基于某MATLAB的曲柄摇杆机构优化设计
matlab(四连杆优化设计)

机械优化设计在matlab中的应用东南大学机械工程学院**一优化设计目的:在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。
最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。
由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。
二优化设计步骤:1.机械优化设计的全过程一般可以分为如下几个步骤:1)建立优化设计的数学模型;2)选择适当的优化方法;3)编写计算机程序;4)准备必要的初始数据并伤及计算;5)对计算机求得的结果进行必要的分析。
其中建立优化设计数学模型是首要的和关键的一步,它是取得正确结果的前提。
优化方法的选取取决于数学模型的特点,例如优化问题规模的大小,目标函数和约束函数的性态以及计算精度等。
在比较各种可供选用的优化方法时,需要考虑的一个重要因素是计算机执行这些程序所花费的时间和费用,也即计算效率。
2.建立数学模型的基本原则与步骤设计变量的确定;设计变量是指在优化设计的过程中,不断进行修改,调整,一直处于变化的参数称为设计变量。
设计变量的全体实际上是一组变量,可用一个列向量表示:x=。
目标函数的建立;选择目标函数是整个优化设计过程中最重要的决策之一。
当对某以设计性能有特定的要求,而这个要求有很难满足时,则针对这一性能进行优化会得到满意的效果。
目标函数是设计变量的函数,是一项设计所追求的指标的数学反映,因此它能够用来评价设计的优劣。
目标函数的一般表达式为:f(x)=,要根据实际的设计要求来设计目标函数。
约束条件的确定。
一个可行性设计必须满足某些设计限制条件,这些限制条件称为约束条件,简称约束。
由若干个约束条件构成目标函数的可行域,而可行域内的所有设计点都是满足设计要求的,一般情况下,其设计可行域可表示为在可行域中,任意设计点满足全部约束条件,称为可行解,但不是最优解,而优化设计就是要求出目标函数在可行域的最优解。
基于MATLAB的曲柄摇杆机构优化设计

基于MATLAB的曲柄摇杆机构优化设计李莹莹;游敏;徐建军【摘要】在给定摇杆输出角约束的情况下,以曲柄摇杆机构的从动件运动角度与期望角度差值平方的和的最小值(即最小二乘法模式)为设计目标,建立单目标优化数学模型,通过MATLAB编程求解,研究了设计变量的个数和变量对象的选取对满足摇杆输出角约束的曲柄摇杆机构轨迹特性的影响,并确定了最佳的设计变量个数及变量对象的选取方案。
【期刊名称】《制造业自动化》【年(卷),期】2016(000)001【总页数】4页(P102-105)【关键词】曲柄摇杆机构;优化设计;设计变量【作者】李莹莹;游敏;徐建军【作者单位】三峡大学机械与动力学院,宜昌443002;三峡大学机械与动力学院,宜昌 443002;三峡大学机械与动力学院,宜昌 443002【正文语种】中文【中图分类】TH164平面连杆机构结构简单,易于制造,能实现多种运动规律和运动轨迹,在工程实际中应用非常广泛[1]。
然而,随着工业的不断发展,人们对曲柄连杆机构的运动特性、机构尺寸和杆件的受力情况等提出了更高的要求,使得连杆机构的设计难度也随之增大。
连杆机构的设计问题通常可归为按给定的运动轨迹设计和按给定的运动规律设计[2]。
对于这两类问题的求解,通常采用的是函数逼近法求解,该方法不仅计算复杂,而且变量较少时,计算精度也不高。
若采用最优化方法对机构进行设计,可以大大简化[3]。
楼云江[4]等在给定摇杆最大摆角的情况下,借助于极位夹角和辅助角,建立了平均传动角最优化的曲柄摇杆机构优化模型,从而得到全局最大平均传动角,并确定相应的各杆杆长;苏有良[5]在给定行程速比系数、摆角、摇杆尺寸的设计条件下,建立了I、II型曲柄摇杆机构最小传动角与相对杆长的函数方程及其变化区间,解决了在此设计条件下曲柄摇杆机构不易获得最小传动角为最大值的最优传动性能解的设计问题;武丽梅[6]等通过仿真建立了杆长制造误差、运动副间隙与连杆曲线轨迹精度的数量级别关系。
基于matlab的连杆机构设计

基于matlab的连杆机构设计————————————————————————————————作者: ————————————————————————————————日期:目录1平面连杆机构的运动分析 (1)1.2 机构的工作原理 (1)1.3机构的数学模型的建立 (1)1.3.1建立机构的闭环矢量位置方程...................................................11.3.2求解方法.....................................................................22基于MATLAB程序设计 (4)2.1 程序流程图 (4)2.2 M文件编写 (6)2.3程序运行结果输出 (7)3 基于MATLAB图形界面设计 (11)3.1界面设计……………………………………………………………………………………………113.2代码设计……………………………………………………………………………………………124 小结 (17)参考文献 (18)1平面连杆机构的运动分析1.1 机构运动分析的任务、目的和方法曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。
对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。
还可以根据机构闭环矢量方程计算从动件的位移偏差。
上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。
机构运动分析的方法很多,主要有图解法和解析法。
当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。
(完整)基于matlab的四杆机构运动分析

1平面连杆机构的运动分析1。
1 机构运动分析的任务、目的和方法曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。
对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。
还可以根据机构闭环矢量方程计算从动件的位移偏差。
上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据.机构运动分析的方法很多,主要有图解法和解析法。
当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。
而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计.1。
2 机构的工作原理在平面四杆机构中,其具有曲柄的条件为:a.各杆的长度应满足杆长条件,即:最短杆长度+最长杆长度≤其余两杆长度之和。
b。
组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。
在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。
1.3 机构的数学模型的建立1。
3。
1建立机构的闭环矢量位置方程在用矢量法建立机构的位置方程时,需将构件用矢量来表示,并作出机构的封闭矢量多边形。
如图1所示,先建立一直角坐标系.设各构件的长度分别为L1 、L2 、L3 、L4 ,其方位角为、、、.以各杆矢量组成一个封闭矢量多边形,即ABCDA。
其个矢量之和必等于零。
基于MATLAB的双摇杆机构运动分析与仿真模板

本科生毕业设计基于MATLAB的双摇杆机构运动分析与仿真Based on the MATLAB double rocker organization movement analysis and simulation基于MATLAB/SIMULINK的双摇杆机构运动学分析与仿真邹凯旋云南农业大学工程技术学院,昆明黑龙潭650201摘要平面连杆机构的应用十分广泛,它的分析及设计一直是机构学研究的一个重要课题。
MATLAB的Simulink是一个对动态系统建模和仿真分析的软件包,为信号与系统仿真实验提供了很好的平台。
借助其强大的模拟仿真分析功能可以方便的实现机构性能分析和动态仿真,降低分析的难度,有效提高设计工作效率、产品开发质量、降低开发成本。
本设计课题以MATLAB的simulink\simMechanics 动态模拟仿真工具为平台,对双摇杆机构进行运动分析。
结果表明该仿真方法能方便、准确的得到机构的运动、动力数据,能为机构的选择、优化设计提供参考依据。
应用此工具可很好地对机械系统的各种运动进行分析,构造出平面连杆机构的数学模型。
通过对此数学模型分析,分离出可独立求解的机构模型,并用相应的机构分析方法对它进行求解,建立了平面连杆机构运动学分析专家系统。
系统可完成部分平面连杆机构的运动学分析及动画仿真,从而为机械系统的建模仿真提供一个强大而方便的工具。
关键词:连杆机构;动态仿真;SimMechanics;数学模型Based on the MATLAB double rocker organizationmovement analysis and simulationZou kaixuanFaculty of Engineering and Technology Yunan Agricultural University,HeilongtanKunming 650201ABSTRACTPlanar linkage mechanism used widely, its analysis and design of the study of institutions has been an important subject. MATLAB Simulink is a dynamic system modeling and simulation software package, for signal and system simulation results provide a good platform. With its powerful simulation analysis function is realized the performance analysis and the dynamic simulation institutions, reduce the difficulties of analysis, effectively improve the design work efficiency and product development quality, reduce development costs. This design task to MATLAB simulink \ simMechanics dynamic simulation tools as the platform, on the double rocker organization motion analysis. The results show that the simulation method can conveniently, accurately to get the kinematic and dynamic data organization, for the choice of institutions, optimum design to provide the reference. This tool can application is mechanical system analysis of all kinds of sports, constructed the mathematical model of the planar linkage mechanism. Through mathematical model to analysis, separating out can be independent of solving mechanism model, and the corresponding institutions analysis method to solve it, a planar linkage mechanism kinematic analysis of the expert system. System can finish part of planar linkage mechanism kinematic analysis and animated simulation, thus for mechanical system modeling simulation provide a strong and convenient tool.Key words: linkage;Dynamic Simulation;SimMechanics;mathematical model目录摘要 (Ⅰ)ABSTRACT (Ⅱ)目录 (Ⅳ)图目录 (Ⅴ)公式目录 (Ⅴ)前言 (1)一、概述 (1)1. 双摇杆机构的相关知识 (1)2. 双摇杆机构的运动学分析传统方法 (1)3. 用软件进行机构运动学分析的现状和趋势 (2)4. 使用MATLAB/SIMULINK的优势 (2)5. MATLAB/SIMLINK的特点 (3)二、设计任务分析 (3)1. 设计内容和任务 (3)2. 实现技术路线 (4)3. 关键问题和难点分析 (5)三、程序设计与实现 (5)1. 系统组成 (6)2. 程序设计与实现 (6)3. 基于运动学的模型建立 (7)4. 参数化设计 (9)5. 仿真结果 (14)四、设计结果分析 (15)1. 软件的使用方法 (15)2. 存在的缺点和今后改进的方向 (16)五、设计心得 (16)参考文献 (18)致谢 (19)图目录图1-1双摇杆机构 (1)图1-2鹤式起重机 (1)图2-1实现的流程图 (5)图2-2双摇杆机构运动简图 (5)图3-1 Simulink界面 (6)图3-2new model (7)图3-3SimMechanics (7)图3-4 bodies (7)图3-5Joints (8)图3-6Sensors Actuators (8)图3-7双摇杆机构仿真模型图 (9)图3-8Ground模块 (9)图3-9evolute模块 (10)图3-10bodyAB模块 (10)图3-11bodyBC模块 (11)图3-12bodyCD模块 (11)图3-13Joint Seneor模块 (12)图3-14Joint Initial Condition模块 (12)图3-15Scope模块 (12)图3-16机械环境模块 (13)图3-17命令窗口参数输入 (14)图3-18仿真结果的动画显示 (14)图3-19位置图、速度图、加速度图 (15)一、概述1.双摇杆机构的相关知识在双摇杆机构中,两摇杆均可作主动件。
基于MATLAB的曲柄摇杆串RRP型Ⅱ级杆组平面六杆机构的运动分析

加速度的运动规律线图。
关键词:六杆机构;运动分析;MA,IIAB 中图分类号:7I玛91文献标志码:A文章编号:1003—0794(2008)02.0073.03
Kinematical Analysis of Plane Crank Jigging Rod Connect to RRP
ⅡLevel of Group Mechanism Using MATLAB
分析。曲柄1转动角度叭连杆2转动角度臼及摇 常数,对式(2)求时间导数,得到连杆2的角速度09,:
万方数据
一73—
.巡:垫№:兰 .基主丛坚幽塑些煎鲎堑童婴型壁堡盘堑垩亘盔堑垫煎笪重塾坌堑==堑塑墓:簦 箜罂鲞箜兰塑一
及摇杆3角速度∞,,方程式如下
lor i=l:72
8iconsL
8
。二L【一 -一L2:2Csoins 0 LL3,3Csions艿艿艿].儿f叫三i1】J=【‘cL止oLll cos三∞ 】。Jc… 6,
针对常用的一种平面六杆机构为了了解其各个构件在不同时刻的运动参数以及运动曲线本文通过在二维直角坐标系中建立其位置速度加速度复数位置方程借助强大的matlab软件求解方程并利用c语言编程实现时域内各个构件的瞬时参数的数值求解及可视化并将数据导入excel中进行参数曲线绘制即可很形象的得到各个构件的运动参数变化规律及相关的临界状态从而使该机构的运动分析变得简单精确为机构的动力学分析提供了基础
基于MATLAB的双曲柄五杆移栽机构运动学仿真及优化设计

基于MATLAB的双曲柄五杆移栽机构运动学仿真及优化设计作者:程志广李健来源:《科技视界》2018年第12期【摘要】本文建立了双曲柄五杆机构的数学模型,运用多目标优化函数对双曲柄五杆机构进行优化设计,采用MATLAB进行编程计算,得到了栽植点速度加速度、曲柄半径、机架杆长度、主副曲柄相位角差等主要结构参数之间的变化关系,并获得一组最优解。
从而为后期机构的研制、秧苗移栽直立度和薄膜刮伤试验提供了理论依据。
【关键词】钵苗移栽;多目标优化;运动学仿真中图分类号: S223 文献标识码: A 文章编号: 2095-2457(2018)12-0072-002DOI:10.19694/ki.issn2095-2457.2018.12.0310 引言移栽技术在提高作物生长的抗灾抗逆能力、保证作物稳产增产和提高产品品质等方面起着很大作用。
然而进行膜上移栽作业时存在栽植器鸭嘴末端容易刮伤地膜、直立度低等问题,影响了移栽技术在农业生产中的广泛应用[1-2]。
故本文以平面多杆机构鸭嘴式栽植器为例对一种双曲柄五杆移栽机构进行优化设计和仿真分析,从而为实际机构的试验研制提供理论支撑。
1 双曲柄五杆移栽机构运动学模型及工作原理双曲柄五杆移栽机构示意图如图1所示,该移栽机构由双曲柄五杆机构及鸭嘴器组成,机构自由度为2。
其中机架为OE,曲柄OB、ED为输入构件,输出构件为连杆CD,鸭嘴器Lf 固定在CD一端。
移栽进行时曲柄OB、ED以相同角速度同向匀速运动。
当鸭嘴器在最高位置时钵苗落入鸭嘴中进行喂苗。
当鸭嘴到达最低位置时,鸭嘴器在凸轮控制系统作用下张开。
钵苗落入打好的穴口中,完成一次栽植过程。
图1 双曲柄五杆栽植机构示意图2 双曲柄五杆栽植机构运动学模型建立如图1所示,以O为原点建立直角坐标系,各杆角位移以X轴正方向为基准,逆时针为正,机组前进方向为X轴负方向[3]。
设机构中各杆件OB、AB、AD、DE、AC、OE、CF 长度分别为L0、L1、L2、L3、L4、L5,鸭嘴器长度为Lf,两曲柄初始相位角分别为ψ0、ψ3,连杆DE、CF角位移分别为ψ2、ψ4。
MATLAB的曲柄滑块和四杆机构的综合设计解析

KUNMING UNIVERSITY OF SCIENCE AND TECHNOLOGY《计算机仿真技术》课程设计报告冯叶/ 浦合旳201410302544/ 201410302547刘孝保2015年6月姓名: 学号: 专业班级: 指导教师:机械卓目录©区肌理乂殳申KUMWBG sngn OF SCIENCE MO TCCWlOGr目录1 •仿真问题描述.........................................................................2•仿真问题数学模型......................................................................3. Mat lab实现方法 .....................................................................4・Mat lab代码..........................................................................5•仿真结论..............................................................................6.遇到的问题和解决的方式.................................................................7 •课程学习意见与建议...................................................................《计算机仿真技术》课程设计报告 艮咽疗N 乂孝 ItnVH ; WmJSTY :f SCOtCE MP TOCtXCCf 1 •仿真问题描述已知机架AD 长为L1,曲柄AB 长为L2,连杆BC 长L3,另一机架长CD 长为L4,与AB 杆相 连的是一滑块E 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程作业曲柄摇杆优化设计:XX学号:XXXXX班级:XXXXXXX大学机械与动力学院目录1摘要2问题研究2.1问题重述2.2问题分析3数学模型的建立3.1设计变量的确定3.2目标函数的建立3.3约束条件的确定3.4标准数学模型4使用MATLAB编程求解4.1调用功能函数4.2首先编写目标函数 M 文件4.3编写非线性约束函数 M 文件4.4编写非线性约束函数 M 文件 confun.m4.5运行结果5结果分析6结论推广7过程反思8个人小结9参考文献要求摇杆的输出角最优地实现一个给定的运动规律()f ϕ。
这里假设要求:()()20023E f φϕφϕϕπ==+- (1)图1曲柄摇杆机构简图对于这样的设计问题,可以取机构的期望输出角()E f φϕ=和实际输出角()F φϕ=的平方误差之和作为目标函数,使得它的值达到最小。
在图 1 所示的曲柄摇杆机构中,1l 、2l 、3l 、 4l 分别是曲柄AB 、连杆BC 、摇杆CD 和机架AD 的长度。
这里规定0ϕ为摇杆在右极限位置0φ时的曲柄起始位置角,它们由1l 、2l 、3l 和4l 确定。
3数学模型的建立 3.1 设计变量的确定决定机构尺寸的各杆长度1l 、2l 、3l 和4l ,以及当摇杆按已知运动规律开始运行时,曲柄所处的位置角0ϕ应列为设计变量,所有设计变量有:[][]1234512340TTx x x x x x l l l l ϕ== (2)考虑到机构的杆长按比例变化时,不会改变其运动规律,通常设定曲柄长度1l =1.0,在这里可给定4l =5.0,其他杆长则按比例取为1l 的倍数。
若取曲柄的初始位置角为极位角,则ϕ及相应的摇杆l 位置角φ均为杆长的函数,其关系式为:()()()()2222212432301242125arccos 2101l l l l l l l l l l ϕ⎡⎤⎡⎤++-+-+==⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⎣⎦ (3)()()222221243230343125arccos 210l l l l l l l l l φ⎡⎤⎡⎤+--+--==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(4)因此,只有2l 、3l 为独立变量,则设计变量为[][]1223T Tx x x l l ==。
3.2 目标函数的建立目标函数可根据已知-的运动规律与机构实际运动规律之间的偏差最小为指标来建立,即:()()21min mEi i i f x φφ==-→∑(5)式中,Ei φ-期望输出角; m-输出角的等分数;i φ-实际输出角,由图 1 可知:图2曲柄摇杆机构的运动学关系()()02i i i i i i i παβϕπφπαβπϕπ--≤≤⎧⎪=⎨-+≤≤⎪⎩(6) 式中,222222322132arccos arccos 22i i i i i r l l r x x rl r x α⎛⎫⎛⎫+-+-== ⎪ ⎪⎝⎭⎝⎭(7)222241424arccos arccos 210i i i i i r l l r rl r β⎛⎫⎛⎫+-+== ⎪ ⎪⎝⎭⎝⎭(8)i r ==3.3 约束条件曲柄存在条件:12131423;,l l l l l l l l ≤≤+≤+()()24133412,l l l l l l l l ≤-+≤-+曲柄与机架共线位置时的传动角(连杆BC 和摇杆CD 之间的夹角): 最小传动角min min 45r BCD ︒=∠≥ 最大传动角max max 135r BCD ︒=∠≤ 由上面的分析可以算出:()222222234112min231216arccos 4522l l l l x x r l l x x ︒⎡⎤+--⎡⎤+-⎢⎥==≥⎢⎥⎢⎥⎣⎦⎣⎦(10)()222222234112max 231236arccos 13522l l l l x x r l l x x ︒⎡⎤+-+⎡⎤+-⎢⎥==≤⎢⎥⎢⎥⎣⎦⎣⎦(11) 3.4 标准数学模型通过上面的分析后,将输入角分成 30 等分(m=30),经过转化为标准形式得到曲柄摇杆机构优化设计标准数学模型为:()()21min mEi i i f x φφ==-→∑[][]2312TTx l l x x ==()()()()()()()112231241252122612122271212101060..40401.41436036 1.4140g x x g x x g x x x s t g x x x g x x x g x x x x x g x x x x x =-≤⎧⎪=-≤⎪⎪=--≤⎪=--≤⎨⎪=--≤⎪=+--≤⎪⎪=---≤⎩(12) 机械优化设计中的问题,大多数属于约束优化问题,此为非线性约束优化问题,运用 MATLAB 优化工具箱的命令函数 fmincon 来处理有约束的非线性多元函数最小化优化问题。
4使用MATLAB 编程求解4.1 本问题属于一般非线性规划问题,其标准型为:min ()f x,,()0..()0,AX b Aeq X beq C X s t Ceq X vlb X vub ≤•=≤⎧⎨=≤≤⎩ (13)调用MATLAB 软件优化工具箱中非线性规划求解函数fmincon 来求解。
其命令的基本格式为: [函数] fmincon [格式]x = fmincon(fun,x0,A,b)x = fmincon(fun,x0,A,b,Aeq,beq)x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) [x,fval] = fmincon(…)[x,fval,exitflag] = fmincon(…)[x,fval,exitflag,output] = fmincon(…)[x,fval,exitflag,output,lambda] = fmincon(…)[x,fval,exitflag,output,lambda,grad] = fmincon(…)[x,fval,exitflag,out put,lambda,grad,hessian] = fmincon(…) [说明]fun 是目标函数 options 设置优化选项参数fval 返回目标函数在最优解x 点的函数值 exitflag 返回算法的终止标志output 返回优化算法信息的一个数据结构 grad 返回目标函数在最优解x 点的梯度hessian 返回目标函数在最游解x 点Hessian 矩阵值 编写程序求解4.2 首先编写目标函数 M 文件fun1.mfunction f=fun1(x)s=30;qb=1;jj=5;fx=0;ci0=acos(((qb+x(1))^2-x(2)^2+jj^2)/(2*(qb+x(1))*jj));%曲柄初始角fa0=acos(((qb+x(1))^2-x(2)^2-jj^2)/(2*x(2)*jj));%摇杆初始角fori=1:sci=ci0+(pi*i)/(2*s);fai(i)=fa0+(2*(ci-ci0)^2)/(3*pi);ri=sqrt(qb^2+jj^2-2*qb*jj*cos(ci));alfi=acos(((ri^2+x(2)^2)-x(1)^2)/(2*ri*x(2)));bati=acos((ri^2+jj^2-qb^2)/(2*ri*jj));if ci>0 && ci<=pipsi(i)=pi-alfi-bati;elseif ci>pi && ci<=2*pipsi(i)=pi-alfi+bati;endfx=fx+(fai(i)-psi(i))^2;endf=fx;i=1:1:30;plot(i,fai(i),i,psi(i),'--'); %画曲线图legend('期望曲线','实际曲线'); %标注曲线图对应名称4.3编写非线性约束函数 M 文件 confun.mfunction [c,ceq]=confun(x)qb=1;jj=5;m=45*pi/180;n=135*pi/180;c(1)=x(1)^2+x(2)^2-2*x(1)*x(2)*cos(m)-(jj-qb)^2;%重合时最小传动角的非线性约束条件c(2)=-x(1)^2-x(2)^2+2*x(1)*x(2)*cos(n)+(jj+qb)^2;%共线时最小传动角的非线性约束条件ceq=[];4.4在MATLAB 命令窗口调用优化程序x0=[6;6];lb=[1;1];ub=[];a=[-1 0;0 -1;-1 -1;1 -1; -1 1];b=[-1;-1;-6;4;4];options=optimset('LargeScale','off','display','iter');[x,fval,exitflag]=fmincon(fun1,x0,a,b,[],[],lb,ub,confun,options);4.5运行结果x =[4.12852.3226]fval =0.0076图3 输出角期望曲线与在MATLAB结果下的实际曲线对比图图4 传动角与曲柄输入角变化关系图5结果分析通过Matlab工具箱的优化求解,我们得到了最终的曲柄摇杆机构的最优杆长条件,即L2=4.1285,L3=2.3226。
从运行结果上面来看,得到的数据还是比较理想的,在输出角期望曲线与在MATLAB结果下的实际曲线对比图(图3)中,我们可以清楚地看到,期望曲线与实际曲线的拟合程度比较好。
在传动角6结论推广由于在本问题当中,曲柄长度L1和机架长度L4是预先取的L1=1,L4=5,我们通过对L2和L3的优化设计,最终得到了L2=4.1285,L3=2.3226,如果把1看作是单位长度,那么我们最终求解出来的其实是曲柄摇杆机构符合已知运动轨迹的杆长比例。
只要曲柄摇杆机构的四杆长度按照这个比例,即L1:L2:L3:L4=1:4.1285:2.3226:5,那么我们得到的曲柄摇杆机构的运动轨迹都是比较理想的。
7过程反思在曲柄摇杆优化设计的整个过程中,我们先通过对问题的分析,然后将求解曲柄摇杆机构杆长的问题转化为对求最优L2,L3的值的数学问题,然后我们通过建立数学模型,又使用了Matlab工具箱进行了编程求解,最终得到了我们的结果,即曲柄摇杆机构的最优杆长。