初二数学 全等三角形教案
初二全等三角形教案

初二全等三角形教案一、教学目标在学习本课前,学生需掌握以下基础知识: 1. 三角形的定义及分类; 2. 三角形内角和公式; 3. 三角形相似的基本判定; 4. 三角形全等的定义。
学完本课后,学生应能够: 1. 掌握全等三角形的定义;2. 理解全等三角形的基本性质;3. 熟练掌握全等三角形的判定方法; 4. 能够应用全等三角形的性质解决实际问题。
二、教学重点与难点重点1.全等三角形的定义;2.全等三角形的性质及应用。
难点全等三角形的判定方法。
三、教学内容与方法1. 教学内容1.1 全等三角形的定义全等三角形定义:如果两个三角形的三个对应的角度相等,而且这两个三角形的对应的边的长度也相等,那么这两个三角形就是全等的。
1.2 全等三角形的性质全等三角形的性质: 1. 对应边相等; 2. 对应角度相等;3. 可以互相重合。
1.3 全等三角形的判定方法全等三角形的判定方法: 1. SSS 判定法(边边边):如果两个三角形的三边分别相等,则这两个三角形全等; 2. SAS 判定法(边角边):如果两个三角形的一个角和两边分别与另一个三角形的一个角和两边相等,则这两个三角形全等;3. ASA 判定法(角边角):如果两个三角形的一个角和两边分别与另一个三角形的一个角和两边相等,则这两个三角形全等;4. RHS 判定法(斜边直角边):如果两个三角形的一个直角和两边分别与另一个三角形的一个直角和两边相等,则这两个三角形全等。
1.4 全等三角形的应用全等三角形的应用:用全等三角形来解决实际问题,如测量不可直接测量的物体的高度等。
2. 教学方法本课采用以下教学方法: 1. 说教结合演示; 2. 师生互动; 3. 练习巩固。
四、教学具体步骤1. 教学前准备1.制定教学计划;2.整理教学资料;3.准备教具和黑板白板笔等。
2. 教学过程2.1 导入新课:从学生已经学过的知识出发,帮助学生回忆三角形定义及分类以及三角形的内角和公式。
全等三角形教案(教学设计)

全等三角形【教学目标】1.知识技能:(1)了解全等形及全等三角形的概念。
(2)理解掌握全等三角形的性质。
(3)能够准确辩认全等三角形的对应元素。
2.过程与方法:(1)在图形变换以用操作的过程中发展空间观念,培养几何直觉。
(2)在观察发现生活中的全等形和实际操作中获得全等三角形的体验。
3.情感态度与价值观:在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
【教学重难点】1.全等三角形的性质。
2.找全等三角形的对应边、对应角。
【教学过程】引入新课:师:同学们好。
十一单元的学习我们认识了三角形,掌握三角形的边,角的关系,角平分线等。
这节课我们开始学习全等三角形。
出示学习目标。
新知介绍。
一、提出问题,创设情境。
师:下列的图形有什么特点。
(1)(2)(3)生:这几个图形是两两完全重合的。
师:那同学们能举出现实生活中能够完全重合的图形的例子吗?生:同一张底片洗出的同大小照片是能够完全重合的。
移动或折叠后可以得到完全重合的图形。
板书:形状与大小都完全相同的两个图形就是全等形。
师:请观察下面两组图形,它们是不是全等图形有?为什么,与同伴进行交流。
(1)形状相同,但大小不同。
(2)大小相同,但形状不同。
生:全等图形的特征:全等图形的形状和大小都相同。
师:全等形包括规则图形和不规则图形全等。
二、获取概念。
学生自己动手(同桌两名同学配合):取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样。
让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号。
能够完全重合的两个三角形,叫全等三角形。
(1)“全等”用符号“≌”来表示,读作“全等于”。
(2)记作:△ABC≌△DEF,读作:△ABC全等于△DEF。
(3)互相重合的顶点叫做对应顶点。
A D;B E;C F。
(4)互相重合的边叫做对应边。
AB与DE;BC与EF;AC与DF。
(5)互相重合的角叫做对应角。
(完整版)全等三角形教案

《全等三角形》授课设计授课内容: 《全等三角形》的复习课程目标: 1、回顾全等三角形的定义、性质和判断2、会依照规定书写全等三角形的证明过程3、认识中考中全等三角形的相关例题, 并学会用辅助线合理构造全等三角形。
授课重点: 全等三角形证明的书写格式,合理构造全等三角形。
授课难点: 经过条件搜寻全等关系,或构造全等关系。
授课准备: ppt 课件学情解析:该部分内容为初三中考前的复习,学生对内容已经比较认识,只需要加强记忆和牢固复习。
同时也需要学生掌握中考动向,认识全等三角形在中考中的出题种类。
授课过程:前面我们已经对三角形的性质和特点进行了特地的复习,那么今天我们要对两个三角形的关系——三角形的全等关系进行复习。
我们都知道两个三角形能都完满重合我们就说这两个三角形全等, 而在本质应用中全等的三角形常常是经过平移或旋转获取。
既然能够重合,那么我们也就获取三角形的性质是对应边相等, 对应角也相等。
而在这六个关系中我们只需要获取指定的三种等量关系就可以判断两个三角形全等。
那我们一起来看看书上57 页,一起完成知识梳理的内容。
一、知识梳理: (该部分内容设计由全班同学一起回忆并口答,教师在课件上板书。
时间为 3 分钟) 1、全等三角形:能够完满重合的三角形叫全等三角形。
2、三角形全等的判断方法: SSS、SAS 、 ASA 、 AAS 。
直角三角形全等的判断除以上的方法还有 HL。
3、全等三角形的性质:全等三角形 对应边相等 、 对应角也相等 。
4、全等三角形的面积 相等 、周长相等、对应高、 对应边的中线应角的角均分线 相等。
二、预习自测: (该部分内容由学生自行完成,时间为 2 分钟) 1、如图以下条件中,不能够证明△ ABD △ ACD 的是( D)A.BD=DC,AB=ACB. ∠ ADB= ∠ ADC,BD=DCC.∠ B=∠ C, ∠ BAD= ∠ CADD. ∠ B=∠ C,BD=DC2、两组邻边分别相等的四边形叫做“筝形”,如图,四边形BABCD 是一个筝形, 其中 AD=CD,AB=CB, 詹姆斯在研究筝形的性质时, 获取以下结论:① AC ⊥ BD ;② AO=CO=1AC; ③△ ABD ≌△ CBD ,其中2A正确的结论有(D )、 对AD CDCOBA.0 个个个个三、典例解析:例 1、 (该题比较简单,由教师引导解题思路学生自行解答,不在课堂安排时间)已知:在四边形ABCD 中 AB ∥ CD, E 是 BC 的中点,直线AE 与 DC 的延长线交于点 F. 求证: AB=CF.解析:求证△ CFE≌△ BAE例 2、(该题将作为本节课一道证明三角形全等的典型例题进行解析,主要要修业生在证明题过程书写时吻合规范,时间设计为 3 分钟)如图。
最新人教版八年级上册第12章《全等三角形》全章教案(共8份)

一、课前导学:(学生自学课本31-32页内容,并完成下列问题)(一)全等有关定义: 1、能够______________的两个图形叫做全等形, 能够______________的两个三角形叫做全等三角形,两个全等图形的______和_____ 完全相同.2、一个图形经过平移、______、_________后所得的图形与原图形全等.3、把两个全等的三角形重合在一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 .“全等”用“ ”表示,读作 .4.若△ABC 与△DEF 全等,记作:_________________,(对应顶点的字母写在对应位置上)对应顶点有:点___和点___,点___和点___,点___和点___;对应角有:____和____,_____和_____,_____和_____; 对应边有:____和____,______和____,_____和_____.(二)全等三角形的性质:1.思考:全等三角形的对应边、对应角有什么关系?为什么?2.归纳:全等三角形的_________;全等三角形的___________.3.几何语言描述:∵△ABC ≌ △DEF (已知)∴ AB=DE,_____ ,______ (全等三角形的对应边相等) ∠ A=∠ D, _______ ,________ (________________ ) (三)找全等三角形的对应元素1. 若△ABC ≌△DBC , 2 若△ABC ≌△CDA ,对应边是_____________ , 对应边是_____________ ,对应角是_____________ ; 对应角是_____________ ;教 学 过 程 设 计B C E F A B CDBAB C E F【思考】:找全等三角形的对应元素时有什么规律呢?二、合作、交流、展示:(一) 交流展示1:找全等三角形对应元素1.如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点, 2.如图,△ABN ≌△ACM ,∠B和∠C 是对应角,AB 与AC 是对应边.写出这两个三角形中的对应边和对应角. 写出其他对应边及对应角.【归纳】:寻找全等三角形的对应元素的一般规律.(二).交流展示2: 全等三角形性质及其应用1.如图△EFG ≌△NMH,∠F 和∠M 是对应角.在△EFG 中,FG 是最长边. 在△NMH 中,MH 是最长边.EF=2.1㎝,EH=1.1㎝,HN=3.3㎝. (1)写出其他对应边及对应角.(2)求线段MN 及线段HG 的长.2.如图,△ABC ≌△DEC,CA 和CD,CB 和CE 是对应边.∠ACD 和∠BCE 相等吗?为什么?三、巩固与应用1. 课本第33页第3题;2. 课本第34页第6题;3. 如图,若△ABC ≌△DEF ,回答下列问题:(1)若△ABC 的周长为17 cm ,BC=6 cm ,DE=5 cm ,则DF = cm ; (2)若∠A =50°,∠E=75°,则∠ACB= 度.四、小结:1.知识: 2.思想方法: 五、作业:《作业本》第8页. 六、课后反思:N M CB ANMGH FEDCBEAF EDCB A DC B O一、课前导学:(学生自学课本35-37页内容,并完成下列问题)1.三角形全等条件的探究:两个三角形满足三边分别相等,三个角分别相等,则这两个三角形全等. 思考:判定两个三角形全等是否一定要六个条件?条件能否尽可能少呢?(动手画一画并回答下列问题) (1).只给一个条件:一组对应边相等(或一组对应角相等),•画出的两个三角形一定全等吗? (2).给出两个条件画三角形,有____种情形.按下面给出的两个条件,画出的两个三角形一定全等吗?①一组对应边相等和一组对应角相等 ②两组对应边相等 ③两组对应角相等 (3)、给出三个条件画三角形,有____种情形.按下面给出三个条件,画出的两个三角形一定全等吗?①三组对应角相等②三组对应边相等(按课本35页探究2画图实验)2.归纳三角形全等判定方法(1)归纳:三边对应相等的两个三角形 ,简写为“ ”或“ ”. 用数学语言表述: 在△ABC 和'''A B C ∆中,∵''AB A B AC BC =⎧⎪=⎨⎪=⎩∴△ABC ≌ ( )教 学 过 程 设 计C 'B 'A 'C B AAB O3.运用“边边边”证明两个三角形全等:已知:如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架. 求证:△ABD ≌△ACD .证明:∵D 是BC∴ =∴在△ 和△ 中 AB= BD= AD=∴△ABD △ACD( )【温馨提示】:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好;②证明三角形全等过程三步骤:A 、写出在哪两个三角形中,B 、摆出三个条件用大括号括起来,C 、写出全等结论. 二、合作、交流、展示:1.如图,点B 、E 、C 、F 在同一直线上,且AB=DE ,AC=DF ,BE=CF ,请将下面说明ΔABC ≌ΔDEF 的过程和理由补充完整. 解:∵BE=CF (_____________) ∴BE+EC=CF+EC 即BC=EF在ΔABC 和ΔDEF 中 AB=________ (________________)__________=DF (_______________) BC=__________∴ΔABC ≌ΔDEF (_____________)变式1:你能证明∠ A=∠ D 吗? 变式2;请你能提出几个要证明的结论?2.如图,已知AB=DE ,BC=EF ,AF=DC ,求证: EF ∥BC .3.已知:∠AOB. 求作:∠A ′O ′B ′ ,使∠A ′O ′B ′=∠AOB. 作法:1)以点___为圆心,任意长为半径画弧,分别交OA ,____于点C ,D ; 2)画一条射线O ′A ′,以点___为圆心,___长为半径画弧,交__于点C ′; 3)以点C ′为圆心,____长为半径画弧,与第2步中所画的弧交于点D ′; 4)过点D ′画射线O ′B ′,则∠A ′O ′B ′=∠AOB. 三、巩固与应用:课本第37页第1、2题;四、小结:1.全等判定方法: 2.证明全等格式: 3.思想方法: 五、作业:《作业本》第9页. 六、课后反思:A B C D EF A B D EFC 'B 'A 'C B A一、课前导学:(学生自学课本37-39页内容,并完成下列问题) 1. 探究新知 探究一:两边和它们的夹角对应相等的两个三角形是否全等? (1)动手试一试(请在右方空白处作图) 已知:△ABC求作:'''A B C ∆,使''A B AB =,''A C AC =,'A A ∠=∠ 作法:①画∠DA ’E=∠A ;②在射线AD ’上截取A ’B ’=AB,在射线A ’E 上截取A ’C ’=AC ; ③连接B ’C ’.(2) 把△'''A B C 剪下来放到△ABC 上,观察△'''A B C 与△ABC 是否能够完重合? (3)归纳;由上面的画图和实验可以得出全等三角形判定(二):两边和它们的夹角对应相等的两个三角形 (可以简写成“ ”或“ ”) (4)用数学语言表述全等三角形判定(二) 在△ABC 和'''A B C ∆中,''AB A B B BC =⎧⎪∠=⎨⎪=⎩∴△ABC ≌ ( )2.探究二:两边及其一边的对角对应相等的两个三角形是否全等?通过画图或实验可以得出: 3 .运用“边角边”证明两个三角形全等:教 学 过 程 设 计证明:在△ABC 和△DEC 中,⎪⎩⎪⎨⎧==∠=CB CA 1 ∴ △ABC ≌ ( )∴ AB= . 【温馨提示】:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好;②证明三角形全等过程三步骤:A 、写出在哪两个三角形中,B 、摆出三个条件用大括号括起来(按边-角—边)C 、写出全等结论.二、合作、交流、展示:1.如图1,已知AD ∥BC ,AD =CB ,求证:△ABC ≌△CDA 。
初二数学全等三角形教案(五篇)

初二数学全等三角形教案〔五篇〕初二数学全等三角形教案篇一1.定义:能够的两个三角形叫全等三角形。
2.全等三角形的性质,全等三角形的判定方法见下表。
一。
挖掘“隐含条件〞判全等如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)1.如图AB=CD,AC=BD,那么△ABC≌△DCB吗?说说理由。
变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD2.如图点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.假设∠B=20°,CD=5cm,那么∠CD的度数与BE的长。
3.如图假设OB=OD,∠A=∠C,假设AB=3cm,求CD的长。
变式训练2,如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO(3)BC=AD 二。
添条件判全等1.如图,AD平分∠BAC,要使△ABD≌△ACD,根据“SAS〞需要添加条件;根据“ASA〞需要添加条件;根据“AAS〞需要添加条件。
2.AB//DE,且AB=DE,(1)请你只添加一个条件,使△ABC≌△DEF,你添加的条件是。
三。
熟练转化“间接条件〞判全等1.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?为什么?2.如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?3.“三月三,放风筝〞,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明。
稳固练习:如图,在中,,沿过点B的一条直线BE折叠,使点C恰好落在AB变的中点D处,那么∠A的度数。
4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D1.(2022攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明。
所添条件为全等三角形是△≌△2.如图,AB=AD,∠B=∠D,∠1=∠2,说明:BC=DE3.如图,AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC4.等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L 的垂线,垂足分别为M、N(1)你能找到一对三角形的全等吗?并说明。
数学全等三角形教学设计教案

数学全等三角形教学设计教案经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。
全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。
全等三角形是几何中全等之一。
下面就是小编给大家带来的数学全等三角形教学设计教案,希望能帮助到大家!数学全等三角形教案1一、教学目标【知识与技能】掌握三角形全等的“角角边”条件,会把“角边角”转化成“角角边”。
能运用全等三角形的条件,解决简单的推理证明问题。
【过程与方法】经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。
【情感、态度与价值观】在探索归纳论证的过程中,体会数学的严谨性,体验成功的快乐。
二、教学重难点【教学重点】“角角边”三角形全等的探究。
【教学难点】将三角形“角边角”全等条件转化成“角角边”全等条件。
三、教学过程(一)引入新课利用复习旧知三角形“角边角”全等判定定理:两角和它们夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)(四)小结作业提问:今天有什么收获?还有什么疑问?课后作业:书后相关练习题。
数学全等三角形教案2全等三角形课题:全等三角形教学目标:1、知识目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能熟练找出两个全等三角形的对应角、对应边。
2、能力目标:(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;(2)通过找出全等三角形的对应元素,培养学生的识图能力。
3、情感目标:(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发现这两个三角形有什么美妙的关系吗?一般学生都能发现这两个三角形是完全重合的。
八年级数学《全等三角形》说课稿(精选3篇)

八年级数学《全等三角形》说课稿(精选3篇)八年级数学《全等三角形》篇1各位评委:今天我说课的题目是人教版数学八年级上册第十章第1节《全等三角形》。
下面,我将从教材分析,教学方法与教材处理及教学过程等几个方面对本课的设计进行说明。
一、教学地位和作用全等三角形是《三角形》这一章的主线,在知识结构上,等腰三角形,直角三角形,线段的垂直平分线,角的平分线等内容都要通过证明两个三角形全等来加以解决;在能力培养上,无论是逻辑思维能力,推理论证能力,还是分析问题解决问题的能力,都可在全等三角形的教学中得以培养和提高。
因此,全等三角形的教学对全章乃至以后的学习都是至关重要的。
为此,我在设计这节课的时候,以学生为主体,让他们全面地参与到学习过程中来,有意识地培养学生的创新意识和实践能力,增强他们学习的能力,让他们充分的掌握该知识点,同时尽量扩充他们的知识范畴。
在教学中,采用的是“设疑——实验——发现——总结”的教学方法,并采用“变式练习”方法来提高学习效率。
二、教学的目标和要求:1.知识目标:(1)知道什么是全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能熟练找出两个全等三角形的对应角,对应边。
2.能力目标:(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力;(2)通过找出全等三角形的对应元素,培养学生的识图能力。
3.情感目标:(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
三、教学重点:1.能准确地在图形中识别出对应边,对应角;2.全等三角形的性质和利用其基本性质进行一些简单的推理和计算。
(解决方法:利用动画的形式让学生直观的识别抽象的图形和知识点从而突出和掌握重点。
)四、教学难点:能在全等变换中准确找到对应边,对应角。
(在对应边,对应角的识别,查找中运用动画的展示,使学生能直观认识该知识点,化难为易,从而突破该难点)五、教法与学法:采用直观,类比的方法,以多媒体为手段辅助教学,引导学生预习教材内容,养成良好的自学习惯,启发学生发现问题,思考问题,培养学生的逻辑思维能力。
初中数学《全等三角形》教案优秀6篇

教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形
教学准备
复写纸、剪刀、半透明的纸、多媒体课件(几个
重要片断中使用).
教学过程(师生活动)设计理念
问题情境1.展现生活中的大量图片或录像片
断。
2.学生讨论:
(1)从上面的片断中你有什么感
受?
(2)你能再举出生活中的一些类
似例子吗?
丰富的图形容
易引起学生的
注意,使他们
能很快地投入
到学习的情境
中.
它反映了现实
生活中存在着
大量的全等图
形.
教师明晰,建立模型
观察下列图案,指出这些图案
中中形状与大小相同的图形
问题:你还能举出生活中一些实际
例子吗?
通过构图,为
学生理解全等
三角形的有关
概念奠定基
础.
这些形状、大小相同的图形放在一起能够完全重合。
能够完全重合的两个图形叫做全等形
能够完全重合的两个三角形叫做全等三角形
解析、应用与拓广1.学生用半透明的纸描绘下图中左
边的△ABC,然后按要求在三个图中
依次操作.体验“平移、翻折、旋
转前后的两个图形全等”.
你发现变换前后的两个三角形有什
么关系?
结论:一个图形经过平移、翻
折、旋转后,位置变化了,但形状、
大小都没有改变,即平移、翻折、
旋转前后的图形全等。
善于对基本三
角形变换出各
种图形,观察
它们的对应
边、对应角的
变化,体会当
公共边、公共
角完全或部分
重叠时,如何
快速寻找.培
养学生的动手
操作能力.。