卵形曲线计算方法

合集下载

卵形曲线计算原理

卵形曲线计算原理

卵形曲线计算原理一、概念卵形曲线:是指在两半径不等的同向圆曲线间插入一段缓和曲线。

也就是说:卵形曲线本身是缓和曲线的一段,只是在插入时去掉了靠近半径无穷大方向的一段,而非是一条完整的缓和曲线。

二、卵形曲线坐标计算原理根据已知的设计参数,求出包括卵形曲线的完整缓和曲线的相关参数和曲线要素,再按缓和曲线坐标计算的方法来计算卵形曲线上任意点上的坐标。

三、坐标计算以雅(安)至攀(枝花)高速公路A合同段(西昌西宁)立交区A匝道一卵形曲线为例,见图一:(图一)已知相关设计数据见下表:1、缓和曲线(卵形曲线)参数计算A1==59.161卵形曲线参数:A2=(HY2-YH1)×R1(小半径)×R2(大半径)÷(R2-R1)=(271.881-223.715)×50×75÷(75-50)= 7224.900A2==84.999A3==67.0822.卵形曲线所在缓和曲线要素计算卵形曲线长度LF由已知条件知:LF=HY2-YH1=271.881-223.715=48.166卵形曲线作为缓和曲线的一段,因此先求出整条缓和曲线的长度LS,由此找出HZ'点的桩号及坐标(实际上不存在,只是作为卵形曲线辅助计算用)LM=LS(YH1至HZ'的弧长)=A2÷R1=7224.900÷50=144.498∴HZ'桩号=YH1+LM=223.715+144.498=368.213LE=HY2至HZ'的弧长=A2÷R2=7224.900÷75=96.332或LE= LM-LF=144.498-48.166=96.332卵形曲线长度LF=LM-LE=144.498-96.332=48.166(校核)HY2=HZ'-LE=368.213-96.332=271.881(校核)由上说明计算正确3.HZ'点坐标计算(见图二)(图二)①用缓和曲线切线支距公式计算,缓和曲线切线支距公式通式:Xn=[(-1)n+1×L4n–3]÷[(2n-2)!×22n–2×(4n-3)×(RLs)2n–2]Yn=[(-1)n+1×L4n–1]÷[(2n-1)!×22n–1×(4n-1)×(RLs)2n–1]公式中符号含义:n —项数序号(1、2、3、……n)!—阶乘R —圆曲线半径Ls —缓和曲线长②现取公式前6项计算(有关书籍中一般为2-3项,不能满足小半径的缓和曲线计算精度要求,如本例中AK0+090~AK0+160段缓和曲线,如AK0+160中桩坐标带2项算误差达8cm),公式如下:X=L-L5÷[40(RLS)2]+L9÷[3456(RLS)4]–L13÷[599040(RLS)6]+L17÷[175472640(RLS)8]- L21÷[7.80337152×1010(RLS)10] (公式1)Y=L3÷[6(RLS)] - L7÷[336(RLS)3]+L11÷[42240(RLS)5] - L15÷[9676800(RLS)7]+L19÷[3530096640(RLS)9] - L23÷[1.8802409472×1012(RLS)11] (公式2)公式中L为计算点至ZH'或HZ'的弧长HZ':AK0+368.213的坐标从YH1:AK0+223.715推算,L=LS=HZ'-YH1=368.213-223.715=144.498将L=LS 代入公式(1)、(2)得:X=117.1072 Y=59.8839L对应弦长C=√(X2+Y2)=131.5301偏角a1=arctg(Y÷X)=27°05’00.2”* 偏角计算用反正切公式,不要用其它公式。

卵形曲线计算方法

卵形曲线计算方法

卵形曲线坐标计算方法一、概念卵形曲线:是指在两半径不等的圆曲线间插入一段缓和曲线。

也就是说:卵形曲线本身是缓和曲线的一段,只是在插入时去掉了靠近半径无穷大方向的一段,而非是一条完整的缓和曲线。

二、卵形曲线坐标计算原理根据已知的设计参数,求出包括卵形曲线的完整缓和曲线的相关参数和曲线要素,再按缓和曲线坐标计算的方法来计算卵形曲线上任意点上的坐标。

三、坐标计算以雅(安)至攀(枝花)高速公路A合同段(西昌西宁)立交区A匝道一卵形曲线为例,见图一:(图一)已知相关设计数据见下表:主点桩号坐标(m)切线方位角(θ)X Y ° ’ ”ZHAK0+090 9987.403 10059.378 92 17 26.2HY1AK0+160 9968.981 10125.341 132 23 51.6YH1AK0+223.715 9910.603 10136.791 205 24 33.6HY2AK0+271.881 9880.438 10100.904 251 24 18.5YH2AK0+384.032 9922.316 10007.909 337 04 54.2HZAK0+444.032 9981.363 10000.000 0 00 001、缓和曲线(卵形曲线)参数计算A1= =59.161卵形曲线参数:A2=(HY2-YH1)×R1(小半径)×R2(大半径)÷(R2-R1)=(271.881-223.715)×50×75÷(75-50)= 7224.900A2= =84.999A3= =67.0822.卵形曲线所在缓和曲线要素计算卵形曲线长度LF由已知条件知:LF=HY2-YH1=271.881-223.715=48.166卵形曲线作为缓和曲线的一段,因此先求出整条缓和曲线的长度LS,由此找出HZ'点的桩号及坐标(实际上不存在,只是作为卵形曲线辅助计算用)LM=LS(YH1至HZ'的弧长)=A2÷R1=7224.900÷50=144.498∴HZ'桩号=YH1+LM=223.715+144.498=368.213LE=HY2至HZ'的弧长=A2÷R2=7224.900÷75=96.332或LE= LM-LF=144.498-48.166=96.332卵形曲线长度LF=LM-LE=144.498-96.332=48.166(校核)HY2=HZ'-LE=368.213-96.332=271.881(校核)由上说明计算正确3.HZ'点坐标计算(见图二)(图二)①用缓和曲线切线支距公式计算,缓和曲线切线支距公式通式:Xn=[(-1)n+1×L4n–3]÷[(2n-2)!×22n–2×(4n-3)×(RLs)2n–2]Yn=[(-1)n+1×L4n–1]÷[(2n-1)!×22n–1×(4n-1)×(RLs)2n–1]公式中符号含义:n —项数序号(1、2、3、……n)!—阶乘R —圆曲线半径Ls —缓和曲线长②现取公式前6项计算(有关书籍中一般为2-3项,不能满足小半径的缓和曲线计算精度要求,如本例中AK0+090~AK0+160段缓和曲线,如AK0+160中桩坐标带2项算误差达8cm),公式如下:X=L-L5÷[40(RLS)2]+L9÷[3456(RLS)4]–L13÷[599040(RLS)6]+L17÷[175472640(RLS)8]- L21÷[7.80337152×1010(RLS)10] (公式1)Y=L3÷[6(RLS)] - L7÷[336(RLS)3]+L11÷[42240(RLS)5] - L15÷[9676800(RLS)7]+L19÷[3530096640(RLS)9] - L23÷[1.8802409472×1012(RLS)11] (公式2)公式中L为计算点至ZH'或HZ'的弧长HZ':AK0+368.213的坐标从YH1:AK0+223.715推算,L=LS=HZ'-YH1=368.213-223.715=144.498将L=LS 代入公式(1)、(2)得:X=117.1072 Y=59.8839L对应弦长C=√(X2+Y2)=131.5301偏角a1=arctg(Y÷X)=27°05’00.2”* 偏角计算用反正切公式,不要用其它公式。

公路卵型曲线坐标计算

公路卵型曲线坐标计算
为节 约 土 地 资 源 , 应 汽 车 转 弯 时 的行 车 轨 迹 , 除 曲率 突 变 , 适 消 增 进 线 形 美 观 及 行 车 的安 全 、 适 性 , 设计 线 形 较 为复 杂 , 舒 。 其 常
2 . 2完整缓和 曲线坐标计算 2 . 直 角坐标 .1 2 建立 以 0 fH 点为坐标原点 , Z ) Z 过 H点的缓和 曲线切线 为 X轴 , Z 过 H点上缓和 曲线的半径为 Y轴 的直角坐标系。如图 1
百 家论坛 l —
公 路卵型 曲线坐标计算
王寿武 ,李厚贤
( . 南 云 桥 建设 股 份 有 限公 司 , 云 南 昆 明 6 00 ; 1 云 5 11 2中 国水 利 水 电第 十 四 工程 局 有 限 公 司 , 云 南 昆 明 60 0 ) . 5 11
摘 要 : 在公路线形设计 中,卵型曲线上任 意点坐标计算较为 困难 ,文章 以某高速公路立交区 C匝道卵形曲线 为 例, 介绍卵形曲线上任意一点的直角坐标 、 大地坐标和方位角的计算方法 , 其在工程应用中具有指导作用。
特殊性。常用 的计算方法是将 卵型 曲线的一端顺延至 曲率半径 为无穷大的直缓点处 , 根据完整缓和 曲线公式计算卵型曲线上 任一点 的直 角坐标 , 再通 过坐标体 系转换 , 算 出直缓点 的大 计
地 坐 标 及切 线 方位 角 , 而 依 据 直 缓 点 大 地 坐标 及切 线 方位 角 进
当 R1R 时 : <2

0= 2Ip o0+・ 2
( 6)
(H H ) 任意一点的大地坐标可 由公 式( ) Z ^ Y段 3 计算。
0= l + ・ l o0+ IB 盯

0= 2' IB o0+r ・ 2 r +

公路卵形曲线任意点坐标和切线方位角的计算方法

公路卵形曲线任意点坐标和切线方位角的计算方法

方法求卵形曲线上任意一点的坐标和切线方位角. 首先 ,缓和曲线的长度 l 为 :
l = K9 + 309. 542 - K8 + 700 = 549. 542 m 取式 (12) 的前三项 ,求得切线支距坐标为 :
x = 546. 393
y = 43. 725 利用式 (13) 及求得的支距坐标计算 K8 + 760 中桩在大地坐标系中的坐标为 :
近年来高等级公路已经成为我国公路网中的重 要组成部分. 高等级公路 ,特别是高速公路的平面线 形设计形式很多 ,但归根结底它们都是由直线 、圆曲 线和缓和曲线 (回旋曲线) 等公路平面线形要素组合 而成. 按线形组合与衔接形式可分为 :基本形 、卵形 、 S 形 、凸形 、复合形 、C 形等几种形式. 各种复杂的平 面线形设计形式 ,就行车方面而言会更加适应汽车 转弯时的行车轨迹 、消除曲率突变 、增加行车的舒适 感和安全感 ,但同时也会使曲线的计算及测设工作 变得更为复杂. 本文针对在高等级公路测设中出现 的卵形曲线问题 ,推导了卵形曲线段任意点的坐标 及切线方位角的计算公式.
C = A 2 = R大 R小 lF / ( R大 - R小 )
(1)
式中 : R大 , R小 为与卵形曲线相连的两圆曲线半径 ,
m ; lF 为非完整缓和曲线段即卵形曲线段长度 , m ; A 为缓和曲线参数 ;
2) 与 lF 相对应的完整缓和曲线的长度 lS 为 :
lS = A 2 / R小
(2)
2 公式的推导
如图 1 所示 ,在半径为 R1 和 R2 的两圆曲线之间 插入长度为 lF 的非完整缓和曲线 , 此段缓和曲线的 端点分别为 Y H 点和 H Y 点. 缓和曲线起点 Q 的桩

卡西尼卵形线二级结论

卡西尼卵形线二级结论

卡西尼卵形线二级结论卡西尼卵形线是一种在数学和物理领域中非常重要的曲线,它由法国天文学家吉安·达米安·德·卡西尼于1673年首次发现。

这条曲线是由两个焦点之间的点所绘制的曲线,其中两个焦点之间的距离等于该曲线的长轴长度。

卡西尼卵形线在天文学、物理学、工程学和计算机图形学中都有广泛应用。

一、卡西尼卵形线的定义和性质1. 定义:卡西尼卵形线是由两个焦点A和B之间距离为2a的所有点P构成的曲线,其中a是长轴长度。

2. 性质:(1)对于任意一条经过A、B两点的直线l,其与曲线交点P满足PA×PB=2a²。

(2)当l通过A、B两点时,交点P位于中垂线上;当l与长轴平行时,交点P位于短轴上。

(3)该曲线对称于长轴和短轴,并且具有四分之一旋转对称性。

(4)当a=b时,该曲线变成一个圆。

二、卡西尼卵形线的历史和应用1. 历史:卡西尼卵形线是由法国天文学家吉安·达米安·德·卡西尼于1673年首次发现的。

他使用望远镜观察土星的环,发现环上的某些部分呈现出奇特的形状,后来经过计算,他发现这些形状正是由卡西尼卵形线所描述的。

2. 应用:(1)天文学:在天文学中,卡西尼卵形线被用来描述行星和恒星之间的引力场。

(2)物理学:在物理学中,卡西尼卵形线被用来描述电子云和原子核之间的相互作用力。

(3)工程学:在工程学中,卡西尼卵形线被用来设计一些特殊的机械结构。

(4)计算机图形学:在计算机图形学中,卡西尼卵形线被用来绘制一些复杂的图案和曲线。

三、卡西尼卵形线与其他曲线的关系1. 椭圆和双曲线:当焦点A、B重合时,该曲线变成一个椭圆;当焦点A、B无限远时,该曲线变成一个双曲线。

2. 柯西曲线和阿斯滕曲线:柯西曲线是由两个复数之间距离为常数的所有点构成的曲线,与卡西尼卵形线密切相关;阿斯滕曲线则是由两个点P、Q之间距离差为常数的所有点构成的曲线,也与卡西尼卵形线密切相关。

卵形曲线辅助点计算(即完整缓和曲线起点的支距)解算步骤

卵形曲线辅助点计算(即完整缓和曲线起点的支距)解算步骤

50卵形曲线辅助点计算(即完整缓和曲线起点的支距)解算步骤卵形曲线:是指在两半径不等的圆曲线间插入一段缓和曲线。

也就是说:卵形曲线本身是缓和曲线的一段,只是在插入时去掉了靠近半径无穷大方向的一段,而非是一条完整的缓和曲线,计算前只需要把不完整的缓和曲线(也就是卵型曲线)补充完整即可。

在计算小半径的缓和曲线或卵形曲线坐标时,由于切线支距公式取项少而造成计算精度低,现有书中一般介绍也就只有2~4项,为提高计算精度就需要将支距公式多展开几项。

以下计算卵型曲线的完整缓和曲线长支距模型:重在学习掌握解算流程,现在空间里有更好的计算程序。

曲线参数A2=LS×R1×R2÷(R2-R1)=卵形曲线长×小半径×大半径÷(大半径-小半径)在同一段回旋线内,它的参数永远是不变的。

LS=卵型曲线长. (已知)完整缓和曲线长L= A2÷R1=曲线参数÷小半径当L=LS时:代入完整缓和曲线切线支距公式:(式中R均为小半径R1)E=L-L5÷[40(RLS)2]+L9÷[3456(RLS)4]–L13÷[599040(RLS)6]+L17÷[175472640(RLS)8]- L21÷[7.80337152×1010(RLS)10]F=L3÷[6(RLS)] - L7÷[336(RLS)3]+L11÷[42240(RLS)5] -L15÷[9676800(RLS)7]+L19÷[3530096640(RLS)9] -L23÷[1.8802409472×1012(RLS)11]完整缓和曲线切线角(即两切线交角)p2=90L2÷(A2)L所对应玄长C=√(E2+F2)大半径处偏角P1=tan- 1(F2÷E2)小半径处偏角P3=180- P1-(180- p2)O=小半径处切线方位角(已知)小半径处至完整缓和曲线起点方位角Q=O±P3 (右向取+号;左向取-号)完整缓和曲线(起点)坐标:X=A+CcosQY=B=CsihQ完整缓和曲线(起点)处切线方位角:O=Q+180±p2 (右向取+号;左向取-号)以起点为基点用回旋线编程计算卵型曲线上任意桩号的中边桩点位坐标。

卵型曲线计算方法

卵型曲线计算方法

大头回头曲线布设:主曲线 两条辅助曲线 半径确定同虚交点法。

3.回头曲线
大头回头曲线布设:主曲线 两条辅助曲线 半径确定同虚交点法。 回头曲线横断面检查。
在选线布局定下的主要控制点之间,沿拟定方向用试坡方 法粗定出沿线应穿应避的一系列中间控制点,拟定路线轮廓 方案。


(二)放坡,定导向线
现场放均坡线。仪器:坡度仪或手水准仪、花杆。


(三)修正导向线
(四)穿线交点
二、曲线插设方法
——现场确定圆曲线半径R的方法

同时适用于纸上定线。
1.单交点 外距控制:横断面方向受限; 切线长控制:交点间距受限; 曲线长控制:小偏角;

主点里程桩号计算: (由JD1桩号起算)
ZH 1 JD1 TH 1 HY2 YH1 LF
HY1 ZH 1 Ls1 YH 2 HY2 LY 2 YH1 HY1 LY 1 HZ2 YH 2 Ls2
(3)中间缓和曲线起点M坐标计算 : ①当R1>R2时:回旋线起点M位于YH1后方。 90( Ls1 2 LY 1 ) YH 切线方位角: 1 YH 1 0 R1

该缓和曲线仍然采用回旋线,但它的曲率不是从零开始,而 是截取曲率为1/R1~1/R2的一段作为缓和曲线。

设计方法:切线长度控制曲线半径法(直线型定线) 由圆曲线位置控制设计法(曲线型定线) 由切线长度控制设计时,可按两同向曲线不设缓和曲线在 公切点处直接相接的思想进行设计(公切线即为两交点的连 线)。 两曲线应满足
(3)中间缓和曲线起点M坐标计算 :

②当R1<R2时:回旋线起点M位于HY2点前方 。 由YH1坐标推算M坐标:

卵形曲线的坐标计算

卵形曲线的坐标计算
关系得 : XK =XM+( 一 5 )O(M + 1× l×1 £ l c a N 了 S 8 Z) o

2 多形 曲线 的坐标 计算
卵形曲线两端是直线一缓和曲线一 圆曲线 , 各点坐标按切 其
线 支距法容易求得 计算公式为 『 ] 『 ] , X l j l j x +
卵 形 曲 线 的 坐 标 计 算
张 生 成
摘 要 : 由于路线的转向及 大小 圆曲线位置先后不同, 出卵形曲线 中间段 回旋线起 点 M 的切线方位角和 坐标 计算情 指
况, 具体介绍 了路线右转且 大圆曲线在先小圆 曲线在后 的计算公 式及计算过程。
关键 词42 文献标识码 : A
由 A 点的坐标 ( 曲线 主点坐标 ) l 的长度 , 及 1 可反算缓 和曲
线起点 M 坐标。
l~R ,
田 儿 术 ‘。 山 。 I 寸
现定 义回旋线 的参数 方程 : =r, f l 并令 A A=z , / L I MB= £, 2
A = 1 B 2 l F = 。
所示, 的方位角 = u , j 一 其中,A 为丽 的方位角, aU 由
须指出的是 , 中间段缓和曲线长度 l l Rl“ , , ) F由 『 , R2 决定 : 已知条件可求得。 ’ (
‘ / R ( 何件 出 一堕 由 条得 ) ^ 二 几 。
F:
2 2 M 点 的坐标 计算 .
音。 在儿何理论上, 若两圆曲线相交、 相切或相离时, 只用一条叫
旋线不能将两个 圆曲线连接 , 以卵彤 曲线 必须要求大 圆曲线能 所 完全包住小圆曲线 ( 文中假定 Rl 本 >R2 。并 且, 了避 免 中间 ) 为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【摘要】在高速公路立交平面线型中,现越来越多采用卵形曲线这一线型形式,而卵形曲线坐标的计算在现有相关书籍中却又很少提到,这就为施工中的坐标计算及放样增加了较大难度,为解决此难道,我在实践中通过对缓和曲线坐标的计算加以分析并结合理论知识,总结出了卵形曲线坐标的计算方法和技巧。

【关键词】卵形曲线坐标计算
一、概念
卵形曲线:是指在两半径不等的同向圆曲线间插入一段缓和曲线。

也就是说:卵形曲线本身是缓和曲线的一段,只是在插入时去掉了靠近半径无穷大方向的一段,而非是一条完整的缓和曲线。

二、卵形曲线坐标计算原理
根据已知的设计参数,求出包括卵形
曲线的完整缓和曲线的相关参数和曲线要素,再按缓和曲线坐标计算的方法来计算卵形曲线上任意点上的坐标。

三、坐标计算
以雅(安)至攀(枝花)高速公路A合同段(西昌西宁)立交区A匝道一卵形曲线为例,见图一:
(图一)已知相关设计数据见下表:
1、缓和曲线(卵形曲线)参数计算
A1==59.161
卵形曲线参数:
A2=(HY
2-YH
1
)×R
1
(小半径)×R
2
(大半径)÷(R
2
-R
1

=(271.881-223.715)×50×75÷(75-50)= 7224.900
A2==84.999
A3==67.082
2.卵形曲线所在缓和曲线要素计算
卵形曲线长度L
F 由已知条件知:L
F
=HY2-YH1=271.881-223.715=48.166
卵形曲线作为缓和曲线的一段,因此先求出整条缓和曲线的长度L
S
,由此找出HZ'点的桩号及坐标(实际上不存在,只是作为卵形曲线辅助计算用)
L M =L
S
(YH1至HZ'的弧长)=A2÷R1
=7224.900÷50=144.498
∴HZ'桩号=YH1+L
M
=223.715+144.498=368.213
L
E
=HY2至HZ'的弧长
=A2÷R2=7224.900÷75=96.332
或L
E = L
M
-L
F
=144.498-48.166=96.332
卵形曲线长度L
F =L
M
-L
E
=144.498-96.332=48.166(校核)
HY2=HZ'-L
E
=368.213-96.332=271.881(校核)
由上说明计算正确
3.HZ'点坐标计算(见图二)
(图二)
①用缓和曲线切线支距公式计算,缓和曲线切线支距公式通式:
Xn=[(-1)n+1×L4n–3]÷[(2n-2)!×22n–2×(4n-3)×(RLs)2n–2]
Yn=[(-1)n+1×L4n–1]÷[(2n-1)!×22n–1×(4n-1)×(RLs)2n–1]
公式中符号含义:
n —项数序号(1、2、3、……n)
!—阶乘
R —圆曲线半径
Ls —缓和曲线长
②现取公式前6项计算(有关书籍中一般为2-3项,不能满足小半径的缓和曲线计算精度要求,如本例中AK0+090~AK0+160段缓和曲线,如AK0+160中桩坐标带2项算误差达8cm),公式如下:
X=L-L5÷[40(RL
S )2]+L9÷[3456(RL
S
)4]–L13÷[599040(RL
S
)6]+L17÷[175472640
(RL
S )8]- L21÷[7.80337152×1010(RL
S
)10] (公式1)
Y=L3÷[6(RL
S )] - L7÷[336(RL
S
)3]+L11÷[42240(RL
S
)5] - L15÷[9676800(RL
S

7]+L19÷[3530096640(RL
S )9] - L23÷[1.8802409472×1012(RL
S
)11] (公式2)
公式中L为计算点至ZH'或HZ'的弧长
HZ':AK0+368.213的坐标从YH1:AK0+223.715推算,
L=L
S
=HZ'-YH1
=368.213-223.715=144.498
将L=L
S
代入公式(1)、(2)得:
X=117.1072 Y=59.8839
L对应弦长C=√(X2+Y2)=131.5301
偏角a1=arctg(Y÷X)=27°05’00.2”
* 偏角计算用反正切公式,不要用其它公式。

缓和曲线切线角:
a2=90L2÷(πK)
=90×144.4982÷(π×7224.900)
=82°47’28.5”
* K为卵型曲线参数,本例中
K= A2=7224.900
Q3=180-a1-(180-a2)
=180-27°05’00.2”-(180-82°47’28.5”)
=55°42’28.3”
∴YH1"HZ’切线方位角(M"B)
=205°24’33.6” +Q3
=205°24’33.6”+55°42’28.3”
=261°07’01.9”
∴HZ’:AK0+368.213坐标:
+Ccos261°07’01.9”
X=X
YH1
=9910.603+131.5301 cos261°07’01.9”=9890.293 +Csin261°07’01.9”
Y=Y
YH1
=10136.791+131.5301 sin261°07’01.9”=10006.838 4.HZ’:AK0+368.213点的切线方位角(D"B)计算D"B方位角:
=205°24’33.6”+Q2
=205°24’33.6”+82°47’28.5”
=288°12’02.1”
∴B"D切线方位角:
=288°12’02.1”-180
=108°12’02.1”
5.计算卵型曲线上任意点坐标(以HZ’:AK0+368.213作为推算起点)
①计算HY2:AK0+271.881的坐标
∵L= HZ’- HY2=368.213-271.881=96.332代入公式1、2得:X=92.434 Y=20.022 偏角Q= arctg(Y÷X)=12°13’19.61” 对应弦长C=√(X2+Y2)=94.578
坐标:
X=9890.293+94.578cos(108°12’02.1”-12°13’19.61”)
=9880.442
Y=10006.838+94.578sin(108°12’02.1”-12°13’19.61”)
=10100.902
②与设计值比较:
rX=X计算值-X设计值=9880.442-9880.438
=+0.004
rY=Y计算值-Y设计值=10100.902-10100.904
=-0.002 mm
同理依次可计算出卵型曲线上其它任意点的坐标。

由此可见,采用此方法计算求得的坐标与设计院通过电脑程序计算的结果相差很小,本人多年来在高速公路多条卵型曲线采用此方法计算其坐标,其计算精确,完全可以作为包括高速公路在内的卵型曲线坐标计算。

相关文档
最新文档