自动控制系统实验报告

合集下载

自动控制预实习报告

自动控制预实习报告

自动控制预实习报告
一、实习目的
1.了解自动控制系统的基本原理和组成。

2.掌握自动控制系统的建模和分析方法。

3.熟悉常见的自动控制系统及其应用。

4.培养动手能力和实践经验。

二、实习内容
1.自动控制系统概论
1.1 自动控制系统的定义和分类
1.2 自动控制系统的基本组成
1.3 自动控制系统的特点和应用领域
2.自动控制系统的数学模型
2.1 传递函数法
2.2 状态空间法
2.3 非线性系统建模
3.自动控制系统的性能分析
3.1 时域性能指标
3.2 频率域性能指标
3.3 稳定性分析
4.自动控制系统的设计
4.1 PID控制器设计
4.2 先进控制方法
5.实验和仿真
5.1 自动控制系统实验装置
5.2 MATLAB/Simulink仿真
三、实习要求
1.认真学习理论知识,掌握基本概念和分析方法。

2.积极参与实验和仿真,培养动手能力。

3.按时完成实习报告,总结实习心得。

四、实习安排
本实习为期4周,包括理论学习、实验和仿真环节。

具体安排如下:第1周:自动控制系统概论、系统建模
第2周:系统性能分析、稳定性分析
第3周:控制系统设计、实验和仿真
第4周:实习总结,完成实习报告
五、实习成果
通过本次实习,预期能够达到以下目标:
1.掌握自动控制系统的基本原理和分析方法。

2.熟悉常见的自动控制系统及其应用。

3.培养动手能力和实践经验。

4.提高综合运用所学知识的能力。

自动控制实训实验报告

自动控制实训实验报告

一、实验目的1. 熟悉并掌握自动控制系统的基本原理和实验方法;2. 理解典型环节的阶跃响应、频率响应等性能指标;3. 培养动手能力和分析问题、解决问题的能力。

二、实验原理自动控制系统是指利用各种自动控制装置,按照预定的规律自动地完成对生产过程或设备运行状态的调节和控制。

本实验主要研究典型环节的阶跃响应和频率响应。

1. 阶跃响应:当系统受到一个阶跃输入信号时,系统输出信号的变化过程称为阶跃响应。

阶跃响应可以反映系统的稳定性、快速性和准确性。

2. 频率响应:频率响应是指系统在正弦输入信号作用下的输出响应。

频率响应可以反映系统的动态性能和抗干扰能力。

三、实验仪器与设备1. 自动控制实验箱;2. 双踪示波器;3. 函数信号发生器;4. 计算器;5. 实验指导书。

四、实验内容与步骤1. 阶跃响应实验(1)搭建实验电路,连接好实验箱和示波器。

(2)输入阶跃信号,观察并记录阶跃响应曲线。

(3)分析阶跃响应曲线,计算系统的超调量、上升时间、调节时间等性能指标。

2. 频率响应实验(1)搭建实验电路,连接好实验箱和示波器。

(2)输入正弦信号,改变频率,观察并记录频率响应曲线。

(3)分析频率响应曲线,计算系统的幅频特性、相频特性等性能指标。

3. 系统校正实验(1)搭建实验电路,连接好实验箱和示波器。

(2)输入阶跃信号,观察并记录未校正系统的阶跃响应曲线。

(3)根据期望的性能指标,设计校正环节,并搭建校正电路。

(4)输入阶跃信号,观察并记录校正后的阶跃响应曲线。

(5)分析校正后的阶跃响应曲线,验证校正效果。

五、实验结果与分析1. 阶跃响应实验(1)实验结果:根据示波器显示的阶跃响应曲线,计算得到系统的超调量为10%,上升时间为0.5s,调节时间为2s。

(2)分析:该系统的稳定性较好,但响应速度较慢,超调量适中。

2. 频率响应实验(1)实验结果:根据示波器显示的频率响应曲线,计算得到系统的幅频特性在0.1Hz到10Hz范围内基本稳定,相频特性在0.1Hz到10Hz范围内变化不大。

自动控制原理实验报告

自动控制原理实验报告

实验一典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为,1,2时,输入幅值为的正向阶跃信号,理论上依次输出幅值为,,的反向阶跃信号。

实验中,输出信号依次为幅值为,,的反向阶跃信号,相对误差分别为1.8%,2.2%,0.2%.在误差允许范围内可认为实际输出满足理论值。

2、 积分环节积分环节传递函数为:〔1〕T=0.1(0.033)时,C=1μf(0.33μf),利用MATLAB ,模拟阶跃信号输入下的输出信号如图:与实验测得波形比较可知,实际与理论值较为吻合,理论上时的波形斜率近似为时的三倍,实际上为,在误差允许范围内可认为满足理论条件。

3、 惯性环节惯性环节传递函数为:K = R f /R 1,T = R f C,(1) 保持K = R f /R 1= 1不变,观测秒,秒〔既R 1 = 100K,C = 1μf ,μf 〕时的输出波形。

利用matlab 仿真得到理论波形如下:时t s 〔5%〕理论值为300ms,实际测得t s =400ms 相对误差为:〔400-300〕/300=33.3%,读数误差较大。

K 理论值为1,实验值,相对误差为〔〕/2.28=7%与理论值较为接近。

时t s 〔5%〕理论值为30ms,实际测得t s =40ms 相对误差为:〔40-30〕/30=33.3% 由于ts 较小,所以读数时误差较大。

K 理论值为1,实验值,相对误差为〔〕/2.28=7%与理论值较为接近(2) 保持T = R f s 不变,分别观测K = 1,2时的输出波形。

K=1时波形即为〔1〕中时波形K=2时,利用matlab 仿真得到如下结果:t s 〔5%〕理论值为300ms,实际测得t s =400ms相对误差为:〔400-300〕/300=33.3% 读数误差较大K 理论值为2,实验值, 相对误差为〔〕/2=5.7%if i o R RU U -=1TS K)s (R )s (C +-=与理论值较为接近。

自动控制系统综合实验综 合 实 验 报 告

自动控制系统综合实验综 合 实 验 报 告

综合实验报告实验名称自动控制系统综合实验题目指导教师设计起止日期2013年1月7日~1月18日系别自动化学院控制工程系专业自动化学生姓名班级 学号成绩前言自动控制系统综合实验是在完成了自控理论,检测技术和仪表,过程控制系统等课程后的一次综合训练。

要求同学在给定的时间内利用前期学过的知识和技术在过程控制实验室的现有设备上,基于mcgs组态软件或step7、wincc组态软件设计一个监控系统,完成相应参数的控制。

在设计工作中,学会查阅资料、设计、调试、分析、撰写报告等,达到综合能力培养的目的。

目录前言 (1)第一章、设计题目 (2)第二章、系统概述 (2)第一节、实验装置的组成 (2)第二节、MCGS组态软件 (7)第三章、系统软件设计 (10)实时数据库 (10)设备窗口 (12)运行策略 (15)用户窗口 (17)主控窗口 (26)第四章、系统在线仿真调试 (27)第五章、课程设计总结 (34)第六章、附录 (34)附录一、宇光智能仪表通讯规则 (34)第一章、设计题目题目1 单容水箱液位定值控制系统选择上小水箱、上大水箱或下水箱作为被测对象,实现对其液位的定值控制。

实验所需设备:THPCA T-2型现场总线控制系统实验装置(常规仪表侧),水箱装置,AT-1挂件,智能仪表,485通信线缆一根(或者如果用数据采集卡做,AT-4 挂件,AT-1挂件、PCL通讯线一根)。

实验所需软件:MCGS组态软件要求:1.用MCGS软件设计开发,包括用户界面组态、设备组态、数据库组态、策略组态等,连接电路,实现单容水箱的液位定值控制;2.施加扰动后,经过一段调节时间,液位应仍稳定在原设定值;3.改变设定值,经过一段调节时间,液位应稳定在新的设定值。

第二章、系统概述第一节、实验装置的组成一、被控对象1.水箱:包括上水箱、下水箱和储水箱。

上、下水箱采用淡蓝色优质有机玻璃,不但坚实耐用,而且透明度高,便于学生直接观察液位的变化和记录结果。

自动控制系统实验报告

自动控制系统实验报告

自动控制系统实验报告
《自动控制系统实验报告》
摘要:本实验旨在通过对自动控制系统的实验研究,探讨系统的稳定性、性能和鲁棒性等方面的特性。

通过实验结果的分析和总结,得出了对于自动控制系统设计和优化的一些有益的结论。

1. 引言
自动控制系统是现代工程中的重要组成部分,它能够实现对系统的自动调节和控制,提高系统的稳定性、性能和鲁棒性。

因此,对自动控制系统的研究和实验具有重要意义。

2. 实验目的
本实验旨在通过对自动控制系统的实验研究,探讨系统的稳定性、性能和鲁棒性等方面的特性,为系统设计和优化提供参考依据。

3. 实验内容
本实验采用了XXX控制系统作为研究对象,通过对系统的参数调节和实验数据的采集,分析系统的稳定性、性能和鲁棒性等方面的特性。

4. 实验结果分析
通过实验数据的分析和处理,得出了系统的稳定性较好,在一定范围内能够实现对系统的有效控制;系统的性能表现良好,能够满足实际工程的需求;系统的鲁棒性较强,对外部扰动具有一定的抵抗能力。

5. 结论
通过本实验的研究,得出了对于自动控制系统设计和优化的一些有益的结论,为相关工程应用提供了一定的参考价值。

6. 展望
未来可以进一步深入研究自动控制系统的优化设计和应用,为工程实践提供更为有效的控制方案。

综上所述,通过对自动控制系统的实验研究,得出了一些有益的结论,为相关工程应用提供了一定的参考价值。

希望本实验的研究成果能够为自动控制系统的设计和优化提供一定的指导和帮助。

2023年自动控制原理实验系统超前校正实验报告

2023年自动控制原理实验系统超前校正实验报告

试验五 系统超前校正(4课时)本试验为设计性试验 一、试验目旳1. 理解和观测校正装置对系统稳定性及动态特性旳影响。

2. 学习校正装置旳设计和实现措施。

二、试验原理工程上常用旳校正措施一般是把一种高阶系统近似地简化成低阶系统, 并从中找出少数经典系统作为工程设计旳基础, 一般选用二阶、三阶经典系统作为预期经典系统。

只要掌握经典系统与性能之间旳关系, 根据设计规定, 就可以设计系统参数, 进而把工程实践确认旳参数推荐为“工程最佳参数”, 对应旳性能确定为经典系统旳性能指标。

根据经典系统选择控制器形式和工程最佳参数, 据此进行系统电路参数计算。

在工程设计中, 常常采用二阶经典系统来替代高阶系统(如采用主导极点、偶极子等概念分析问题)其动态构造图如图7-1所示。

同步还常常采用“最优”旳综合校正措施。

图7-1二阶经典系统动态构造图二阶经典系统旳开环传递函数为)2()1()(2n n s s Ts s Ks G ξωω+=+= 闭环传递函数2222)(nn ns s s ωξωω++=Φ 式中 , 或者 二阶系统旳最优模型 (1)最优模型旳条件根据控制理论, 当 时, 其闭环频带最宽, 动态品质最佳。

把 代入 得到, , 这就是进行校正旳条件。

(2)最优模型旳动态指标为%3.4%100%21/=⨯=--ξξπσe,T t ns 3.43≈=ω三、试验仪器及耗材1.EL —AT3自动控制原理试验箱一台; 2.PC 机一台; 3.数字万用表一块 4.配套试验软件一套。

四、试验内容及规定未校正系统旳方框图如图7-2所示, 图7-3是它旳模拟电路。

图7-2未校正系统旳方框图矫正后未调整电路图图7-3未校正系统旳模拟电路设计串联校正装置使系统满足下述性能指标(1) 超调量%σ≤5% (2) 调整时间t s ≤1秒(3) 静态速度误差系数v K ≥20 1/秒 1. 测量未校正系统旳性能指标 (1)按图7-3接线;(2)加入单位阶跃电压, 观测阶跃响应曲线, 并测出超调量 和调整时间ts 。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告姓 名班 级学 号指导教师1自动控制原理实验报告(一)一.实验目的1.了解掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。

2.观察分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。

3.了解掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。

4.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。

5.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σ%、t p 、t s 的计算。

6.观察和分析Ⅰ型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标σ%、t p 值,并与理论计算值作比对。

二.实验过程与结果1.观察比例环节的阶跃响应曲线1.1模拟电路图1.2传递函数(s)G(s)()o i U K U s == 10R K R =1.3单位阶跃响应U(t)K 1.4实验结果1.5实验截图2342.观察惯性环节的阶跃响应曲线2.1模拟电路图2.2传递函数(s)G(s)()1o i U KU s TS ==+10R K R =1T R C =2.3单位阶跃响应0(t)K(1e)tTU-=-2.4实验结果2.5 实验截图5673.观察积分环节的阶跃响应曲线3.1模拟电路图3.2传递函数(s)1G(s)()TS o i U U s ==i 0T =R C3.3单位阶跃响应01(t)i U t T =3.4 实验结果3.5 实验截图89104.观察比例积分环节的阶跃响应曲线4.1模拟电路图4.2传递函数0(s)1(s)(1)(s)i i U G K U T S ==+10K R R =1i T R C=4.3单位阶跃响应1 (t)(1)U K tT=+ 4.4实验结果4.5实验截图1112135.观察比例微分环节的阶跃响应曲线5.1模拟电路图5.2传递函数0(s)1(s)()(s)1i U TSG K U S τ+==+12312(R )D R R T CR R =++3R C τ=120R R K R +=141233(R //R )R D K R +=0.06D D T K sτ=⨯=5.3单位阶跃响应0(t)()U KT t Kδ=+5.4实验结果截图6.观察比例积分微分(PID )环节的响应曲线6.1模拟电路图156.2传递函数0(s)(s)(s)p p p d i i K U G K K T S U T S ==++123212(R )C d R R T R R =++i 121(R R )C T =+120p R R K R +=1233(R //R )R D K R +=32R C τ= D D T K τ=⨯6.3单位阶跃响应0(t)()p p D p K U K T t K tTδ=++6.4实验观察结果截图16三.实验心得这个实验,收获最多的一点:就是合作。

自动控制原理实验报告

自动控制原理实验报告

一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。

2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。

3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。

二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。

实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。

2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。

3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。

三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。

2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。

3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。

六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。

2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。

3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制系统实验报告学号:班级:姓名:老师:一.运动控制系统实验实验一.硬件电路的熟悉和控制原理复习巩固实验目的:综合了解运动控制实验仪器机械结构、各部分硬件电路以及控制原理,复习巩固以前课堂知识,为下阶段实习打好基础。

实验内容:了解运动控制实验仪的几个基本电路:单片机控制电路(键盘显示电路最小应用系统、步进电机控制电路、光槽位置检测电路)ISA运动接口卡原理(搞清楚译码电路原理和ISA总线原理)步进电机驱动检测电路原理(高低压恒流斩波驱动电路原理、光槽位置检测电路)两轴运动十字工作台结构步进电机驱动技术(掌握步进电机三相六拍、三相三拍驱动方法。

)微机接口技术、单片机原理及接口技术,数控轮廓插补原理,计算机高级语言硬件编程等知识。

实验结果:步进电机驱动技术:控制信号接口:(1)PUL:单脉冲控制方式时为脉冲控制信号,每当脉冲由低变高是电机走一步;双脉冲控制方式时为正转脉冲信号。

(2)DIR:单脉冲控制方式时为方向控制信号,用于改变电机转向;双脉冲控制方式时为反转脉冲信号。

(3)OPTO :为PUL 、DIR 、ENA 的共阳极端口。

(4)ENA :使能/禁止信号,高电平使能,低电平时驱动器不能工作,电机处于自由状 态。

电流设定:(1)工作电流设定:(2)静止电流设定:静态电流可用SW4 拨码开关设定,off 表示静态电流设为动态电流的一半,on 表示静态电流与动态电流相同。

一般用途中应将SW4 设成off ,使得电机和驱动器的发热减少,可靠性提高。

脉冲串停止后约0.4 秒左右电流自动减至一半左右(实际值的60%),发热量理论上减至36%。

(3)细分设定:(4)步进电机的转速与脉冲频率的关系电机转速v = 脉冲频率P * 电机固有步进角e / (360 * 细分数m)逐点比较法的直线插补和圆弧插补:一.直线插补原理:如图所示的平面斜线AB ,以斜线起点A 的坐标为x0,y0,斜线AB 的终点坐标为(xe ,ye),则此直线方程为:0000Y Ye X Xe Y Y X X --=-- 取判别函数F =(Y —Y0)(Xe —Xo)—(X-X0)(Ye —Y0)用逐点比较法加工时,每一次只在一个坐标方向给出一个脉冲,使运动件在该坐标方向上进给一步,因此刀具的运动轨迹是折线,而不是斜线AB。

折线拐点M与斜线AB之间的位置关系有如下三种情况:1)M点在AB线的上方.判别函数F>0;2)M点在AB线上,F=03)M点在AB线的下方,F<0象限判别和电机方向方向第一象限第二象限第三象限第四象限Xe-X0 >0 <0 <0 >0Ye-Y0 >0 >0 <0 <0 X向电机正反反正Y向电机正正反反二.圆弧插补原理:图中AB是被加工圆弧。

加工程序中给出的已知条件通常是A点B点的坐标值,圆心O’点相对圆弧起点A的增量坐标值。

由图可知:圆心O’点相对A点的增量坐标值为(—Io,—Jo)。

改变符号后就成为A点相对O’点的增量值Io,Jo。

由此可求出圆弧的半径值R:R2=Io2+Jo2在以圆心O’点为原点的I、J坐标系中,圆的方程可表示为:I2+J2=R2设刀具已位于M1点,则Mi点对圆弧AB的位置有三种情况:1)Mi在圆弧外侧,则0’Mi>R,Ii2+Ji2>R22)Mi在圆弧上,则0’Mi=R,Ii2+Ji2=R23)Mi在圆弧内侧,0’Mi<R,Ii2+Ji2<R2在第一象陨顺时针加工圆弧(顺圆弧)和第二、三、四象限加工顺圆弧和逆圆弧时,判别式都不相同。

带符号运算时,无论在哪个象限工作,顺圆弧或逆圆弧,归纳起来有如下四种情1.+X方向走一步I i+1= Ii+1F i+1 = Fi+2Ii+12.-X方向走一步I i+1= Ii-1F i+1 = Fi-2Ii+13.+Y方向走一步J i+1=Ji+1F i+1 = Fi+2Ji+14.-Y方向走一步J i+1=Ji+1F i+1 = Fi+2Ji+1四个象限进给方向象限判断和电机转向第一象限第二象限第三象限第四象限Ii的符号+ - - +Ji的符号+ + - -X向电机顺圆+ + - - 逆圆- - + +X向电机顺圆- + + - 逆圆+ - - +实验二.键盘显示综合实验实验目的:1、复习单片机键盘显示编制方法2、为下步工作奠定基础实验内容:1、编制键盘扫描程序和数码管的静态显示程序2、编制键盘数据输入程序3、编制十进制到二进制转换程序4、编制二进制到十进制转换程序5、编写显示程序6、编制功能键跳转程序7、联机作总体调试实验结果:#include <reg51.h> //库文件#include <stdio.h>#include <stdlib.h>#include <intrins.h>sbit P32=P3^2;#define LEDLen 8 //六个八段管#define mode 0x81 //8255工作模式 //方式0,A口、B口及上C口作为输出,下C口作为输入#define LEDSEL P2#define LEDSEL_0 0x60 //八段管地址#define LEDSEL_1 0x64#define LEDSEL_2 0x68#define LEDSEL_3 0x6C#define LEDSEL_4 0x70#define LEDSEL_5 0x74#define LEDSEL_6 0x78#define LEDSEL_7 0x7C#define uchar unsigned char#define uint unsigned int//code uchar hang[] = {0X01,0X02,0X04,0X08,0X10,0X20,0X40,0X80};code uchar lie[][8]={0xFF,0x99,0x00,0x00,0x00,0x81,0xC3,0xE7,0xFF,0xFF,0xDB,0x81,0x81,0xC3,0xE7,0xFF};#define Tick 200#define T100us (256-200)unsigned int C100us = Tick; // 200us记数单元unsigned char Bit = 0;unsigned char SelectLed[LEDLen] ={LEDSEL_0, LEDSEL_1, LEDSEL_2, LEDSEL_3, LEDSEL_4, LEDSEL_5, LEDSEL_6, LEDSEL_7};xdata unsigned char CS8255 _at_ 0x60; //8255xdata unsigned char PA _at_ 0x6000; //8255的PA口xdata unsigned char PB _at_ 0x6001; //8255的PB口xdata unsigned char PC _at_ 0x6002; //8255的PC口xdata unsigned char CTL _at_ 0x6003; //8255控制字地址unsigned char LEDBUFF[8];code unsigned char KeyTable[] = //键值表{0x7E, 0xBE, 0xDE, 0xEE,0x7D, 0xBD, 0xDD, 0xED,0x7B, 0xBB, 0xDB, 0xEB,0x77, 0xB7, 0xD7, 0xE7};code unsigned char SWEEP[] = //扫描信号{0x7f, 0xBf, 0xDF, 0xEF} ;code unsigned char LEDMAP[] = //八段显示管键码{0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07,0x7f, 0x6f, 0x77, 0x7c, 0x39, 0x5e, 0x79, 0x71};//延时void delay( unsigned int CNT ){unsigned char i;while ( CNT-- != 0)for( i=100; i != 0; --i) ;}unsigned char TestKey(){unsigned char i, Temp;Temp = PC; //PC是变化的i = ~Temp & 0x0f;return i;unsigned char GetKey (){unsigned char i, Num=16;if( TestKey() ){for(i=0; i<16; i++){if( KeyTable[i] == PC ) //有键按下时{Num = i; //确定键值do{delay(200); //消除键抖动}while ( TestKey() ); // 等待按键松开return Num; //返回键值}}}return Num;}void DisplayResult(unsigned char Num){LEDBUFF[7] = LEDMAP[ Num ];}void DisplayLED(){unsigned char i;for(i=0; i<8; ++i){LEDSEL = SelectLed[i];PB = LEDBUFF[i];delay(1);}}实验三.步进电机单片机控制实验(1)实验目的:1、掌握步进电机控制基本方法2、测试出步进电机工作频率范围,确定其正常工作中脉冲频率3、掌握步进电机加减速控制方法实验内容:1、编制步进电动机正反转实验:采用三相六拍和三相三拍控制方式分别编写步进电动机正反转程序。

2、步进电动机的频率特性测定实验:改变延时大小,测试步进电动机频率特性,找出不失步的最大频率。

3、编制步进电动机加减速程序,要求实现梯形加减速曲线。

4、结合键盘显示程序编制X、Y轴点动实验:实现+X、+Y、-X、-Y四个方向的点动功能,按下某个功能键+X,工作台即向该正方向运动,松开该键工作台停止运动。

实验结果:控制电机直线插补子程序:void line(int x1, int y1, int x2, int y2){int dx, dy, n, k, i, f;int x, y;dx = abs(x2-x1);dy = abs(y2-y1);n = dx + dy;if (x2 >= x1) {k = y2 >= y1 ? 1: 4;x = x1;y = y1;} else {k = y2 >= y1 ? 2: 3;x = x2;y = y2;}for (i = 0, f = 0; i < n; i++)if (f >= 0)switch (k) {case 1:f -= dy;PA = 0xff;delay(2); //X轴正转PA = 0xfe;delay(2);break;case 2:f -= dx;PA = 0xff;delay(2);PA = 0xef;delay(2); //Y轴正转break;case 3:f -= dy;PA = 0xfd;delay(2);PA = 0xfc;delay(2); //X轴反转break;case 4:f -= dx;PA = 0xdf;delay(2);PA = 0xcf;delay(2); //Y轴反转break;}elseswitch (k) {case 1:f += dx;PA = 0xff;delay(2);PA = 0xef;delay(2); //Y轴正转break;case 2:f += dy;PA = 0xfd;delay(2);PA = 0xfc;delay(2); //X轴反转break;case 3:f += dx;PA = 0xdf;delay(2);PA = 0xcf;delay(2); //Y轴反转break;case 4:f += dy;PA = 0xff;delay(2); //X轴正转PA = 0xfe;delay(2);break;}}实验四.步进电机单片机控制实验(2)实验目的:1、掌握运动控制系统常用控制方法2、掌握直线的逐点比较插补方法实验内容:1、编制第一象限直线插补程序。

相关文档
最新文档