卵形曲线参数计算

合集下载

道路卵形曲线上点坐标的严密算法

道路卵形曲线上点坐标的严密算法

Y 2 = L s 1 / 2 / C 1 J 一
: L q / 2 / C 1 } ( 5 )
作者简介 :王兵 ( 1 9 9 0年 2月),男 ,汉,贵州湄潭 ,本科,测绘,贵州地矿测绘院
y 2 ) 与B 、p 即可求 得卵形线 Y H1 一 H Y 2 转角为 p 、弦  ̄ t f l — H Y 2的长度 s以 及弦 Y H 1 一 H Y 2 与导线 J D I - J D 2( 即独立坐标系中 Y H I 处切线 )的夹角 8,再根 据不对称道路平面曲线的计算方法【 2 ] 可求得卵形 曲线要素 ( 切线增长 q 、圆心 内移 值P 、切线长 T等 ) 。
1 . 1 卵形 曲线要素解析
U 刖 吾
道路平 曲线设计 中,不可避免地会运用到 了卵形 曲线 ,其要素 ( 转角 1 3 、切
线增 长 q 、圆心内移值 P 、 切线 长 T等 ) 以及卵形线上任意点 高斯坐标 的计算是道
路 平曲线设计与测设 过程中的难点 ,有关文献 给出的计算方法有利用复化 辛普 森 公 式计算n】 、利用双交点法计算等 ,双交点 法是将卵形线分为长度相等 的两段分 别看作等长完 整缓和曲线来进行解算 ,为一种近似算法 ,存在着误差 较大或未能 求 解卵形 曲线要 素的不足。本文给 出了一种补 全卵形线后利用几何性质将 其独 立


L / 。 2 C
+-


】 ( = ( _ 1 )
p - R O-C o 2 ) [ 4 ] q = — R S i n l f l
2 ・ } ( 1 ) 【

坐标转换为高斯坐标 的计算方法可有效提高计算精度和准确计算 曲线要素 。

卵形曲线中间缓和曲线的放样计算

卵形曲线中间缓和曲线的放样计算
卵形曲线的线型组合一般为直线 —回旋线 —圆曲线 —回旋线 —圆曲线 —回旋线 —直线 , 可以是单卵形 ,也可以是多重卵形 。对于卵形 曲线的设计方法 ,已有很多文献资料和测量手 册述及 ,本文仅讨论其中间缓和曲线的放样计 算方法 。
卵形曲线的相邻两圆曲线为包含关系 ,但 非同心圆 ,半径也不相等 ,其间的回旋线为不完 整回旋线 ( R1 > R2 或 R2 > R1 ) ,因而其放样计 量比基本型曲线中的完整回旋线较为复杂 。文 献〔1〕中介绍的方法为圆弧支距法 ,是以圆曲线 为基础来测设中间缓和曲线 ,该法精度较差 ,而 且与常用的测设方法不相适应 。本文采用完整
1999 年第 1 期
卵形曲线中间缓和曲线的放样计算
张 王月 杨根义 武文清
(内蒙古包头市公路总段 , 014040)
【摘 要】 从完整回旋线的计算方法出发 ,通过坐标转换 ,说明了卵形曲线中间缓和曲线 (不完整 回旋线) 的逐桩放样数据的计算方法 ,使其能按基本平曲线的放样方法进行放样 。 【关键词】 卵形曲线 中间缓和曲线 放样
2. 1 R1 > R2 的情况 (图 1)
在 X0 - Y 0 坐标系中 , Y H1 的坐标为 : x 0 = x (φ) , y0 = y (φ)
在 X1 - Y1 坐标系中 , 将中间缓和曲线延
伸后 ,设 Y H1 至起点的曲线长为 L 1 , 则 L 1 =
A
2 f
/
R1 , Y H1 处的缓和曲线角 β1
半径分别为 R1 、R2 , 则中间缓和曲线的曲率半
径为 : Rf = R1 ·R2/ | R1 - R2 | ;其回旋线参数

:
A
2 f
=
L f ·Rf 。

卵形曲线缓和曲线参数

卵形曲线缓和曲线参数

卵形曲线缓和曲线参数
卵形曲线的缓和曲线参数包括Ls1、Ly和Ls2。

其中,Ls1和Ls2是缓和曲线的长度,Ly是圆曲线的长度。

这些参数可以根据实际需求进行计算和调整,以适应不同的道路设计和行驶需求。

在计算这些参数时,需要考虑道路的曲线半径、设计速度、车辆的行驶特性等因素。

例如,根据缓和曲线的设置要求,Ls1和Ls2应满足一定的长度范围,以保证车辆在缓和曲线上的行驶平稳性和安全性。

同时,Ly的长度也需要根据圆曲线的半径和设计速度进行计算,以确保车辆在圆曲线上的行驶稳定性。

在实际应用中,可以使用专业的道路设计软件来计算这些参数,并根据计算结果进行道路设计和施工。

同时,还需要考虑道路的实际情况和交通流量等因素,对参数进行适当的调整和优化,以保证道路的安全、舒适和可靠性。

1。

卵形曲线计算原理

卵形曲线计算原理

卵形曲线计算原理一、概念卵形曲线:是指在两半径不等的同向圆曲线间插入一段缓和曲线。

也就是说:卵形曲线本身是缓和曲线的一段,只是在插入时去掉了靠近半径无穷大方向的一段,而非是一条完整的缓和曲线。

二、卵形曲线坐标计算原理根据已知的设计参数,求出包括卵形曲线的完整缓和曲线的相关参数和曲线要素,再按缓和曲线坐标计算的方法来计算卵形曲线上任意点上的坐标。

三、坐标计算以雅(安)至攀(枝花)高速公路A合同段(西昌西宁)立交区A匝道一卵形曲线为例,见图一:(图一)已知相关设计数据见下表:1、缓和曲线(卵形曲线)参数计算A1==59.161卵形曲线参数:A2=(HY2-YH1)×R1(小半径)×R2(大半径)÷(R2-R1)=(271.881-223.715)×50×75÷(75-50)= 7224.900A2==84.999A3==67.0822.卵形曲线所在缓和曲线要素计算卵形曲线长度LF由已知条件知:LF=HY2-YH1=271.881-223.715=48.166卵形曲线作为缓和曲线的一段,因此先求出整条缓和曲线的长度LS,由此找出HZ'点的桩号及坐标(实际上不存在,只是作为卵形曲线辅助计算用)LM=LS(YH1至HZ'的弧长)=A2÷R1=7224.900÷50=144.498∴HZ'桩号=YH1+LM=223.715+144.498=368.213LE=HY2至HZ'的弧长=A2÷R2=7224.900÷75=96.332或LE= LM-LF=144.498-48.166=96.332卵形曲线长度LF=LM-LE=144.498-96.332=48.166(校核)HY2=HZ'-LE=368.213-96.332=271.881(校核)由上说明计算正确3.HZ'点坐标计算(见图二)(图二)①用缓和曲线切线支距公式计算,缓和曲线切线支距公式通式:Xn=[(-1)n+1×L4n–3]÷[(2n-2)!×22n–2×(4n-3)×(RLs)2n–2]Yn=[(-1)n+1×L4n–1]÷[(2n-1)!×22n–1×(4n-1)×(RLs)2n–1]公式中符号含义:n —项数序号(1、2、3、……n)!—阶乘R —圆曲线半径Ls —缓和曲线长②现取公式前6项计算(有关书籍中一般为2-3项,不能满足小半径的缓和曲线计算精度要求,如本例中AK0+090~AK0+160段缓和曲线,如AK0+160中桩坐标带2项算误差达8cm),公式如下:X=L-L5÷[40(RLS)2]+L9÷[3456(RLS)4]–L13÷[599040(RLS)6]+L17÷[175472640(RLS)8]- L21÷[7.80337152×1010(RLS)10] (公式1)Y=L3÷[6(RLS)] - L7÷[336(RLS)3]+L11÷[42240(RLS)5] - L15÷[9676800(RLS)7]+L19÷[3530096640(RLS)9] - L23÷[1.8802409472×1012(RLS)11] (公式2)公式中L为计算点至ZH'或HZ'的弧长HZ':AK0+368.213的坐标从YH1:AK0+223.715推算,L=LS=HZ'-YH1=368.213-223.715=144.498将L=LS 代入公式(1)、(2)得:X=117.1072 Y=59.8839L对应弦长C=√(X2+Y2)=131.5301偏角a1=arctg(Y÷X)=27°05’00.2”* 偏角计算用反正切公式,不要用其它公式。

卵形曲线计算方法

卵形曲线计算方法

卵形曲线坐标计算方法一、概念卵形曲线:是指在两半径不等的圆曲线间插入一段缓和曲线。

也就是说:卵形曲线本身是缓和曲线的一段,只是在插入时去掉了靠近半径无穷大方向的一段,而非是一条完整的缓和曲线。

二、卵形曲线坐标计算原理根据已知的设计参数,求出包括卵形曲线的完整缓和曲线的相关参数和曲线要素,再按缓和曲线坐标计算的方法来计算卵形曲线上任意点上的坐标。

三、坐标计算以雅(安)至攀(枝花)高速公路A合同段(西昌西宁)立交区A匝道一卵形曲线为例,见图一:(图一)已知相关设计数据见下表:主点桩号坐标(m)切线方位角(θ)X Y ° ’ ”ZHAK0+090 9987.403 10059.378 92 17 26.2HY1AK0+160 9968.981 10125.341 132 23 51.6YH1AK0+223.715 9910.603 10136.791 205 24 33.6HY2AK0+271.881 9880.438 10100.904 251 24 18.5YH2AK0+384.032 9922.316 10007.909 337 04 54.2HZAK0+444.032 9981.363 10000.000 0 00 001、缓和曲线(卵形曲线)参数计算A1= =59.161卵形曲线参数:A2=(HY2-YH1)×R1(小半径)×R2(大半径)÷(R2-R1)=(271.881-223.715)×50×75÷(75-50)= 7224.900A2= =84.999A3= =67.0822.卵形曲线所在缓和曲线要素计算卵形曲线长度LF由已知条件知:LF=HY2-YH1=271.881-223.715=48.166卵形曲线作为缓和曲线的一段,因此先求出整条缓和曲线的长度LS,由此找出HZ'点的桩号及坐标(实际上不存在,只是作为卵形曲线辅助计算用)LM=LS(YH1至HZ'的弧长)=A2÷R1=7224.900÷50=144.498∴HZ'桩号=YH1+LM=223.715+144.498=368.213LE=HY2至HZ'的弧长=A2÷R2=7224.900÷75=96.332或LE= LM-LF=144.498-48.166=96.332卵形曲线长度LF=LM-LE=144.498-96.332=48.166(校核)HY2=HZ'-LE=368.213-96.332=271.881(校核)由上说明计算正确3.HZ'点坐标计算(见图二)(图二)①用缓和曲线切线支距公式计算,缓和曲线切线支距公式通式:Xn=[(-1)n+1×L4n–3]÷[(2n-2)!×22n–2×(4n-3)×(RLs)2n–2]Yn=[(-1)n+1×L4n–1]÷[(2n-1)!×22n–1×(4n-1)×(RLs)2n–1]公式中符号含义:n —项数序号(1、2、3、……n)!—阶乘R —圆曲线半径Ls —缓和曲线长②现取公式前6项计算(有关书籍中一般为2-3项,不能满足小半径的缓和曲线计算精度要求,如本例中AK0+090~AK0+160段缓和曲线,如AK0+160中桩坐标带2项算误差达8cm),公式如下:X=L-L5÷[40(RLS)2]+L9÷[3456(RLS)4]–L13÷[599040(RLS)6]+L17÷[175472640(RLS)8]- L21÷[7.80337152×1010(RLS)10] (公式1)Y=L3÷[6(RLS)] - L7÷[336(RLS)3]+L11÷[42240(RLS)5] - L15÷[9676800(RLS)7]+L19÷[3530096640(RLS)9] - L23÷[1.8802409472×1012(RLS)11] (公式2)公式中L为计算点至ZH'或HZ'的弧长HZ':AK0+368.213的坐标从YH1:AK0+223.715推算,L=LS=HZ'-YH1=368.213-223.715=144.498将L=LS 代入公式(1)、(2)得:X=117.1072 Y=59.8839L对应弦长C=√(X2+Y2)=131.5301偏角a1=arctg(Y÷X)=27°05’00.2”* 偏角计算用反正切公式,不要用其它公式。

卵形曲线逐桩坐标计算

卵形曲线逐桩坐标计算

卵形曲线点位坐标计算步骤
4、卵形曲线上P点的坐标
(1)求P点在ZH′— xy 坐标系下的坐标
xp
l-ຫໍສະໝຸດ l5 40r22(l L)2
l9 3456r24(l L)4
yp
l3
l7
6r2(l L) - 336r23(l L)3
l11 42240r25(l L)5
l l DK P - DKYH
d (2)求ZH′到YH点的距离 及与ZH′切线间的夹角
d
xY2H
y
2
YH
δ
tan-1
yYH xYH
卵形曲线点位坐标计算步骤
3、求ZH′点的坐标
(3)求YH→ZH′的方位角
αYH→ZH′=αZH′切 +δ +180
卵形曲线点位坐标计算步骤
3、求ZH′点的坐标
(4)求ZH′点的坐标
X ZH XYH d cos αYH ZH YZH YYH d sin αYH ZH
《道路线路施工测量》
卵形曲线逐桩坐标计算
目录
一.概述 二.卵形曲线点位坐标计算步骤
第一部分
概述
概述
如图
l1 l
2
此曲线是用一个回旋曲线 连接两个同向圆曲线的线
型,称之为卵型曲线
第二部分
卵形曲线点位坐标计算步骤
卵形曲线点位坐标计算步骤
1、已知条件
以曲线右偏且(r1>r2)为例, 设:
Y1H点半径为r1 HY2点半径为r2
β l 180 2r1 π
αZH ′切 =αYH切 - β
卵形曲线点位坐标计算步骤
3、求ZH′点的坐标
(1)求YH点在ZH′— xy 坐标系下的坐标

公路卵形曲线任意点坐标和切线方位角的计算方法

公路卵形曲线任意点坐标和切线方位角的计算方法

方法求卵形曲线上任意一点的坐标和切线方位角. 首先 ,缓和曲线的长度 l 为 :
l = K9 + 309. 542 - K8 + 700 = 549. 542 m 取式 (12) 的前三项 ,求得切线支距坐标为 :
x = 546. 393
y = 43. 725 利用式 (13) 及求得的支距坐标计算 K8 + 760 中桩在大地坐标系中的坐标为 :
近年来高等级公路已经成为我国公路网中的重 要组成部分. 高等级公路 ,特别是高速公路的平面线 形设计形式很多 ,但归根结底它们都是由直线 、圆曲 线和缓和曲线 (回旋曲线) 等公路平面线形要素组合 而成. 按线形组合与衔接形式可分为 :基本形 、卵形 、 S 形 、凸形 、复合形 、C 形等几种形式. 各种复杂的平 面线形设计形式 ,就行车方面而言会更加适应汽车 转弯时的行车轨迹 、消除曲率突变 、增加行车的舒适 感和安全感 ,但同时也会使曲线的计算及测设工作 变得更为复杂. 本文针对在高等级公路测设中出现 的卵形曲线问题 ,推导了卵形曲线段任意点的坐标 及切线方位角的计算公式.
C = A 2 = R大 R小 lF / ( R大 - R小 )
(1)
式中 : R大 , R小 为与卵形曲线相连的两圆曲线半径 ,
m ; lF 为非完整缓和曲线段即卵形曲线段长度 , m ; A 为缓和曲线参数 ;
2) 与 lF 相对应的完整缓和曲线的长度 lS 为 :
lS = A 2 / R小
(2)
2 公式的推导
如图 1 所示 ,在半径为 R1 和 R2 的两圆曲线之间 插入长度为 lF 的非完整缓和曲线 , 此段缓和曲线的 端点分别为 Y H 点和 H Y 点. 缓和曲线起点 Q 的桩

浅谈道路线形设计中卵型平曲线的计算方法

浅谈道路线形设计中卵型平曲线的计算方法

浅谈道路线形设计中卵型平曲线的计算方法摘要:在当今社会发展中,人们对交通运输的要求越来越高,且道路建设水平在国民经济建设中占有重要地位,因此合理的线形设计至关重要。

卵型曲线作为道路线形设计中的一种,其设计复杂,计算繁琐,参数较多,在实际工作中对其进行研究。

关键词:公路工程线形设计卵型平曲线道路线形设计在道路整体设计中占有重要地位,设计合理的线形可以提高道路行车安全保障,同时对道路连续性和美观都起到重要作用。

道路线形设计中一般包括6种线形,即:基本型、S型、卵型、凸型、复合型和C型。

其中,基本型是现代道路线形设计中最基本、最常用、计算最简单的线形之一,但在设计中往往由于地形或其它因素的影响不能采用基本型设计,而采用其他5种线形中的一种,其中卵型是计算最为复杂的线形。

卵型平曲线是指用一个回旋线连接两个同向圆曲线的组合形式。

卵型组合的前提条件:(1)大圆必须把小圆完全包含在内,但不是同心圆。

(2)延长两相邻圆曲线的圆弧不能相互交叉。

(3)连接的回旋线不是由回旋线的原点开始,而是曲率为的部分。

下面我将结合自己的实践经验对道路线形设计中的卵型平曲线进行案例分析。

本案例中,和构成卵形平曲线,并且两交点的坐标分别为(76816.62,45314.107),(76615.557,45541.151),两交点的偏角分别为30°30’07″和23°21’06″,初拟的半径R1=400,缓和曲线。

本案例采用切线长度控制曲线半径法(直线型定线)进行计算,按两同向曲线(未设缓和曲线时)在公切点处直接相接在的思想进行设计(公切线即为两交点的连线)两曲线应满足:参考文献[1] 赵永平,唐勇.道路勘测设计[M].北京:高等教育出版社,2004(8).[2] 中华人民共和国行业标准.公路路线设计规范JTGD20-2006[S].北京:人民交通出版社,2006(10).[3] 许娅娅.测量学[M].北京:人民交通出版社,2004(5).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档