30°,∴CP =BP ,AP =√3CP ,∵AB =2√3+2,∴BP +AP =CP +√3CP =2√3+2,∴CP =2,∴EC +EF 的最小值为2.故答案为2.17.答案:解:(1)设王师傅单独整理这批实验器材需要x 分钟,则王师傅的工作效率为1x , 由题意,得:20(140+1x )+20×1x =1,解得:x =80,经检验得:x =80是原方程的根.答:王师傅单独整理这批实验器材需要80分钟.(2)设李老师要工作y 分钟,由题意,得:(1−y 40)÷180≤30,解得:y ≥25.答:李老师至少要工作25分钟.解析:(1)设王师傅单独整理这批实验器材需要x 分钟,则王师傅的工作效率为1x ,根据李老师与工人王师傅共同整理20分钟的工作量+王师傅再单独整理了20分钟的工作量=1,可得方程,解出即可;(2)根据王师傅的工作时间不能超过30分钟,列出不等式求解.本题考查了分式方程的应用及一元一次不等式的应用,解答本题的关键是仔细审题,找到不等关系及等量关系. 18.答案:(1)解:作CH ⊥y 轴于H ,如图1,∵A(0,1),B(2,0),∴OA=1,OB=2,∵∠CAB=90°,即∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ACH和△BAO中,∴△ACH≌△BAO(AAS),∴CH=OA=1,AH=OB=2,∴OA+OH=2,∴OH=1,∴C点坐标为(−1,−1);(2)证明:作CF⊥AC交y轴于F,如图2,由(1)可得∠1=∠2,在△ACF和△BAD中,∴△ACF≌△BAD(SAS),∴AD=CF,∠AFC=∠ADB,∵点D为AC中点,∴AD=CD,∴CD=CF,∵∠ACB=45°,∴∠FCE=45°,在△CDE和△CFFE中,∴△CDE≌△CFE(SAS),∴∠CDE=∠CFE,∴∠ADB=∠CDE。
2020-2021学年辽宁省锦州市八年级(上)期末数学试卷 (含解析)

2020-2021学年辽宁省锦州市八年级第一学期期末数学试卷一、选择题(共8小题).1.下列各数为无理数的是()A.﹣1B.0C.D.2.下列命题为假命题的是()A.对顶角相等B.同位角相等C.互补的两个角不一定相等D.两点之间,线段最短3.某书店与一所山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量如下(单位:本):300,200,200,300,300,500,则这组数据的众数、中位数分别是()A.300,150B.300,200C.300,300D.600,3004.下面四个数与最接近的是()A.2B.2.5C.2.6D.35.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1,l2于B,C两点,连接AC,BC,若∠ABC=54°,则∠1的度数为()A.36°B.54°C.72°D.73°6.已知弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系如图所示,则弹簧不挂物体时的长度为()A.12cm B.11cm C.10cm D.9cm7.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=﹣kx+k的图象大致是()A.B.C.D.8.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸二、填空题(共8小题).9.的平方根是.10.若点P(﹣1,y1)和点Q(﹣2,y2)是一次函数y=﹣x+b的图象上的两点,则y1,y2的大小关系是:y1y2(填“>,<或=”).11.如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°),目标B的位置为(4,210°),则目标C的位置为.12.如表记录了甲、乙、丙、丁四名同学最近五次数学考试成绩的平均分与方差:甲乙丙丁平均分93969693方差(s2) 5.1 5.1 1.2 1.2要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择.13.李刚师范大学毕业后参加了某市教育局组织的教师招聘考试,这次考试包括笔试、面试两项,其笔试、面试成绩按3:7的比例确定各人的最终成绩.考试结束后他笔试、面试的成绩分别为90分、96分,那么李刚参加这次招聘考试的最终成绩为分.14.某果园现有桃树和杏树共500棵,计划一年后桃树增加3%,杏树增加4%,这样果园里这两种果树将增加3.6%,如果设该果园现有桃树和杏树分别为x棵,y棵,则可列方程组为.15.已知直线y=x﹣2与y=mx﹣n相交于点M(3,b),则关于x,y的二元一次方程组的解为.16.如图,在平面直角坐标系中,边长为1的正方形A1B1C1D1(记为第1个正方形)的顶点A1与原点重合,点B1在y轴上,点D1在x轴上,点C1在第一象限内,以C1为顶点作等边△C1A2B2,使得点A2落在x轴上,A2B2⊥x轴,再以A2B2为边向右侧作正方形A2B2C2D2(记为第2个正方形),点D2在x轴上,以C2为顶点作等边△C2A3B3,使得点A3落在x轴上,A3B3⊥x轴,若按照上述的规律继续作正方形,则第2021个正方形的边长为.三、计算题(本大题共15分)17.(1)计算:;(2)计算:(+1)2+(+2)(﹣2);(3)用适当的方法解方程组:.四、解答题(本大题共3个题,第18,19题各6分,第20题7分,共19分)18.争创全国文明城市,从我做起.某校在八年级开设了文明礼仪校本课程,为了解学生的学习情况,该校举办了八年级全体学生参加的《创文明城,做文明人》知识竞赛,从中随机抽取了30名学生的成绩(单位:分),整理数据后得到下列不完整的频数分布表和频数直方图:成绩/分人数(频数)78≤x<58282≤x<a8686≤x<129090≤x<b9494≤x<298请根据图表提供的信息回答下列问题:(1)频数分布表中a=,b=;(2)补全频数直方图;(3)若成绩不低于90分为优秀,估计该校八年级600名学生中达到优秀等级的人数.19.在平面直角坐标系中,已知A,B两点的坐标分别(2,4),(﹣3,1).(1)在平面直角坐标系中,描出点A;(2)若函数y=mx的图象经过点A,求m的值;(3)若一次函数y=kx+b的图象由(2)中函数y=mx的图象经过平移,且经过点B得到,求这个一次函数的表达式,并在直角坐标系中画出该函数对应的图象.20.请将下列题目的证明过程补充完整:如图,F是BC上一点,FG⊥AC于点G,H是AB上一点,HE⊥AC于点E,∠1=∠2,求证:DE∥BC.证明:连接EF.∵FG⊥AC,HE⊥AC,∴∠FGC=∠HEC=90°.∴FG∥().∴∠3=∠().又∵∠1=∠2,∴=∠2+∠4,即∠=∠EFC.∴DE∥BC().五、解答题(本大题共2个题,每题8分,共16分)21.在期末一节复习课上,八年(一)班的数学老师要求同学们列二元一次方程组解下列问题:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建3000m的村路,甲队每天修建150m,乙队每天修建200m,共用18天完成.(1)粗心的张红同学,根据题意,列出的两个二元一次方程,等号后面忘记写数据,得到了一个不完整的二元一次方程组,张红列出的这个不完整的方程组中未知数p表示的是,未知数q表示的是;张红所列出正确的方程组应该是;(2)李芳同学的思路是想设甲工程队修建了xm村路,乙工程队修建了ym村路.下面请你按照李芳的思路,求甲、乙两个工程队分别修建了多少天?22.小明和妈妈元旦假期去看望外婆,返回时,他们先搭乘顺路车到A地,约定小明爸爸驾车到A地接他们回家.一家人在A地见面,休息半小时后,小明爸爸驾车返回家中.已知小明他们与外婆家的距离s(km)和小明从外婆家出发的时间t(h)之间的函数关系如图所示.(1)小明家与外婆家的距离是km,小明爸爸驾车返回时平均速度是km/h:(2)点P的实际意义是什么?(3)求他们从A地驾车返回家的过程中,s与t之间的函数关系式.六、解答题(本大题共2个题,每题9分,共18分)150-023.已知,射线AB∥CD,P是直线AC右侧一动点,连接AP,CP,E是射线AB上一动点,过点E的直线分别与AP,CP交于点M,N,与射线CD交于点F,设∠BAP=∠1,∠DCP=∠2.(1)如图1,当点P在AB,CD之间时,求证:∠P=∠1+∠2;(2)如图2,在(1)的条件下,作△PMN关于直线EF对称的△P'MN,求证:∠3+∠4=2(∠1+∠2);(3)如图3,当点P在AB上方时,作△PMN关于直线EF对称的△P'MN,(1)(2)的结论是否仍然成立,若成立,请说明理由;若不成立,请直接写出∠P,∠1,∠2之间数量关系,以及∠3,∠4与∠1,∠2之间数量关系.24.已知一次函数y=﹣3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).(1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.①求点E的坐标;②△AOB与△FOD是否全等,请说明理由;(2)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.参考答案一、选择题(共8小题).1.下列各数为无理数的是()A.﹣1B.0C.D.解:A、﹣1是有理数,故本选项不符合题意;B、0是有理数,故本选项不符合题意;C、是有理数,故本选项不符合题意;D、是无理数,故本选项符合题意.故选:D.2.下列命题为假命题的是()A.对顶角相等B.同位角相等C.互补的两个角不一定相等D.两点之间,线段最短解:A、对顶角相等,是真命题;B、∵两直线平行,同位角相等,∴本选项说法是假命题;C、互补的两个角不一定相等,是真命题;D、两点之间,线段最短,是真命题;故选:B.3.某书店与一所山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量如下(单位:本):300,200,200,300,300,500,则这组数据的众数、中位数分别是()A.300,150B.300,200C.300,300D.600,300解:众数:一组数据中出现次数最多的数据为这组数据的众数,这组数据中300出现了3次,次数最多,所以众数是300;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,6个数据按顺序排列之后,处于中间的数据是300,300,所以中位数是=300;故选:C.4.下面四个数与最接近的是()A.2B.2.5C.2.6D.3解:∵2.42=5.76,2.52=6.25,∴2.42<6<2.52,∴,∴给出的四个数中,与最接近的是2.5.故选:B.5.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1,l2于B,C两点,连接AC,BC,若∠ABC=54°,则∠1的度数为()A.36°B.54°C.72°D.73°解:∵l1∥l2,∠ABC=54°,∴∠2=∠ABC=54°,∵以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,∴AC=AB,∴∠ACB=∠ABC=54°,∵∠1+∠ACB+∠2=180°,∴∠1=72°.6.已知弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系如图所示,则弹簧不挂物体时的长度为()A.12cm B.11cm C.10cm D.9cm解:设弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=kx+b,∵该函数经过点(6,15),(20,22),∴,解得,即弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=0.5x+12,当x=0时,y=12,即弹簧不挂物体时的长度为12cm,故选:A.7.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=﹣kx+k的图象大致是()A.B.C.D.解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k<0,∴﹣k>0,∴一次函数y=﹣kx+k的图象经过一、三、四象限;8.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸解:取AB的中点O,过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r,DE=10,OE=CD=1,AE=r﹣1,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.二、填空题(本大题共8个小题,每小题2分,共16分)9.的平方根是.解:的平方根是,故答案为:±.10.若点P(﹣1,y1)和点Q(﹣2,y2)是一次函数y=﹣x+b的图象上的两点,则y1,y2的大小关系是:y1<y2(填“>,<或=”).解:∵k=﹣1<0,∴y随x的增大而减小,又∵﹣1>﹣2,∴y1<y2.故答案为:<.11.如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°),目标B的位置为(4,210°),则目标C的位置为(3,150°).解:由题意,点C的位置为(3,150°).故答案为(3,150°).12.如表记录了甲、乙、丙、丁四名同学最近五次数学考试成绩的平均分与方差:甲乙丙丁平均分93969693方差(s2) 5.1 5.1 1.2 1.2要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙.解:∵1.2<5.1,∴丙和丁的最近几次数学考试成绩的方差最小,发挥稳定,∵96>93,∴丙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙.故答案为:丙.13.李刚师范大学毕业后参加了某市教育局组织的教师招聘考试,这次考试包括笔试、面试两项,其笔试、面试成绩按3:7的比例确定各人的最终成绩.考试结束后他笔试、面试的成绩分别为90分、96分,那么李刚参加这次招聘考试的最终成绩为94.2分.解:李刚参加这次招聘考试的最终成绩为=94.2(分).故答案为:94.2.14.某果园现有桃树和杏树共500棵,计划一年后桃树增加3%,杏树增加4%,这样果园里这两种果树将增加3.6%,如果设该果园现有桃树和杏树分别为x棵,y棵,则可列方程组为.解:依题意得:.故答案为:.15.已知直线y=x﹣2与y=mx﹣n相交于点M(3,b),则关于x,y的二元一次方程组的解为.解:∵直线y=x﹣2经过点M(3,b),∴b=3﹣2,解得b=1,∴M(3,1),∴关于x,y的二元一次方程组的解为,故答案为.16.如图,在平面直角坐标系中,边长为1的正方形A1B1C1D1(记为第1个正方形)的顶点A1与原点重合,点B1在y轴上,点D1在x轴上,点C1在第一象限内,以C1为顶点作等边△C1A2B2,使得点A2落在x轴上,A2B2⊥x轴,再以A2B2为边向右侧作正方形A2B2C2D2(记为第2个正方形),点D2在x轴上,以C2为顶点作等边△C2A3B3,使得点A3落在x轴上,A3B3⊥x轴,若按照上述的规律继续作正方形,则第2021个正方形的边长为22020.解:∵正方形A1B1C1D1(称为第1个正方形)的边长为1,∴C1D1=1,∵C1A2B2为等边三角形,∵∠B2A2C1=60°,∵A2B2⊥x轴,∴∠C1A2D1=30°,∴A2B2=2C1D1=2=22﹣1,同理得A3B3=4=23﹣1,A4B4=8=24﹣1,…由上可知第n个正方形的边长为:2n﹣1,∴第2021个正方形的边长为:22021﹣1=22020.故答案为:22020.三、计算题(本大题共15分)17.(1)计算:;(2)计算:(+1)2+(+2)(﹣2);(3)用适当的方法解方程组:.解:(1)原式=2﹣+=;(2)原式=2+2+1+3﹣4=2+2;(3)①×3+②得3x+4y=9+5,解得x=2,把x=2代入①得2﹣y=3,解得y=﹣1,所以方程组的解为.四、解答题(本大题共3个题,第18,19题各6分,第20题7分,共19分)18.争创全国文明城市,从我做起.某校在八年级开设了文明礼仪校本课程,为了解学生的学习情况,该校举办了八年级全体学生参加的《创文明城,做文明人》知识竞赛,从中随机抽取了30名学生的成绩(单位:分),整理数据后得到下列不完整的频数分布表和频数直方图:成绩/分人数(频数)78≤x<58282≤x<a8686≤x<129090≤x<b9494≤x<298请根据图表提供的信息回答下列问题:(1)频数分布表中a=5,b=6;(2)补全频数直方图;(3)若成绩不低于90分为优秀,估计该校八年级600名学生中达到优秀等级的人数.解:(1)由频数分布直方图知b=6,则a=30﹣(5+12+6+2)=5,故答案为:5,6;(2)补全频数分布直方图如下:(3)600×=160(人),答:该校八年级600名学生中达到优秀等级的人数约为160人.19.在平面直角坐标系中,已知A,B两点的坐标分别(2,4),(﹣3,1).(1)在平面直角坐标系中,描出点A;(2)若函数y=mx的图象经过点A,求m的值;(3)若一次函数y=kx+b的图象由(2)中函数y=mx的图象经过平移,且经过点B得到,求这个一次函数的表达式,并在直角坐标系中画出该函数对应的图象.解:(1)点A(2,4),如图所示:(2)∵函数y=mx的图象经过点A,∴4=2m,∴m=2;(3)由(2)可得经过点A的函数为y=2x,∵一次函数y=kx+b的图象由函数y=2x经过平移,且经过点B,∴,解得,∴这个一次函数的表达式为y=2x+7,依题意画出图象如图所示;20.请将下列题目的证明过程补充完整:如图,F是BC上一点,FG⊥AC于点G,H是AB上一点,HE⊥AC于点E,∠1=∠2,求证:DE∥BC.证明:连接EF.∵FG⊥AC,HE⊥AC,∴∠FGC=∠HEC=90°.∴FG∥HE(同位角相等,两直线平行).∴∠3=∠4(两直线平行,内错角相等).又∵∠1=∠2,∴∠1+∠3=∠2+∠4,即∠DEF=∠EFC.∴DE∥BC(内错角相等,两直线平行).【解答】证明:连接EF.∵FG⊥AC,HE⊥AC,∴∠FGC=∠HEC=90°.∴FG∥HE(同位角相等,两直线平行).∴∠3=∠4(两直线平行,内错角相等).又∵∠1=∠2,∴∠1+∠3=∠2+∠4,即∠DEF=∠EFC.∴DE∥BC(内错角相等,两直线平行).故答案为:HE,同位角相等,两直线平行;4,两直线平行,内错角相等;∠1+∠3,DEF,内错角相等,两直线平行.五、解答题(本大题共2个题,每题8分,共16分)21.在期末一节复习课上,八年(一)班的数学老师要求同学们列二元一次方程组解下列问题:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建3000m的村路,甲队每天修建150m,乙队每天修建200m,共用18天完成.(1)粗心的张红同学,根据题意,列出的两个二元一次方程,等号后面忘记写数据,得到了一个不完整的二元一次方程组,张红列出的这个不完整的方程组中未知数p表示的是甲工程队修建的天数,,未知数q表示的是乙工程队修建的天数,;张红所列出正确的方程组应该是;(2)李芳同学的思路是想设甲工程队修建了xm村路,乙工程队修建了ym村路.下面请你按照李芳的思路,求甲、乙两个工程队分别修建了多少天?解:(1)方程组中未知数p表示的是:甲工程队修建的天数,未知数q表示的是:乙工程队修建的天数,列出正确的方程组应该是:.故答案为:甲工程队修建的天数,乙工程队修建的天数,;(2)设甲工程队修建了xm村路,乙工程队修建了ym村路,根据题意,得,解得,所以甲工程队修建的天数==12(天),乙工程队修建的天数==6(天).答:甲、乙两个工程队分别修建了12天、6天.22.小明和妈妈元旦假期去看望外婆,返回时,他们先搭乘顺路车到A地,约定小明爸爸驾车到A地接他们回家.一家人在A地见面,休息半小时后,小明爸爸驾车返回家中.已知小明他们与外婆家的距离s(km)和小明从外婆家出发的时间t(h)之间的函数关系如图所示.(1)小明家与外婆家的距离是300km,小明爸爸驾车返回时平均速度是60km/h:(2)点P的实际意义是什么?(3)求他们从A地驾车返回家的过程中,s与t之间的函数关系式.解:(1)由图象可得小明家与外婆家的距离为300km,小明经过2小时到达点A,点A 到小明外婆家的距离=(300﹣2×90)=120(km),∴小明爸爸驾车返回时平均速度==60(km/h),故答案为:300,60;(2)点P表示小明出发2小时到达A地与小明爸爸相遇;(3)设s与t之间的函数关系式为s=kt+b,且过点(2.5,180),(4.5,300),∴,解得,∴s与t之间的函数关系式为s=60t+30(2.5≤t≤4.5).六、解答题(本大题共2个题,每题9分,共18分)150-023.已知,射线AB∥CD,P是直线AC右侧一动点,连接AP,CP,E是射线AB上一动点,过点E的直线分别与AP,CP交于点M,N,与射线CD交于点F,设∠BAP=∠1,∠DCP=∠2.(1)如图1,当点P在AB,CD之间时,求证:∠P=∠1+∠2;(2)如图2,在(1)的条件下,作△PMN关于直线EF对称的△P'MN,求证:∠3+∠4=2(∠1+∠2);(3)如图3,当点P在AB上方时,作△PMN关于直线EF对称的△P'MN,(1)(2)的结论是否仍然成立,若成立,请说明理由;若不成立,请直接写出∠P,∠1,∠2之间数量关系,以及∠3,∠4与∠1,∠2之间数量关系.【解答】(1)证明:如图1中,过点P作PT∥AB.∵AB∥CD,AB∥PT,∴AB∥PT∥CD,∴∠1=∠APT,∠2=∠CPT,∴∠APC=∠APT+∠CPT=∠1+∠2.(2)证明:如图2中,连接PP′.∵∠3=∠MPP′+∠MP′P,∠4=∠NPP′+∠NP′P,∠APC=∠MP′N,∴∠3+∠4=2∠APC,∵∠APC=∠1+∠2,∴∠3+∠4=2(∠1+∠2).(3)结论不成立.结论是:∠P=∠2﹣∠1,∠4﹣∠3=2(∠2﹣∠1).理由:如图3中,设PC交AB于E,AP交NP′于F.∵AB∥CD,∴∠PEB=∠2,∵∠PEB=∠1+∠P,∴∠2=∠P+∠1,∴∠P=∠2﹣∠1.∵∠4=∠P+∠PFN,∠PFN=∠3+∠P′,∠P=∠P′,∴∠4=∠P+∠3+∠P,∴∠4﹣∠3=2∠P=2(∠2﹣∠1),∴∠4﹣∠3=2(∠2﹣∠1).24.已知一次函数y=﹣3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).(1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.①求点E的坐标;②△AOB与△FOD是否全等,请说明理由;(2)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.解:(1)①如图1,连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,∵一次函数y=﹣3x+3的图象分别与x轴,y轴交于A,B两点,∴点A(1,0),点B(0,3),∵点D与点C关于y轴对称,点C(3,0),∴点D(﹣3,0),∵EG⊥OC,EH⊥OB,∴OE平分∠BOC,又∵OB=OC=3,∴OE=BE=EC,∴点E(,);②△AOB≌△FOD,理由如下:设直线DE解析式为y=kx+b,由题意可得:,解得:,∴直线DE解析式为y=x+1,∵点F是直线DE与y轴的交点,∴F(0,1),∴OF=OA=1,又∵OB=OD=3,∠AOB=∠FOD=90°,∴△AOB≌△FOD(SAS);(3)∵点G与点B关于x轴对称,点B(0,3),∴点G(0,﹣3),∵点G(0,﹣3),点C(3,0),∴直线GC的解析式为y=x﹣3,∵点B(0,3),点A(1,0),∴AB2=1+9=10,设点P(a,a﹣3),若AB=AP时,则10=(a﹣1)2+(a﹣3﹣0)2,∴a=0或4,∴点P(0,﹣3)或(4,1);若AB=PB时,则10=(a﹣0)2+(a﹣3﹣3)2,∴a2﹣6a+13=0,∵△<0,∴方程无解,若AP=BP时,则(a﹣1)2+(a﹣3﹣0)2=(a﹣0)2+(a﹣3﹣3)2,∴a=,∴点P(,),综上所述:点P(0,﹣3)或(4,1)或(,).。
2020-2021学年辽宁省沈阳市沈河区八年级(上)期末数学试卷

2020-2021学年辽宁省沈阳市沈河区八年级(上)期末数学试卷一.选择题(下列各题的备选答案中,贿一个答案是正确的每小题2分,共20分)1.(2分)下列各数中,无理数是()A.0.121221222B.C.πD.2.(2分)已知如图DC∥EG,∠C=40°,∠A=70°()A.140°B.110°C.90°D.30°3.(2分)的平方根是()A.﹣B.C.D.4.(2分)下列命题中,是真命题的是()A.如果a>b,那么a2>b2B.两直线被第三条直线所截,截得的内错角相等C.三角形的外角大于三角形的内角D.对顶角相等5.(2分)下列各组线段a、b、c中不能组成直角三角形的是()A.a=7,b=24,c=25B.a=4,b=5,c=6C.a=3,b=4,c=5D.a=9,b=12,c=156.(2分)若点A(﹣2,m)在函数y=﹣x的图象上()A.1B.﹣1C.D.﹣7.(2分)如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)8.(2分)3月12日是我国的植树节,这天有20位同学共植树52棵,其中男生每人植树3棵,若设男生有x人,女生有y人()A.B.C.D.9.(2分)李明参加某单位招聘测试,他的笔试、面试、技能操作得分分别为86分、80分、90分,若依次按照2:3:5的比例确定成绩()A.256分B.86分C.86.2分D.88分10.(2分)已知函数y=kx+b的图象如图,则y=2kx+b的图象可能是()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)﹣8的立方根是.12.(3分)如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.13.(3分)估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)14.(3分)如果将一副三角板按如图方式叠放,那么∠1的大小为.15.(3分)已知某汽车装满油后油箱中的剩余油量y(升)与汽车的行驶路程x(千米)之间具有一次函数关系(如图所示),油箱中剩余油量不能低于5升,那么这辆汽车装满油后至多行驶千米,就应该停车加油.16.(3分)如图,点A坐标为(0,4),点B坐标为(4,2),点B关于直线AD的对称点在y轴上,则点D的坐标为.三.解答题(17.18题每小题分,19题6分,共2)17.(8分)计算:(1)﹣+2÷;(2)﹣×.18.(8分)解方程组:(1);(2).19.(6分)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE⊥EF(1)求证:DC∥AB.(2)求∠AFE的大小.四、(20题8分,21题10分,共18分)20.(8分)我市某中学举行“校园好声音”歌手大赛,甲、乙两班根据初赛成绩各选出5名选手组成甲班代表队和乙班代表队参加学校决赛,两个队各选出的5名选手的决赛成绩(满分100)根据图示信息,整理分析数据如表:平均数(分)中位数(分)众数(分)方差甲班a85c70乙班85b100160(1)填空:甲班2号选手的预赛成绩是分,乙班3号选手的预赛成绩是分,班的预赛成绩更平衡,更稳定;(2)求出表格中a=,b=,c=;(3)学校决定在甲、乙两班中选取预赛成绩较好的5人参加该活动的区级比赛,这5人预赛成绩的平均分数为.21.(10分)在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1);(2)画出△ABC关于y轴对称的图形为△A1B1C1,并写出点B1的坐标为;写出△A1B1C1的面积为;(3)在y轴上画出P点,使得P A+PC的值最小,最小值为.五.(本题10分)22.(10分)小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了43.8元,而两个月前买同重量的这两样菜只要37元,与两个月前相比,但排骨单价却上涨了20%,求:两个月前买的萝卜和排骨的单价分别为多少元?六.(本题10分)23.(10分)如图1,甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时.并以各自的速度匀速行驶,乙车从B地直达A地,两车同时到达A地.甲、乙两车距A地的路程y(千米)(小时)的关系如图2,结合图象信息解答下列问题:(1)乙车的速度是千米/时,乙车行驶的时间t=小时;(2)求甲车从C地按原路原速返回A地的过程中,甲车距A地的路程y与它出发的时间x的函数关系式;(3)直接写出甲车出发多长时间两车相距110千米..七.(本题10分)24.(10分)如图,在Rt△ABC中,∠A=90°,BC=10,点D是直线AC上一动点,DB =DE(DE在BD的左侧).(1)直接写出AB长为;(2)若点D在线段AC上,AD=,求EC长;(3)当BE=2时,直接写出CD长为.八.(本题12分)25.(12分)如图1,直线y=x和直线y=﹣,直线y=﹣x+5与x轴交于点C,PD ⊥x轴于点D,交直线y=(1)点A的坐标为;(2)当QP=OA时,求Q点的坐标及△APQ的面积;(3)如图2,在(2)的条件下,∠OQP平分线交x轴于点M.①直接写出点M的坐标;②点N在直线y=x的上方,当△OQN和△OQM全等时直接写出N点坐标.2020-2021学年辽宁省沈阳市沈河区八年级(上)期末数学试卷参考答案与试题解析一.选择题(下列各题的备选答案中,贿一个答案是正确的每小题2分,共20分)1.(2分)下列各数中,无理数是()A.0.121221222B.C.πD.【解答】解:A、0.121221222是有限小数,故本选项不合题意;B、是分数,故本选项不合题意;C、π是无理数;D、,是整数,故本选项不合题意;故选:C.2.(2分)已知如图DC∥EG,∠C=40°,∠A=70°()A.140°B.110°C.90°D.30°【解答】解:∵∠C=40°,∠A=70°,∴∠ABD=40°+70°=110°,∵DC∥EG,∴∠AFE=110°.故选:B.3.(2分)的平方根是()A.﹣B.C.D.【解答】解:∵(﹣)5=,∴的平方根是,故选:C.4.(2分)下列命题中,是真命题的是()A.如果a>b,那么a2>b2B.两直线被第三条直线所截,截得的内错角相等C.三角形的外角大于三角形的内角D.对顶角相等【解答】解:A、如果a>b,b=﹣22>b2,原命题是假命题;B、两平行线被第三条直线所截,原命题是假命题;C、三角形的外角大于与它不相邻的任意一个内角;D、对顶角相等;故选:D.5.(2分)下列各组线段a、b、c中不能组成直角三角形的是()A.a=7,b=24,c=25B.a=4,b=5,c=6C.a=3,b=4,c=5D.a=9,b=12,c=15【解答】解:A、因为82+154=172,所以能组成直角三角形;B、因为42+52≠52,所以不能组成直角三角形;C、因为33+42=72,所以能组成直角三角形;D、因为98+122=152,所以能组成直角三角形.故选:B.6.(2分)若点A(﹣2,m)在函数y=﹣x的图象上()A.1B.﹣1C.D.﹣【解答】解:当x=﹣2时,y=﹣.故选:A.7.(2分)如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)【解答】解:根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选:D.8.(2分)3月12日是我国的植树节,这天有20位同学共植树52棵,其中男生每人植树3棵,若设男生有x人,女生有y人()A.B.C.D.【解答】解:设男生有x人,女生有y人,故选:D.9.(2分)李明参加某单位招聘测试,他的笔试、面试、技能操作得分分别为86分、80分、90分,若依次按照2:3:5的比例确定成绩()A.256分B.86分C.86.2分D.88分【解答】解:=86.2(分),即李明的成绩是86.2分.故选:C.10.(2分)已知函数y=kx+b的图象如图,则y=2kx+b的图象可能是()A.B.C.D.【解答】解:∵由函数y=kx+b的图象可知,k>0,∴y=2kx+b=3kx+1,2k>6,∴2k>k,可见一次函数y=2kx+b图象与x轴的夹角.∴函数y=5kx+1的图象过第一、二、三象限且与x轴的夹角大.故选:C.二、填空题(每小题3分,共18分)11.(3分)﹣8的立方根是﹣2.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣6.12.(3分)如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.【解答】解:∵y=x=2经过P(m,4),∴4=m+2,∴m=2,∴直线l6:y=x+2与直线l2:y=kx+b相交于点P(2,4),∴,故答案为13.(3分)估计与0.5的大小关系是:>0.5.(填“>”、“=”、“<”)【解答】解:∵﹣0.5=﹣=,∵﹣6>0,∴>0,∴>5.5.故答案为:>.14.(3分)如果将一副三角板按如图方式叠放,那么∠1的大小为105°.【解答】解:如图所示:由题意可得,∠ABC=90°,∠C=60°,∴∠CBD=∠ABC﹣∠ABD=90°﹣45°=45°,∵∠1是△BCE的外角,则∠1=∠CBD+∠C=45°+60°=105°.故答案为105°.15.(3分)已知某汽车装满油后油箱中的剩余油量y(升)与汽车的行驶路程x(千米)之间具有一次函数关系(如图所示),油箱中剩余油量不能低于5升,那么这辆汽车装满油后至多行驶450千米,就应该停车加油.【解答】解:设该一次函数解析式为y=kx+b,将(400,10),0)代入y=kx+b中,,解得:,∴该一次函数解析式为y=﹣0.8x+50.当y=﹣0.1x+50=4时,x=450.故答案为:45016.(3分)如图,点A坐标为(0,4),点B坐标为(4,2),点B关于直线AD的对称点在y轴上,则点D的坐标为(﹣1,2)或(﹣﹣1,2).【解答】解:∵点A坐标为(0,4),5),∴AB==2,∵由题意点D在∠CAB的角平分线或∠CAB的外角平分线上,作DH⊥AB于H.∵DC⊥AC,DH⊥AB,∴DC=DH,设DC=DH=m,则有•AC•BC=•AB•DH,∴2×4=7m+2m,∴m=﹣1,∴D(﹣8,当D′在∠CAB的外角平分线上时,同法可得CD′=,′D′(﹣,2)故答案为:(﹣1﹣5.三.解答题(17.18题每小题分,19题6分,共2)17.(8分)计算:(1)﹣+2÷;(2)﹣×.【解答】解:(1)﹣+2÷=2﹣+2=+2;(2)﹣×=1+﹣2=﹣1.18.(8分)解方程组:(1);(2).【解答】解:(1),把②代入①得y﹣9+3y=3,解得y=4,把y=4代入②得x=4﹣9=﹣5,所以方程组的解为;(2),①×2+②得10x+3x=34+6,解得x=3,把x=3代入②得6+4y=5,解得y=﹣8,所以方程组的解为.19.(6分)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE⊥EF(1)求证:DC∥AB.(2)求∠AFE的大小.【解答】证明:(1)∵AD∥BC,∴∠ABC+∠DAB=180°,∵∠DCB=∠DAB,∴∠ABC+∠DCB=180°,∴DC∥AB;(2)解:∵DC∥AB,∠DEA=30°,∴∠EAF=∠DEA=30°,∵AE⊥EF,∴∠AEF=90°,∴∠AFE=180°﹣∠AEF﹣∠EAF=60°.四、(20题8分,21题10分,共18分)20.(8分)我市某中学举行“校园好声音”歌手大赛,甲、乙两班根据初赛成绩各选出5名选手组成甲班代表队和乙班代表队参加学校决赛,两个队各选出的5名选手的决赛成绩(满分100)根据图示信息,整理分析数据如表:平均数(分)中位数(分)众数(分)方差甲班a85c70乙班85b100160(1)填空:甲班2号选手的预赛成绩是80分,乙班3号选手的预赛成绩是100分,甲班的预赛成绩更平衡,更稳定;(2)求出表格中a=85,b=80,c=85;(3)学校决定在甲、乙两班中选取预赛成绩较好的5人参加该活动的区级比赛,这5人预赛成绩的平均分数为94.【解答】解:(1)甲班2号选手的预赛成绩是80分,乙班3号选手的预赛成绩是100分,由折线统计图知,甲班预赛成绩波动幅度小,∴甲班的预赛成绩更平衡,更稳定;故答案为:80,100,甲;(2)甲班成绩重新排列为75、80、85,则甲班成绩的平均数a=×(75+80+85+85+100)=85(分),甲班的众数c=85(分),乙班成绩重新排列为70、75、100,则中位数b=80(分),故答案为:85,80;(3)学校选取的5名同学的预赛成绩为:100,100,85;则这6人预赛成绩的平均分数为:(100×3+85×2)÷2=94 (分).21.(10分)在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1)(5,5);(2)画出△ABC关于y轴对称的图形为△A1B1C1,并写出点B1的坐标为(﹣2,1);写出△A1B1C1的面积为5;(3)在y轴上画出P点,使得P A+PC的值最小,最小值为2.【解答】解:(1)如图,平面直角坐标系如图所示,5).故答案为:(5,8).(2)如图,△A1B1C4即为所求作,并写出点B1的坐标为(﹣2,7)1B1C3的面积=××2,故答案为:(﹣4,1),5.(3)如图,点P即为所求作=2,故答案为:2.五.(本题10分)22.(10分)小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了43.8元,而两个月前买同重量的这两样菜只要37元,与两个月前相比,但排骨单价却上涨了20%,求:两个月前买的萝卜和排骨的单价分别为多少元?【解答】解:设两个月前买的萝卜的单价为x元,排骨的单价为y元,依题意得:,解得:.答:两个月前买的萝卜的单价为1元,排骨的单价为35元.六.(本题10分)23.(10分)如图1,甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时.并以各自的速度匀速行驶,乙车从B地直达A地,两车同时到达A地.甲、乙两车距A地的路程y(千米)(小时)的关系如图2,结合图象信息解答下列问题:(1)乙车的速度是80千米/时,乙车行驶的时间t=6小时;(2)求甲车从C地按原路原速返回A地的过程中,甲车距A地的路程y与它出发的时间x的函数关系式;(3)直接写出甲车出发多长时间两车相距110千米. 1.45小时.【解答】解:(1)由图象可知:乙车速度为(480﹣400)÷1=80(千米/时),乙车行驶的时间t=480÷80=6(小时),故答案为:80,8;(2)由题可知,甲从出发到返回A地需5小时,∴函数图象过点(5,8),300),设甲车距A地的路程y与它出发的时间x的函数关系式为y=kx+b(k≠0),则,解得,∴y=﹣120x+600;(3)甲车的速度为300÷6.5=120(千米/时),①相遇前,设甲车出发m小时两车相距110千米,则120m+80(m+1)+110=480,解得m=2.45,②相遇后,由图象可知:甲到达C地时,甲车与乙车的距离最大,此时乙行驶的路程为80×(2.5+8)=280(千米),甲乙两车的最大距离为280+300﹣480=100(千米),故相遇后,两车不可能相距110千米,∴甲车出发1.45小时两车相距110千米,故答案为:1.45小时.七.(本题10分)24.(10分)如图,在Rt△ABC中,∠A=90°,BC=10,点D是直线AC上一动点,DB =DE(DE在BD的左侧).(1)直接写出AB长为5;(2)若点D在线段AC上,AD=,求EC长;(3)当BE=2时,直接写出CD长为3.【解答】解:(1)∵在Rt△ABC中,∠A=90°,BC=10,∴AB2+AC2=7AB2=BC2=100,∴AB=AC=2,故答案为:5;(2)过E作EF⊥AC交AC的延长线于F,则∠F=∠A=∠BDE=90°,∴∠EDF+∠ADB=∠ADB+∠ABD=90°,∴∠EDF=∠ABD,在△ABD与△FDE中,,∴△ABD≌△FDE(AAS),∴EF=AD=,DF=AB=5,∴CF=AF﹣AC=6﹣6=,∴CE==2;(3)∵∠BDE=90°,DB=DE,∴DE=BD=,由(2)知△ABD≌△FDE,∴DF=AB=3,EF=AD,∵AB=AC,∴DF=AC,∴CF=AD=EF,∴EF=CF===2,∴CD=5﹣2,故答案为:3.八.(本题12分)25.(12分)如图1,直线y=x和直线y=﹣,直线y=﹣x+5与x轴交于点C,PD ⊥x轴于点D,交直线y=(1)点A的坐标为(4.3);(2)当QP=OA时,求Q点的坐标及△APQ的面积;(3)如图2,在(2)的条件下,∠OQP平分线交x轴于点M.①直接写出点M的坐标(5,0);②点N在直线y=x的上方,当△OQN和△OQM全等时直接写出N点坐标(3,6)或(1.4,4.8).【解答】解:(1)由题意可得:,解得:,∴点A的坐标为(4.4);故答案为:(4.3);(2)∵点A的坐标为(4.3),∴OA==5,∵直线y=﹣x+7,∴C(10,0),设P(n,﹣n+5),n),∴PQ=n﹣(﹣n﹣5,∵QP=OA,∴n﹣5=5,∴P(3,1),6),∴S△APQ=×5×(2﹣4)=10,∴Q(8,2),S△APQ=10;(3)①作MH⊥OQ,∵MQ平分∠OQP.∴HM=DM,设M(m,0)(m>0),DM=3﹣m,∴HM=8﹣m,∵sin∠QOD==,∵Q(8,7),∴OQ==10,∴,解得:m=5,∴M(5,5),故答案为:(5,0);②当四边形NOMQ为平行四边形时,△OQN≌△QOM,∴NQ由OM平移得到,M(4,6),纵坐标加6,∵O(6,0),∴N(3,5);当△NOQ与△MOQ关于OQ对称时,当△NOQ与△MOQ关于0Q对称时,△NOQ≌△MOQ,设N(a,b),∵sin∠QOD===7.6,∴=0.4,∵OM=5,∴HM=3,∴NM=6HM=6,作NF⊥x轴于F,则∠FNM=∠QOD,∴FN=MN•cos∠QOD=6×=4.8,FM=MN•sin∠QOD=4×=3.4,OF=MO﹣FM=5﹣3.5=1.4,∴N(8.4,4.7);综上所述,符合条件的N点的坐标为(3,4.5).故答案为:(3,6)或(5.4.。
人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.若代数式4xx -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4C .x ≠0D .x ≠42.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007平方毫米,将数字0.0000007用科学记数法可以表示为( ) A .6710-⨯ B .60.710-⨯C .7710-⨯D .87010-⨯3.下列式子,成立的是( ) A .a 2·a 3=a 6 B .(a 2)3=a 5C .a –1=–aD .(–a +b )(–a –b )=a 2–b 24.如果把分式xyx y+中的x 和y 都扩大2倍,那么分式的值( )A .扩大4倍B .扩大2倍C .不变D .缩小2倍5.若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( ) A .13 B .13或17C .10D .176.在平面直角坐标系中,将点A (–1,2)向右平移4个单位长度得到点B ,则点B 关于y 轴的对称点B ′的坐标为( ) A .(–3,2) B .(3,–2) C .(3,2)D .(2,–3)7.如图,在△ABC 和△BDE 中,点C在边BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠DB .∠EC .∠EBDD .∠ABF8.点O 在ABC △(非等边三角形)内,且OA OB OC ==,则点O为( )A .ABC △的三条角平分线的交点题号一 二 三 总分 得分B .ABC △的三条高线的交点C .ABC △的三条边的垂直平分线的交点D .ABC △的三条边上的中线的交点9.如图,AE ∥DF ,AE =DF ,则添加下列条件还不能使△EAC≌△FDB 的为( )A .AB =CD B .CE ∥BFC .∠E =∠FD .CE =BF10.如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积为10,AB =6,DE =2,则AC 的长是( )A .4B .4.5C .4.8D .5 11.从3-,2-,1-,32-,1,3这六个数中,随机抽取一个数,记为a .关于x 的方程211x ax +=-的解是正数,那么这6个数中所有满足条件的a 的值有( ) A .3个B .2个C .1个D .4个12.如图,在等边三角形ABC 中,BC 边上的中线AD =6,是AD 上的一个动点,F 是边AB 上的一个动点,在点F 运动的过程中,EB +EF 的最小值是A .5B .6C .7D .8第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若23a b =,则a b b -=__________.14.若3a b +=,1ab =,则22ab +=__________.15.若一个多边形的内角和是900º,则这个多边形是__________边形.16.如图,依据尺规作图的痕迹,计算α∠=__________°.17.已知ABC ∆中,它的三边长a 、b 、c 都是正整数,其中a 是最长边,且满足22106340a b a b +--+=,则符合条件的c密线学校 班级 姓名 学号密 封 线 内 不 得 答 题值为__________.18.如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°−12∠ABC ;④BD 平分∠ADC ;⑤∠BDC =12∠BAC .其中正确的结论有__________(填序号)三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分) (1)解方程:22+11x x x x+=+;(2)解方程:2227361x x x x x -=+--. 20.(本小题满分6分)(1)因式分解22(2)(22)1a ab b a b -++-++;(2)先化简,再求值24512(1)(),11a a a a a a-+-÷----其中1a =-. 21.(本小题满分6分)如图,点B 、C 、D 、E 在同一条直线上,已知AB =FC ,AD =FE ,BC =DE . (1)求证:△ABD ≌△FCE .(2)AB 与FC 的位置关系是_________(请直接写出结论)22.(本小题满分8分)如图,在△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC . (1)求∠ECD 的度数; (2)若CE =5,求BC 的长.23.(本小题满分8分)超市用2500元购进某品牌苹果,以每千克8元的单价试销.销售良好,超市又安排4500元补货.补货进价比上次每千克少0.5元,数量是上次的2倍.(1)求两次进货的单价分别是多少元.(2)当售出大部分后,余下200千克按7.5折售完,求两次销售苹果的毛利.24.(本小题满分10分)如图,△ABC 中,∠BAC =90°,AD⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于E ,F 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:AE=AF.25.(本小题满分10分)如图,网格中有格点△ABC与△DEF.(1)△ABC与△DEF是否全等?(不说理由.)(2)△ABC与△DEF是否成轴对称?(不说理由)(3)若△ABC与△DEF成轴对称,请画出它的对称轴l.并在直线l上画出点P,使PA+PC最小.26.(本小题满分12分)探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.(2)运用你所得到的公式计算:①10.7×9.3;②(23)(23)x y z x y z+---.27.(本小题满分12分)在△ABC中,∠BAC=100°,∠∠ACB,点D在直线BC上运动(不与点B、C点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=(1)如图①,当点D在边BC上时,且n=36°BAD=__________,∠CDE=__________;(2)如图②,当点D运动到点B变,请猜想∠BAD和∠CDE(3)当点D运动到点C的右侧时,其他条件不变,∠和∠CDE还满足(2)中的数量关系吗?请画出图形,明理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一1 2 3 4 5 6 7 8 9 10 11 12 DCDBDACCDABB二、13.【答案】3-【解析】∵23a b =,∴设a =2k ,b =3k (k ≠0),则23133a b k k b k --==-, 故答案为:13-.14.【答案】7【解析】∵a +b =3,ab =1,∴22a b +=(a +b )2–2ab =9–2=7;故答案为7. 15.【答案】七【解析】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为:7. 16.【答案】56【解析】如图,∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DAC =∠ACB =68°, ∵由作法可知,AF 是∠DAC 的平分线,∴∠EAF =12∠DAC =34°,∵由作法可知,EF 是线段AC 的垂直平分线,∴∠AEF =90°, ∴∠AFE =90°−34°=56°,∴∠α=56°.故答案为:56.17.【答案】6或7【解析】a 2+b 2–10a –6b +34=0, a 2–10a +25+b 2–6b +9=0,(a –5)2+(b –3)2=0, 则a –5=0,b –3=0,解得,a =5,b =3, 则5–3<c <3+5,即2<c <8,∴△ABC 的最大边c 的值为6或7, 故答案为:6或7. 18.【答案】①②③⑤【解析】∵AD 平分∠EAC ,∴∠EAC =2∠EAD , ∵∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,∴①正确; ∵AD ∥BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB =2∠DBC ,∴∠ACB =2∠ADB ,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ABC+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°−(∠DAC+∠ACD)=180°−12(∠EAC+∠ACF)=180°−12(∠ABC+∠ACB+∠ABC+∠BAC)=180°−12(180°+∠ABC)=90°−12∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°−12∠ABC,∴∠ADB不一定等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴∠BDC=12∠BAC,∴⑤正确;故答案为:①②③⑤.三、19.【解析】(1)方程两边都乘x(x+1),得x2+x2+x=2(x+1)2,解得:x=−23,检验:当x=−23时,x(x+1)≠0,∴x=−23是原方程的解.(3分)(2)去分母得:7x−7+3x+3=6x,解得:x=1,经检验x=1是增根,分式方程无解.(6分)20.【解析】(1)原式=(a2–2ab+b2)–(2a–2b)+1=(a–b)2–2(a–b)+1=(a–b–1)2.(3分)(2)原式()()()211452(2)111a a a a aa a a a+--+--=÷=---•()12a aa-=-a(a–2当a=–1时,原式=–1×(–1–2)=3.(6分)21.【解析】(1)∵BC=DE,∴BC+CD=DE+CD,即BD=CE.在△ABD和△FCE中,AB FCAD FEBD CE=⎧⎪=⎨⎪=⎩,∴△ABD≌△FCE(SSS).(4分)(2)AB∥FC.(6分)由(1)可知△ABD≌△FCE,∴∠B=∠FCE(全等三角形的对应角相等),∴AB∥FC(同位角相等,两直线平行).22.【解析】(1)∵DE垂直平分AC,∠A=36°,∴CE=AE,∴∠ECD=∠A=36°;(4分)(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BEC =∠A +∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.(8分)23.【解析】(1)设第一次进货的单价是x 元,则第二次进货的单价是(0.5)x -元,根据题意,得2500450020.5x x ⨯=-,解得5x =. 经检验:5x =是原方程的解.第二次进货的单价是:50.5 4.5()-=元.答:第一次进货的单价是5元,第二次进货的单价是4.5元.(4分)(2)两次销售苹果的毛利:25004500200820080.752500450046005 4.5⎛⎫+-⨯+⨯⨯--=⎪⎝⎭(元). 答:两次销售苹果的毛利为4600元.(8分) 24.【解析】(1)如图所示,射线BF 即为所求:(4分)(2)证明:∵AD ⊥BC ,∴∠ADB =90°,∴∠BED +∠EBD =90°,∵∠BAC =90°,∴∠AFE +∠ABF =90°,(7分) ∵∠EBD =∠ABF ,∴∠AFE =∠BED ,∵∠AEF =∠BED ,∴∠AEF =∠AFE ,∴AE =AF .(10分) 25.【解析】(1)全等.(3分)根据坐标系可以看出AB DEBC EFAC DF =⎧⎪=⎨⎪=⎩,∴△ABC ≅△DEF ;(2)成轴对称.(6分)根据坐标系可以看出△ABC 与△DEF 关于直线l 成轴对称; (3)如图所示:点P 即为所求.(10分)26.【解析】(1)a 2–b 2=(a +b )(a −b );平方差.(6分)由图知:大正方形减小正方形剩下的部分面积为a 2–b 2; 拼成的长方形的面积:(a +b )×(a −b ),所以得出:a 2–b 2=(a +b )(a −b );故答案为:a 2–b 2=(a +b )(a −b );平方差. (2)①原式=(10+0.7)×(10–0.7) =102–0.72 =100–0.49 =99.51.(9分)②原式=(x –3z +2y )(x –3z –2y ) =(x –3z )2–(2y )2 =x 2–6xz +9z 2–4y 2.(12分)27.【解析】(1)∠BAD =∠BAC –∠DAC =100°–36°=64°.∵在△ABC 中,∠BAC =100°,∠ABC =∠ACB , ∴∠ABC =∠ACB =40°,∴∠ADC =∠ABC +∠BAD =40°+64°=104°. ∵∠DAC =36°,∠ADE =∠AED , ∴∠ADE =∠AED =72°,∴∠CDE =∠ADC –∠ADE =104°–72°=32°. 故答案为64°,32°;(4分)(2)∠BAD =2∠CDE ,理由如下:(5分) 如图②,在△ABC 中,∠BAC =100°, ∴∠ABC =∠ACB =40°. 在△ADE 中,∠DAC =n ,∴∠ADE =∠AED =1802n︒-.(6分)∵∠ACB =∠CDE +∠AED ,∴∠CDE =∠ACB –∠AED =40°–1802n ︒-=1002n -︒. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =n –100°,∴∠BAD =2∠CDE ;(8分) (3)∠BAD =2∠CDE ,理由如下: 如图③,在△ABC 中,∠BAC =100°,∴∠ABC =∠ACB =40°,∴∠ACD =140°.(9分) 在△ADE 中,∠DAC =n , ∴∠ADE =∠AED =1802n︒-.(10分)∵∠ACD =∠CDE +∠AED , ∴∠CDE =∠ACD –∠AED =140°–1802n ︒-=1002n︒+. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =100°+n , ∴∠BAD =2∠CDE .(12分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列分式中,属于最简分式的是( )A .1113xB .221xx +C .211x x +-D .11x x --3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,5cm ,8cm B .3cm ,3cm ,6cm C .3cm ,4cm ,5cmD .1cm ,2cm ,3cm4.如果一个多边形的每一个内角都是108°,那么这个多边形是( ) A .五边形 B .六边形C .七边形D .八边形5.下列运算正确的是( ) A .236a a a ⋅= B .220a a ÷=C .2353()a b a b =D .752a a a ÷=6.下列各式分解因式正确的是( ) A .()()2919191x x x -=+- B .()()422111a a a -=+- C .()()228199a b a b a b --=--+D .()()()32a ab a a b a b -+=-+-7.已知ab ≠0,则坐标平面内四个点A (a ,b ),B (a ,–b ),C (–a ,b ),D (–a ,–b )中关于y 轴对称的是( ) A .A 与B ,C 与DB .A 与D ,B 与C C .A 与C ,B 与DD .A 与B ,B 与C8.如图,△ABC ≌△ADE ,若∠E =70°,∠D =30°,∠CAD =35°,则∠BAD 的度数为( )A .40°B .45°C .50°D .55°9.光明家具厂生产一批学生课椅,计划在30天内完成并交付题号一 二 三 总分 得分不得答题使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为( )A.3020023100xx+=+B.3020023100xx-=+C.3020023100xx+=-D.3020023100xx-=-10.解关于x的方程6155x mx x-+=--(其中m为常数)产生增根,则常数m的值等于( )A.–2 B.2C.–1 D.111.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.6cm B.7cmC.8cm D.9cm12.如图,BP平分ABC∠交CD于点F,DP平分ADC∠交AB于点E,若40A∠=︒,38P∠=︒,则C∠的度数为( )A.36︒B.39︒C.38︒D.40︒第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.一种细菌的半径是0.00003厘米,数据0.00003数法表示为_________.14.计算:2232aa a a---=_________.15.若分式33xx--的值为零,则x=_________.16.如图,ABC∆中,90C∠=︒,30A∠=︒,AB的垂直平分线交于D,交AB于E,2CD=,则AC=_________.17.在等腰ABC∆中,一腰上的高与另一腰的夹角为26︒角的度数为__________.18.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC线与AB的垂直平分线交于点O,将∠C沿EF(E在上,F在AC上)折叠,点C与点O恰好重合,则∠为________度.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:(1)()()22x y x y x ---;(2)2344(1)11x x x x x ++-+÷++.20.(本小题满分6分)因式分解:(1)4x 2–16;(2)(x +y )2–10(x +y )+25.21.(本小题满分6分)如图,AD 与BC 交于E ,∠1=∠2=∠3,∠4=∠5.求证:BD =E C .22.(本小题满分8分)如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .23.(本小题满分8分)如图,△ABC 的顶点均在格点上.(1)分别写出点A ,点B ,点C 的坐标.(2)若△A 'B 'C '与△ABC 关于y 轴对称,在图中画出△A 'B 'C ',并写出相应顶点的坐标.24.(本小题满分10分)如图,ABC ∆与DCB ∆中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =.(1)求证:ABC DCB ∆≅∆;(2)当50AEB ∠=︒,求EBC ∠的度数.25.(本小题满分10分)嘉嘉同学动手剪了如图①所示的正方形与长方形卡片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________. (2)如果要拼成一个长为(a +2b ),宽为(a +b )的大长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张.26.(本小题满分12分)市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要30天;若由甲队先做10天,剩下的工程由甲、乙合做12天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在35天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?27.(本小题满分12分)如图,在ABC ∆中,已知45ABC ∠=,过点C 作CD AB ⊥于点D ,过点B 作BM AC ⊥于点M ,连接MD ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题故答案为:11a --.15.【答案】–3【解析】依题意,得|x |–3=0且x –3≠0,解得x =–3.故答案是:–3.16.【答案】6【解析】连接BD ,∵在△ABC 中,∠C =90°,∠A =30°,∴∠ABC =60°, ∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴AD =BD ,DE ⊥AB ,∴∠ABD =∠A =30°,∴∠DBC =30°, ∵CD =2,∴BD =2CD =4,∴AD =4,∴AC =6.17.【答案】58°或32°【解析】①如图①,∵AB =AC ,∠ABD =26°,BD ⊥AC ,∴∠A =64°,∴∠ABC =∠C =(180°–64°)÷2=58°;②如图②,∵AB =AC ,∠ABD =26°,BD ⊥AC , ∴∠BAC =26°+90°=116°,∴∠ABC =∠C =(180°–116°)÷2=32°,故答案为:58°或32°.18.【答案】50°【解析】如图,连接OB ,OC ,∵∠BAC =50°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×50°=25°.又∵AB =AC ,∴∠ABC =∠ACB =65°.∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =25°,∴∠OBC =∠ABC –∠ABO =65°–25°=40°.∵AO 为∠BAC 的平分线,AB =AC ,∴直线AO 垂直平分BC ,∴OB =OC ,∴∠OCB =∠OBC =40°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,题∴OE =CE .∴∠COE =∠OCB =40°;在△OCE 中,∠OEC =180°–∠COE –∠OCB =180°–40°–40°=100°,∴∠CEF =12∠CEO =50°.故答案为:50°. 三、19.【解析】(1)原式=22222x xy y xy x -+-+=2233x xy y -+;(3分)(2)原式=231x+11(2)x x x x --+⨯++()(1)=223111(2)x x x x -++⨯++=2(2)(2)11(2)x x x x x -++⨯++=22xx -+.(6分)20.【解析】(1)4x 2–16=4(x 2–4)=4(x +2)(x –2);(3分) (2)(x +y )2–10(x +y )+25 =(x +y –5)2.(6分) 21.【解析】1=2314,43AEC ABD ∠∠=∠∠=∠+∠∠=∠+∠,,∴AEC ABD ∠=∠.(2分)45∠=∠,AB AE =∴.在ABD △和AEC 中1=2AB AE ABD AEC ∠∠⎧⎪=⎨⎪∠=∠⎩,(4分)∴ABD AEC ≅.∴BD =EC .(6分)22.【解析】∵五边形ABCDE 的内角都相等,∴∠C =∠D =∠AED =180°×(5–2)÷5=108°,(2分)又EF 平分∠AED , ∴°1542FED AED ∠=∠=,(4分)∴在四边形DEFC 中360EFC D C FED ︒∠=-∠-∠-∠=90°,∴EF ⊥BC .(8分)23.【解析】(1)点A (3,4),B (1,2),C (5,1(3分)(2)如图所示,△A 'B 'C '即为所求,(5分)点A ′(﹣3,4),B ′(﹣1,2),C ′(﹣5,1).(8密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.【解析】(1)在△ABE 和△DCE中,A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE =EC ,∠ABE =∠DCE ,(4分)∴∠EBC =∠ECB ,∵∠EBC +∠ABE =∠ECB +∠DCE ,∴∠ABC =∠DBC ,(6分)在△ABC 和△DCB中,A DAB DC ABC DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA );(8分) (2)∵∠AEB =50°,∴∠EBC +∠ECB =50°, ∵∠EBC =∠ECB ,∴∠EBC =25°.(10分)25.【解析】(1)这个乘法公式是(a +b )2=a 2+2ab +b 2,故答案为:(a +b )2=a 2+2ab +b 2;(4分)(2)要拼成一个长为(a +2b ),宽为(a +b )的大长方形,根据(a +2b )(a +b )=a 2+3ab +2b 2,则需要1号卡片1张,2号卡片2张,3号卡片3张.故答案为:1;2;3.(10分)26.【解析】(1)设乙队单独完成这项工程需要x 天,依题意,得:101212130x ++=,解得x =45,经检验,x =45是所列分式方程的解,且符合题意. 答:乙队单独完成这项工程需要45天.(6分) (2)甲乙两队全程合作需要1÷(11+3045)=18(天),甲队单独完成该工程所需费用为3.5×30=105(万元); ∵乙队单独完成该工程需要45天,超过35天的工期, ∴不能由乙队单独完成该项工程;甲、乙两队全程合作完成该工程所需费用为(3.5+2)×18=99(万元).∵105>99,∴在不超过计划天数的前提下,由甲、乙两队全程合作完成该工程省钱.(12分) 27.【解析】(1)∵45ABC ∠=,CD AB ⊥,∴45ABC DCB ∠=∠=,∴BD DC =,∵90BDC MDN ∠=∠=,∴BDN CDM ∠=∠,(3分) ∵CD AB ⊥,BM AC ⊥, ∴90ABM A ACD ∠=-∠=∠,在DBN ∆和DCM ∆中,BDN CDM BD DCDBN DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DBN ∆≌DCM ∆;(6分) (2)结论:NEME CM ,证明:由(1)DBN ∆≌DCM ∆可得DM DN =. 作DF MN ⊥于点F , 又ND MD ⊥,∴DF FN =,在DEF ∆和CEM ∆中,DEF CEM DFE CMEDE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DEF ∆≌CEM ∆,∴EF EM =,DF CM =,∴CM DF FN NE FE NE ME ===-=-.(12分)。
辽宁省沈阳市和平区2020-2021学年八年级上学期期末数学试题及参考答案
【分析】
根据勾股定理求出三边的长度,再判断即可.
【详解】
解:由勾股定理得: ,是有理数,不是无理数;
,是无理数;
,是无理数,
即网格上的△ABC三边中,边长为无理数的边数有2条,
故选:C.
【点睛】
本题考查了无理数和勾股定理,能正确根据勾股定理求出三边的长度是解此题的关键.
5.B
【分析】
由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.
【分析】
根据立方根的定义求解即可.
【详解】
解:-27的立方根是-3,故答案为-3.
【点睛】
本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关键.
12.二
【分析】
根据已知求得k,b的符号,再判断直线y=3x-2经过的象限.
【详解】
解:∵k=3>0,图象过一三象限,b=-2<0过第四象限
∴这条直线一定不经过第二象限.
②直接写出甲出发h后与丙相距10km.
25.如图1所示,直线l:y=k(x﹣1)(k>0)与x轴正半轴,y轴负半轴分别交于A,B两点.
(1)当OA=OB时,求点A坐标及直线l的函数表达式;
(2)在(1)的条件下,如图2所示,设C为线段AB延长线上一点,作直线OC,过AB两点分别作AD⊥OC于点D.BE⊥OC于点E.若AD= ,求BE的长;
设水深x尺,则芦苇长(x+1)尺,
由勾股定理得:
解得:x=12,
∴这个水池的深度是12尺.
故选D.
【点睛】
本题考查正确运用勾股定理.善于观察题目的信息建立数学模型是解题的关键.
7.D
【分析】
根据“若环绕大树3周,则绳子还多5尺;若环绕大树4周,则绳子又少了2尺”,列出二元一次方程组即可.
辽宁省鞍山市第二十六中学2023-2024学年数学八上期末调研模拟试题【含解析】
辽宁省鞍山市第二十六中学2023-2024学年数学八上期末调研模拟试题模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图,在ABC ∆中,90C =∠,6AB =,3AC =,以点A 为圆心,小于AC 长为半径画弧,分别交AB ,AC 于点E F ,,为圆心,大于EF 长为半径画弧,两弧交于点G ,作射线AG ,交BC 于点D ,则D 到AB 的距离为()A .32B C .3D .3322.如图,△ABC 的外角∠ACD 的平分线CP 与∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP 的度数是()A .30°;B .40°;C .50°;D .60°.3.如图,在△ABC 中,AD 为BC 边上的中线,DE 为△ABD 中AB 边上的中线,△ABC 的面积为6,则△ADE 的面积是()A .1B .32C .2D .524.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+65.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19B.18C.16D.152,则x的值为()A.4B.8C.﹣4D.﹣57.如图,已知△ABC,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接C D.若CD=AC,∠A=50°,则∠ACB的度数为()A.90°B.95°C.105°D.110°8.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差 3.6 3.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A .甲B .乙C .丙D .丁9.一个多边形的外角和等于它的内角和的12倍,那么这个多边形从一个顶点引对角线的条数是()条A .3B .4C .5D .610.下列各组数中,是方程2x-y=8的解的是()A .1,2x y =⎧⎨=-⎩B .2,0x y =⎧⎨=⎩C .0.5,7x y =⎧⎨=-⎩D .5,2x y =⎧⎨=-⎩二、填空题(每小题3分,共24分)11.在△ABC 中,∠A :∠B :∠C =2:3:4,则∠C =_____.12.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC =_____度.13.请写出一个3-到2-之间的无理数:_________.14.当a =____________时,分式44a a --的值为零.15.已知()()24936x x x mx +-=+-,则m 的值为__________.16.若等腰三角形的一个内角比另一个内角大30︒,则等腰三角形的顶角的度数为________.17.一组数据1,2,a 的平均数为2,另一组数据,1,,1,2a -的中位数为___________.有意义,则x 的取值范围是__________三、解答题(共66分)19.(10分)如图,在正五边形ABCDE 中,请仅用无刻度的直尺........,分别按下列要求作图。
2020--2021 学年上学期人教版 八年级数学试题
2020-2021上学期人教版八年级数学期末试卷一.选择题(共12小题)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果高于海平面200米记为+200米,那么低于海平面300米应记为()A.﹣300米B.+500米C.+300米D.﹣100米2.设三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,则a2017+b2017的值为()A.0B.﹣1C.1D.23.设■,●,▲分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么以下方案不正确的是()A.B.C.D.4.已知方程x2k﹣1+k=0是关于x的一元一次方程,则方程的解等于()A.﹣1B.1C.D.﹣5.点A的坐标(x,y)满足(x+3)2+|y+2|=0,则点A的位置在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,已知直线l1、l2经过坐标原点O,且l1与x轴所夹锐角为15°,l2与y轴所夹锐角为30°.在直线l1和l2之间依次构造正方形A1B1C1A2、正方形A2B2C2A3,正方形A3B3C3A4正方形A4B4C4A5…点A1、点A2、点A3、点A4、点A5…依次落在直线l1上,点B1、点B2、点B3、点B4…依次落在直线l2上,且A1B1=1,则点B2020的坐标为()A.(22018,22018)B.(22017,22017)C.(22018,22018)D.(22018,22018)7.如图形状的四张纸板,按图中线经过折叠可以围成一个直三棱柱的是()A.B.C.D.8.用一个平面去截正方体,截面图形不可能是()A.B.C.D.9.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(﹣2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为P n,则点P2020的坐标是()A.(0,1)B.(﹣2,4)C.(﹣2,0)D.(0,3)10.在△ABC中,AB=AC,点D在边AC上,连接BD,点E在边AB上,△BCD和△BED 关于BD对称,若△ADE是等腰三角形,则∠BAC=()A.36°B.72°C.90°D.108°11.以下调查中,最适宜采用普查方式的是()A.检测某批次汽车的抗撞击能力B.调查黄河的水质情况C.调查全国中学生视力和用眼卫生情况D.检查我国“神州八号”航天飞船各零部件的情况12.要将9个参加数学竞赛的名额分配给6所学校,每所学校至少要分得一个名额,那么不同的分配方案共有()A.56种B.36种C.28种D.72种二.填空题(共6小题)13.如果小明的爸爸收入10万元记作+10万元,那么小明的爸爸支出4万元记作万元.14.已知x=﹣3是方程ax﹣6=a+10的解,则a=.15.写出一个在x轴正半轴上的点坐标.16.如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为a,则正方体上小球总数为(用含a的代数式表示).17.如图,在6×6的正方形网格中,选取13个格点,以其中的三个格点A,B,C为顶点画△ABC,请你在图中以选取的格点为顶点再画出一个△ABP,使△ABP与△ABC成轴对称.这样的P点有个?(填P点的个数)18.进行数据的收集调查,一般可分为以下6个步骤,但它们的顺序弄乱了.正确的顺序是.(用字母按顺序写出即可).A.明确调查问题B.记录结果C.得出结论D.确定调查对象E.展开调查F.选择调查方法.三.解答题(共9小题)19.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,则该甲虫走过的路程是;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+3,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.(4)若图中另有两个格点M、N,且M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),则N →A应记为什么?20.在数轴上点A表示数a,点B表示数b,点C表示数c;a是最大的负整数,a、b、c 满足|a+b|+(c﹣5)2=0.(1)填空:a=,b=,c=;(2)P为数轴上一动点,其对应的数是x,当P在线段AC上,且P A+PB+PC=7时,求x的值.(3)若点P,Q分别从A,C同时出发,匀速相向运动,点P的速度为3个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回A;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q的相遇点在数轴上对应的数.21.我们规定,若关于x的一元一次方程mx=n(m≠0)的解为n﹣m,则称该方程为差解方程,例如:5x=的解为x=﹣5,则该方程5x=就是差解方程.请根据上边规定解答下列问题(1)若关于x的一元一次方程3x=a+1是差解方程,则a=.(2)若关于x的一元一次方程3x=a+b是差解方程且它的解为x=a,求代数式4a2b﹣[2a2﹣2(ab2﹣2a2b)]的值(提示:若m+n+1=m,移项合并同类项可以把含有m的项抵消掉,得到关于n的一元一次方程,求得n=﹣1)22.计算:(1)2+(﹣1)2019+(2+1)(﹣2﹣1)﹣|﹣3×|化简:(2)﹣3(2x2﹣xy)+4(x2+xy﹣6)解方程:(3)23.在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出如下定义:若b′=,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(﹣2,﹣5)的限变点的坐标是(﹣2,5),点(1,3)的限变点的坐标是(1,3).(1)①点(,﹣1)的限变点的坐标是;②如图1,在点A(﹣2,1)、B(2,1)中有一个点是直线y=2上某一个点的限变点,这个点是;(填“A”或“B”)(2)如图2,已知点C(﹣2,﹣2),点D(2,2),若点P在射线OC和OD上,其限变点Q的纵坐标b的取值范围是b′≥m或b′≤n,其中m>n,令s=m﹣n,直接写出s的值.(3)如图3,若点P在线段EF上,点E(﹣2,﹣5),点F(k,k﹣3),其限变点Q的纵坐标b′的取值范围是﹣2≤b′≤5,直接写出k的取值范围.24.综合与实践某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为acm的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒),请你动手操作验证并完成任务.(纸板厚度及接缝处忽略不计)动手操作一:根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为bcm的小正方形,再沿虚线折合起来.问题解决:(1)该长方体纸盒的底面边长为cm;(请你用含a,b的代数式表示)(2)若a=24cm,b=6cm,则长方体纸盒的底面积为多少cm2;动手操作二:根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为bcm的小正方形和两个同样大小的小长方形,再沿虚线折合起来.拓展延伸:(3)该长方体纸盒的体积为多少cm3?(请你用含a,b的代数式表示)25.如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD=°;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则△PMN的周长为.26.2020年注定是不平凡的一年,新年伊始,一场突如其来的疫情席卷全国,全国人民万众一心,抗战疫情.为了早日取得抗疫的胜利,各级政府、各大新闻媒体都加大了对防疫知识的宣传.某校为了了解初一年级共480名同学对防疫知识的掌握情况,对他们进行了防疫知识测试.现随机抽取甲、乙两班各15名同学的测试成绩(满分100分)进行整理分析,过程如下:【收集数据】甲班15名学生测试成绩分别为:78,83,89,97,98,85,100,94,87,90,93,92,99,95;100.乙班15名学生测试成绩中90≤x<95的成绩如下:91,92,94,90,93【整理数据】:班级75≤x<8080≤x<8585≤x<9090≤x<9595≤x≤100甲11346乙12354【分析数据】:班级平均数众数中位数方差甲92a9341.1乙9087b50.2【应用数据】:(1)根据以上信息,可以求出:a=分,b=分;(2)若规定测试成绩92分及其以上为优秀,请估计参加防疫知识测试的480名学生中成绩为优秀的学生共有多少人;(3)根据以上数据,你认为哪个班的学生防疫测试的整体成绩较好?请说明理由(一条理由即可).27.120人参加数学竞赛,试题共有5道大题,已知第1、2、3、4、5题分别有96、83、74、66、35人做对,如果至少做对3题便可获奖,问:这次竞赛至少有几人获奖?2020-2021上学期人教版八年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】根据相反意义的量可以用正负数来表示,高于海平面200米记为+200米,那么低于海平面300米应记为﹣300米.【解答】解:如果高于海平面200米记为+200米,那么低于海平面300米应记为﹣300米.故选:A.2.【分析】由题意三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,可知这两个三数组分别对应相等.从而判断出a、b的值.代入计算出结果.【解答】解:∵三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,∴这两个三数组分别对应相等.∴a+b、a中有一个是0,由于有意义,所以a≠0,则a+b=0,所以a、b互为相反数.∴=﹣1,b=1,a=﹣1.∴a2017+b2017=(﹣1)2017+12017=0.故选:A.3.【分析】根据第一个天平可得2●=▲+■,根据第二个天平可得●+▲=■,可得出答案.【解答】解:根据图示可得:2●=▲+■①,●+▲=■②,由①②可得●=2▲,■=3▲,则■+●=5▲=2●+▲=●+3▲.故选:A.4.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).根据定义可列出关于k的方程,求解即可.【解答】解:由一元一次方程的特点得,2k﹣1=1,解得:k=1,∴一元一次方程是:x+1=0解得:x=﹣1.故选:A.5.【分析】根据非负数的性质求得x,y的值,再进一步判断点的位置.【解答】解:∵(x+3)2+|y+2|=0,∴x=﹣3<0,y=﹣2<0.则点A在第三象限.故选:C.6.【分析】根据一次函数,得出OB1、OB2等的长度,继而得知B1、B2等点的坐标,从中找出规律,进而可求出点B2020的坐标.【解答】解:∵l1与x轴所夹锐角为15°,l2与y轴所夹锐角为30°,∴l1与l2所夹锐角为45°,l2与x轴所夹锐角为60°,∴△A1B1O,△A2B2O,△A3B3O,…都是等腰直角三角形,∴B1O=20,B2O=21,B3O=22,…,B n O=2n﹣1,∴点B2020的坐标为(22020﹣1×,22020﹣1×),即(22018,22018).故选:A.7.【分析】根据直三棱柱的特点作答.【解答】解:A、围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成直三棱柱;B、D的两底面不是三角形,故也不能围成直三棱柱;只有C经过折叠可以围成一个直三棱柱.故选:C.8.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.据此选择即可.【解答】解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形,故选:D.9.【分析】按照反弹规律依次画图,写出点的坐标,再找出规律即可.【解答】解:如图,根据反射角等于入射角画图,可知光线从P2反射后到P3(0,3),再反射到P4(﹣2,4),再反射到P5(﹣4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,2020÷6=336……4,即点P2020的坐标是(﹣2,4),故选:B.10.【分析】如图,设∠A=x.首先证明∠ABC=∠C=2x,利用三角形的内角和定理构建方程求出x即可.【解答】解:如图,设∠A=x.∵EA=ED,∴∠A=∠ADE=x,∵∠BED=∠A+∠ADE=2x,△BDE与△BDC关于BD对称,∴∠BED=∠C=2x,∵AB=AC,∴∠ABC=∠C=2x,∵∠A+∠ABC+∠C=180°,∴5x=180°,∴x=36°,∴∠A=36°,故选:A.11.【分析】检测某批次汽车的抗撞击能力不适宜用普查,可采用抽查;调查黄河的水质情况,不容易使用普查;调查全国中学生视力和用眼卫生情况,由于数量多,分布不均等因素,不适合普查,检查我国“神州八号”航天飞船各零部件的情况,必须使用普查,【解答】解:检测某批次汽车的抗撞击能力不适宜用普查,可采用抽查;调查黄河的水质情况,不容易使用普查;调查全国中学生视力和用眼卫生情况,由于数量多,分布不均等因素,不适合普查,检查我国“神州八号”航天飞船各零部件的情况,必须使用普查,故选:D.12.【分析】可以将问题转化为9个人站成一排,每所学校至少要1名,就有8个空然后插入5个板子把他们隔开,从8个里选5个即可答案.【解答】解:可以利用9个人站成一排,每所学校至少要1名,就有8个空,然后插入5个板子把他们隔开,从8个里选5个,就是C85==56,故选:A.二.填空题(共6小题)13.【分析】用正负数来表示具有意义相反的两种量:收入记作正,则支出就记为负,由此得出小明的爸爸支出4万元,记作﹣4万元.【解答】解:如果小明的爸爸收入10万元记作+10万元,那么小明的爸爸支出4万元记作﹣4万元.故答案为:﹣4.14.【分析】根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,解方程可求出a的值.【解答】解:把x=﹣3代入方程ax﹣6=a+10,得:﹣3a﹣6=a+10,解方程得:a=﹣4.故填:﹣4.15.【分析】根据x的正半轴上点的横坐标大于零,纵坐标等于零,可得答案.【解答】解:写出一个在x轴正半轴上的点坐标(1,0),故答案为:(1,0).16.【分析】每条棱上有a个小球,12条棱就有12a个小球,这时,每个顶点处的小球被多计算了2次,于是可得答案.【解答】解:因为正方体有12条棱,所以12条棱上有12a个小球,但每个顶点处的小球被多计算2次,8个顶点就被多计算2×8=16次,所以正方体上小球总数为12a﹣16,故答案为:12a﹣16.17.【分析】根据轴对称图形的性质画出图形即可.【解答】解:如图,满足条件的△ABP有2个,故答案为2.18.【分析】根据数据的收集调查的步骤,即可解答.【解答】解:进行数据的收集调查,一般可分为以下6个步骤:明确调查问题,确定调查对象,选择调查方法,展开调查,记录结果,得出结论;故答案为:ADFEBC.三.解答题(共9小题)19.【分析】(1)根据规定及实例可知A→C记为(+4,+4),B→C记为(+3,0),C→D 记为(+1,﹣3);(2)根据点的运动路径,表示出运动的距离,相加即可得到行走的总路径长;(3)按题目所示平移规律,通过平移即可得到点P的坐标,在图中标出即可.(4)根据M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),可知4﹣a﹣(2﹣a)=2,b﹣3﹣(b﹣5)=2,从而得到点A向右走2个格点,向上走2个格点到点N,从而得到N→A应记为什么.【解答】解:(1)∵规定:向上向右走为正,向下向左走为负,∴A→C记为(+4,+4),B→C记为(+3,0),C→D记为(+1,﹣3);故答案为:+4;+4;+3;0;+1;﹣3;(2)据已知条件可知:A→B表示为:(+1,+4),B→C记为(+3,0),C→D记为(+1,﹣3);∴该甲虫走过的路线长为1+4+3+1+3=12.故答案为:12;(3)P点位置如图所示.(4)∵M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),∴4﹣a﹣(2﹣a)=2,b﹣3﹣(b﹣5)=2,∴从而得到点A向右走2个格点,向上走2个格点到点N,∴N→A应记为(﹣2,﹣2).20.【分析】(1)由a是最大的负整数可得a为﹣1,再结合|a+b|+(c﹣5)2=0,可求得b 与c的值;(2)由P A+PB+PC=7,结合数轴上的两点所表示的距离的含义,分类去掉绝对值号,并分别解得x的值即可.(3)设运动时间为t,分两种情况分别得出关于t的方程并求解即可:①当P、Q第一次相遇时;②当P到达C点返回追上Q时.【解答】解:(1)∵a是最大的负整数,∴a=﹣1;∵|a+b|+(c﹣5)2=0,|a+b|≥0,(c﹣5)2≥0,∴a+b=0,c﹣5=0,∴b=﹣a=﹣(﹣1)=1,c=5.故答案为:﹣1,1,5;(2)∵P A+PB+PC=7,∴|x+1|+|x﹣1|+|x﹣5|=7,①当点P在线段AB上,即当﹣1≤x<1时,x+1+1﹣x+5﹣x=7,解得:x=0;②当点P在线段BC上,即当1≤x≤5时,x+1+x﹣1+5﹣x=7,解得:x=2.综上所述,x的值是0或2.(3)设运动时间为t,①当P、Q第一次相遇时,有:3t+t=5﹣(﹣1),解得:t=1.5,此时,相遇点在数轴上对应的数为5﹣1.5=3.5;②当P到达C点返回追上Q时,有:3t﹣t=5﹣(﹣1)解得:t=3,此时,相遇点在数轴上对应的数为5﹣3=2.∴在此运动过程中P,Q的相遇点在数轴上对应的数是3.5或2.21.【分析】(1)根据差解方程的定义,得到关于a的新方程,求解即可;(2)根据差解方程的定义,先求出a、b的值,再化简代数式,把a、b的值代入计算即可.【解答】解:(1)∵关于x的一元一次方程3x=a+1是差解方程,∴=a+1﹣3解,得故答案为:(2)∵关于x的一元一次方程3x=a+b是差解方程且它的解为x=a,∴a==a+b﹣3解,得,b=3.4a2b﹣[2a2﹣2(ab2﹣2a2b)]=4a2b﹣(2a2﹣2ab2+4a2b)=4a2b﹣2a2+2ab2﹣4a2b=﹣2a2+2ab2当,b=3时,原式=﹣2×+2××9=.22.【分析】(1)根据有理数的混合运算的顺序和计算方法进行计算即可;(2)按照整式加减的计算方法进行计算;(3)依照一元一次方程的求解步骤求解即可.【解答】解:(1)原式=2+(﹣1)+(﹣9)﹣1=﹣9;(2)原式=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣24;(3)去分母得4(7x﹣1)﹣6(5x+1)=24﹣3(3x+2)去括号得28x﹣4﹣30x﹣6=24﹣9x﹣6移项得28x﹣30x+9x=24﹣6+4+6合并同类项得7x=28系数化为1得x=4.23.【分析】(1)①利用限变点的定义直接解答即可;②先利用逆推原理求出限变点A(﹣2,1)、B(2,1)对应的原来点坐标,然后把原来点坐标代入到y=2,满足解析式的就是答案;(2)先OC,OD的关系式,再求出点P的限变点Q满足的关系式,然后根据图象求出m,n的值,从而求出S即可;(3)先求出线段的关系式,再求出点P的限变点所满足的关系式,根据图象求解即可.【解答】(1)①∵a=<2,∴b′=|b|=|﹣1|=1,∴坐标为(,1).故答案为(,1).②s=3.∵对于限变点来说,横坐标保持不变,∴限变点A(﹣2,1)对应的原来点的坐标为:(﹣2,1)或(﹣2,﹣1),限变点B(2,1]对应的原来点的坐标为:(2.2),∵(2,2)满足y=2,∴这个点是B,故答案为:B;(2)∵点C的坐标为(﹣2,﹣2),∴OC的关系式为:y=x(x≤0),∵点D的坐标为(2,﹣2),∴OD的关系式为:y=﹣x(x≥0),∴点P满足的关系式为:y=,当x≥2时:b'=一x﹣1,当0<x<2时:b'=﹣x﹣1,当x≤0时,b=|x|=﹣x,图象如图1所示,通过图象可以得出:当x≥2时,b'≤﹣3,n=﹣3,当x<2时,b'≥0,∴m=0,∴s=m﹣n=0﹣(﹣3)=3;(3)设线段E的关系式为:y=ax+c(a≠0,﹣2≤x≤k,k>﹣2),把E(﹣2,﹣5),F(k,k﹣3)代入,得,解得,∴线段EP的关系式为y=x一3(﹣2≤x≤k,k>﹣2),∴线段E上的点P的限变点Q的纵坐标满足的关系式b'=,图象如图2所示:当x=2时,b'取最小值,b'=2﹣4=﹣2,当b'=5时,x﹣4=5或﹣x+3=5,解得:x=9或x=﹣2,当b'=1时,x﹣4=1,解得:x=5,∵﹣2≤b'<5,∴由图象可知,k的取值范围是:5≤k≤9.24.【分析】(1)根据折叠可得答案;(2)将a=24,b=6代入底面积的代数式计算即可;(3)根据图2的裁剪,折叠后,表示出长、宽、高进而用代数式表示体积.【解答】解:(1)根据折叠可知,底面是边长为(a﹣2b)(cm)的正方形,故答案为:(a﹣2b);(2)将a=24,b=6代入得,(a﹣2b)2=(24﹣2×6)2=144(cm2)答:长方体纸盒的底面积为144cm2;(3)裁剪后折叠成长方体的长为:(a﹣2b)cm,宽为cm,高为bcm,所以,折叠后长方体的体积为(a﹣2b)××b,即,b(a﹣2b)2,答:长方体的体积为b(a﹣2b)2.25.【分析】(1)根据轴对称的性质,可知∠AOC=∠AOP,∠BOD=∠BOP,可以求出∠COD的度数;(2)根据轴对称的性质,可知CM=PM,DN=PN,根据周长定义可以求出△PMN的周长;【解答】解:(1)①∵点C和点P关于OA对称,∴∠AOC=∠AOP,∵点P关于OB对称点是D,∴∠BOD=∠BOP,∴∠COD=∠AOC+∠AOP+∠BOP+∠BOD=2(∠AOP+∠BOP)=2∠AOB=2×60°=120°,故答案为:120°.②∵点C和点P关于OA对称.∴∠AOC=∠AOP,∵点P关于OB对称点是D,∴∠BOD=∠BOP,∴∠COD=∠AOC+∠AOP+∠BOP+∠BOD=2(∠AOP+∠BOP)=2∠AOB=2α.(2)根据轴对称的性质,可知CM=PM,DN=PN,所以△PMN的周长为:PM+PN+MN=CM+DN+MN=CD=4,故答案为:426.【分析】由收集的数据即可得;(1)根据众数和中位数的定义求解可得;(2)用总人数乘以乙班样本中合格人数所占比例可得;(3)甲、乙两班的方差判定即可.【解答】解:(1)在78,83,89,97,98,85,100,94,87,90,93,92,99,95,100,这组数据中,100出现的次数最多,故a=100分;乙班15名学生测试成绩中,中位数是第8个数,即出现在90≤x<95这一组中,故b=91分;故答案为:100,91;(2)480×=256(人),即480名学生中成绩为优秀的学生共有256人;(3)甲班的学生掌握防疫测试的整体水平较好,∵甲班的方差<乙班的方差,∴甲班的学生掌握疫情防疫相关知识的整体水平较好.27.【分析】首先算出每一道题做错的人数,分为五个组,用不同的颜色表示,转化为染色问题,构造抽屉解决问题.【解答】解:将这120人分别编号为P1,P2,…,P120,并视为数轴上的120个点,用A k表示这120人之中未答对第k题的人所成的组,|A k|为该组人数,k=1,2,3,4,5,则|A1|=24,|A2|=37,|A3|=46,|A4|=54,|A5|=85,将以上五个组分别赋予五种颜色,如果某人未做对第k题,则将表示该人点染第k色,k=1,2,3,4,5,问题转化为,求出至少染有三色的点最多有几个?由于|A1|+|A2|+|A3|+|A4|+|A5|=246,故至少染有三色的点不多于=82个,图是满足条件的一个最佳染法,即点P1,P2,…,P85这85个点染第五色;点P1,P2,…,P37这37个点染第二色;点P38,P39,…,P83这46个点染第四色;点P1,P2,…,P24这24个点染第一色;点P25,P26,…,P78这54个点染第三色;于是染有三色的点最多有78个.因此染色数不多于两种的点至少有42个,即获奖人数至少有42个人(他们每人至多答错两题,而至少答对三题,例如P79,P80,…,P120这42个人).答:获奖人数至少有42个人.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学试卷
题号
一
二
三
四
总分
得分
(满分 100 分 时间 90 分钟)
卷首语:请同学们拿到试卷后,不必紧张,用半分钟整理一下思路,要相信我能行. 一、相信你的选择:(每题 2 分,计 16 分)
1. 下列各数不是无理数的是( )
1
A.-
8
B.
C. 3
D. 0.121121112
2. 11 月 9 日是全国消防安全日,下面消防图标中是轴对称图形的是( )
A.
B.
C.
D.
3. 下列计算正确的是( )
A. b3 b3 2b3
B. x 2 x 2 x 4
C. (a 2 )3 a 6
D. (ab3 )2 ab6
4. 如图,在 ABC 和 DEF 中,满足 AB DE , B E ,如果要判定这两个三角形全
;②
;③
;
4
25 .( 10 分 ) 在 如 图 所 示 的 平 面 直 角 坐 标 系 中 , 直 线 AB : y k1x b1 与 直 线 AD : y k2 x b2 相交于点 A(1,3) ,且点 B 坐标为(0,2),直线 AB 交 x 轴负半轴于点 C ,直线 AD 交 x 轴正半轴于点 D . (1)求直线 AB 的函数解析式; (2)根据图像直接回答,不等式 k1x b1 k2 x b2 的解集; (3)若 ACD 的面积为 9,求直线 AD 的函数解析式; (4)若点 M 为 x 轴一动点,当点 M 在什么位置时,使 AM BM 的值最小?求出此时点 M
A.(3-x)2
B.(3+x)(3-x)
C.(9-x)2
D.(9+x)(9-x)
7. 关于 x 的一次函数 y kx k 2 1的图象可能正确的是( )
y
y
y
y
x O
x O
x O
x O
A
B.
C.
D
.
.
1
8. 做如下操作:在等腰三角形 ABC 中,AB=AC,AD 平分∠BAC 交 BC 于点 D,将△ABD
17.(6 分)计算: 3 27 3
2
18.(6 分)分解因式: 4xy 2 4x 2 y y 3
19.(6 分)先化简,再求值:
(a 2b 2ab2 b3 ) b (a b)(a 2b) ,其中 a 1 ,b 1 2
20.(6 分)在正方形网格图①与图②中各画一个等腰三角形。要求:每个等腰三角形的一个
顶点均为 A ,其余顶点在格点 B 、 C 、 D 、 E 、 F 、 G 、 H 中选取,并且所画的两个三角
形不全等.
21. (8 分)如图,在△ ABC ∠ACB= 2B .
中
,
(1)根据要求作图:(不写作法,保留作图痕迹)
① 作 ACB 的平分线交 AB 于 D;② 过 D 点作 DE⊥BC,垂足为 E.
离出发地的距离 s(km)和骑行时间 t(h)之间的函数
关系如图所示,给出下列说法:
(1)他们都骑行了 20km;
(2)乙在途中停留了 0.5h;
(3)甲、乙两人同时到达目的地;
(4)相遇后,甲的速度小于乙的速度;
根据图象信息,以上说法正确的有
个.
9(
(第 16 题图)
三、挑战你的技能:(本题 40 分)
等,添加的条件不正确的是( )
A. BC EF B. AC DF C. A D D. C F
5. 下列说法正确的是( )
A
D
B
F
C E 第 4 题图
A. 4 的平方根是 2
B. 16 的平方根是 4
C. 0 的平方根与算术平方根都是 0
D.(- 4)2 的算术平方根是-4
6. 将整式 9 x 2 分解因式的结果是( )
(2)在(1)的基础上写出一对全等三角形,并加以证明.
A
B
C
22.(8 分) 如图,在△ABC 和△ADE 中,∠BAC=∠DAE=90°,点 B、C、E 在同一条直线
上,AC=AB,AD=AE,且 AE 与 BD 交于点 F ,你能判断出 CE 与 BD 的关系吗?请说明理
由.
3
C A
BF
D
E
四、拓展你的能力:(本题共 28 分) 23.(8 分)母亲节期间,同学们开展社会实践活动,出售鲜花并将所得款项捐助希望工程。 某花店批发康乃馨和百合,其单价为:康乃馨 4 元/株,百合 5 元/株。花店母亲节搞活动,如 果购买康乃馨数量不少于 120 株,那么每株康乃馨可以降价 1 元。同学们事先约定购买康乃馨 100 株~150 株(大于等于 100,小于等于 150),百合若干株,共花费 900 元。然后再以康乃 馨 5 元,百合 6.5 元的价格卖出。问:同学们应如何采购这两种鲜花才能使获得利润最大?
左平移一个单位长度,则可以得到的函数图像的解析
式为
.
15. 如图, RtABC 中, BCA 90 , A 30 ,
BC 2cm , DE 是 AC 边的垂直平分线,连接
CD ,则 BCD 的周长是
.
(第 14 题图)
C
E
B
D
A
(第 15 题图)
16.甲、乙两同学骑自行车从 A 地沿同一条路到 B 地,已知乙比甲先出发,他们
24.(10 分) 如图,点 M,N 分别在等边三角形 ABC 的 BAM,BN 交于点 Q .
(1)求证:∠BQM 60 .
(2)思考下列问题:
N Q
B M
C
(第 24 题图)
①如果将原题中“ BM CN ”与“∠BQM 60 ”的位置交换,得到的新命题是否仍是真
.
10.已知点 M(0,3)关于 x 轴对称的点为 N ,则点 N 的坐标是
.
11.已知等腰三角形的一个角是 80°,它的另外两个角是
.
12.计算:(m n 3)(m n 3) =
.
13. 若 2 x 3 , 2 y 5 ,则 2 x y
.
14.如图,是一个正比例函数的图像,把该函数图像向
作关于直线 AD 的轴对称变换,所得的像与△ACD 重合,对于下列结论:①在同一个三角形
中,等角对等边;②在同一个三角形中,等边对等角;③等腰三角形的顶角平分线、底边上的
中线和高互相重合;由上述操作可得出的是( )
A.①②③
B.①②
C.①③
D.②③
二、试试你的身手:(每题 2 分,计 16 分)
9. 在函数 y 2x 1 中,自变量 x 的取值范围是
命题?
②如果将原题中的点 M,N 分别移动到 BC,CA 的延长线上,是否仍能得到∠BQM 60 ?
③如果将题中“等边三角形 ABC ”,改为“等腰直角三角形 ABC ,且 BAC 90 ”,是否 仍能得到∠BQM 60 ?
请你作出判断,在下列横线上填写“是”或“否”:① 并选择其中一个真命题给出证明.