200W电动汽车DCDC电源 - 12v开关电源

合集下载

dcdc电源纹波产生原理

dcdc电源纹波产生原理

dcdc电源纹波产生原理DC-DC电源,也称为开关电源,在现代电子设备中扮演着至关重要的角色。

它通过一系列的转换过程,将输入的直流电压转换成稳定的输出直流电压,为各种电子设备提供所需的电力。

然而,在实际应用中,我们常常会遇到电源输出电压中存在一种被称为“纹波”的交流分量。

那么,纹波是如何产生的呢?首先,我们需要了解纹波的基本概念。

纹波电压是指在直流电源输出时,叠加在直流稳定量上的交流分量。

用示波器观察时,会看到电压上下轻微波动,就像水纹一样,因此被称为纹波。

DC-DC电源纹波的产生主要源于以下几个方面:1. 开关频率与MOS开关:在DC-DC电源中,buck电路的MOS开关以几十M的频率进行开关动作。

这种快速的开关动作会产生与电源开关频率同步的纹波,其频率范围通常为几十kHz至几MHz。

2. 寄生电感和电容:在所有实际的PCBA电路中,不可避免地存在寄生电感和电容。

这些寄生元件与电源系统的阻抗共同形成了一个低通滤波器,导致电感电流纹波通过输出电容的寄生电阻ESR形成压降,从而产生了纹波。

3. 开关管的导通与截止:在实际的DC-DC电源中,开关管的导通和截止瞬间会产生高频纹波噪声。

这种噪声的幅值与寄生参数、PCB布局以及PCB材质有着密切的关系。

4. 输出电容的充放电:由于实际的DC-DC电路不能做到瞬时响应,当负载电流快速变化时,输出电容的充放电会导致输出电压快速变化,从而产生纹波噪声。

5. 滤波性能不足:对于AC-DC开关电源来说,如果电路的滤波性能不佳,输出的直流电压中可能含有较大的交流分量,导致纹波的产生。

为了减小纹波的影响,我们可以采取以下措施:1. 使用容量更大的滤波电容:在条件和成本允许的情况下,尽可能使用容量大的电容。

这样可以使滤波电容C有足够的储能来减小脉动电压的变化幅度,从而减小纹波。

2. 增加π形LC滤波电路:如果纹波的大小仍不达标,交流分量较大,可以在输出端增加一个π形LC滤波电路。

一文读懂开关电源(DC-DC)的原理介绍

一文读懂开关电源(DC-DC)的原理介绍

一文读懂开关电源(DC/DC)的原理介绍DC/DC电源指的是直流转直流的电路,有升压降压两种电路,按理来说,LDO也是DCDC电源,但行业内只认为以开关形式实现的电源为DC/DC电源。

一、DC/DC基本拓扑一个功率变换器,当输入、负载和控制均为固定值时的工作状态,在开关电源中,被称为稳态。

稳态下,功率变换器中的电感满足电感电压伏秒平衡定律:对于已工作在稳态的DC/DC功率变换器,有源开关导通时加在功率电感上的正向伏秒一定等于有源开关截至时加在该电感上的反向伏秒。

1、BUCK降压型当PWM驱动高电平使得NMOS管S1导通,忽略MOS管的导通压降,电感电流呈线性上升,此时电感正向伏秒为:VxTon=(Vin-V o)xTon当PWM驱动低电平使得NMOS管S1截至时,电感电流不能突变,经过续流二极管形成回路(忽略二极管压降),给输出负载供电,此时电感电流下降,此时电感反向伏秒为:VxToff=V ox(Ts-Ton)根据电感电压伏秒平衡定律可得:(Vin-V o)xTon=V ox(Ts-Ton)即V o=DxVin (D为占空比)2、BOOST升压型和BUCK电路类似的分析方法,当MOS管导通时,电感的正向伏秒为:VinxTon;当MOS管截至时,电感的反向伏秒为:(V o- Vin)x(Ts-Ton)根据电感电压伏秒平衡定律可得:VinxTon=(V o- Vin)x(Ts-Ton)即V o=Vin/(1-D)3、同步整流技术由于二极管导通时至少存在0.3V的压降,因此续流二极管D 所消耗的功率将会称为DC/DC电源主要功耗,从而严重限制了效率的提高。

为解决该问题,以导通电阻极小的MOS管取代续流二极管。

然后通过控制器同时控制开关管和同步整流管,要保证两个MOS管不能同时导通,负责将会发生短路。

二、DC/DC电源调制方式DC/DC电源属于斩波类型,即按照一定的调制方式,不断地导通和关断高速开关,通过控制开关通断的占空比,可以实现直流电源电平的转换。

新能源车dcdc工作原理

新能源车dcdc工作原理

新能源车dcdc工作原理全文共四篇示例,供您参考第一篇示例:随着环保意识的增强和能源资源的日益枯竭,新能源车已经成为人们重视的交通方式。

而新能源车中的DCDC(直流电-直流电转换器)是新能源车的一个重要部件,它起到了重要的作用。

本文将介绍新能源车DCDC的工作原理及其重要性。

DCDC工作原理:新能源车通常使用高压直流电池作为动力源,而车载设备(如车载灯光、音响、空调等)需要使用低压直流电,这就需要一种转换器来将高压直流电转换为低压直流电。

这就是DCDC所要完成的工作。

DCDC可以将高压直流电源转换为各种低压电源,供给车辆中各种设备的使用。

DCDC通常由功率器件、控制电路和滤波电路组成。

功率器件通常是MOSFETやIGBT,它通过开关控制来改变输入电压输出电压,同时能够实现能量的转换。

控制电路负责控制功率器件的开关,并根据负载变化来调节输出电压和电流。

滤波电路用于滤除输入和输出端的杂散信号,保证电路的稳定工作。

新能源车DCDC的重要性:1. 电能转换效率高:DCDC可以根据实际需要调整输出电压和电流,从而使得能量转换的效率更高,降低了能源消耗。

2. 电路保护作用:DCDC内部通常设计有多重保护功能,包括过流保护、过热保护、短路保护等,能够有效保护电路和设备的安全运行。

3. 适应性强:新能源车的工作环境和负载变化较大,DCDC能够根据实际情况灵活调整电压和电流输出,适应不同的使用情况。

4. 降低成本:通过DCDC的功率转换作用,减少了对电池的额外压力,降低了电池的损耗和使用寿命,从而减少了整车的成本。

DCDC在新能源车中发挥着重要的作用,它不仅能够有效降低车载设备对高压电池的影响,还能够提高能源利用效率,降低能源消耗,对于新能源车的性能和安全性都起到了非常重要的作用。

希望随着科技的不断进步和创新,DCDC技术也能够不断提升,为新能源车的发展做出更大的贡献。

第二篇示例:新能源车(New Energy Vehicle,NEV)是指采用新能源技术的汽车,主要包括纯电动汽车、插电式混合动力汽车和燃料电池汽车。

dcdc开关电源工作原理

dcdc开关电源工作原理

dcdc开关电源工作原理
DC-DC开关电源是一种将输入直流电压转换为不同电压输出
的电源。

它通过在开关管(通常是MOSFET)上开关操作来
实现电压转换。

工作原理如下:
1. 输入电压:首先,输入直流电压通过输入电容器进行滤波,以确保输入电压的稳定性。

这样可以避免输入电压的变化对输出电压造成干扰。

2. 开关操作:接下来,控制器会根据所设定的输出电压来控制开关管的工作。

它通常使用脉冲宽度调制(PWM)技术,即
通过改变开关管的开关周期和占空比来调节输出电压。

3. 能量存储:在开关管开启的瞬间,输入电压会通过电感器将能量储存起来,形成电感能量。

4. 能量释放:而在开关管关闭的瞬间,储存在电感中的能量会通过输出电容器提供给输出负载。

通过这种方式,能够将输入电压转换为所需要的输出电压。

5. 反馈控制:在整个过程中,反馈控制器会对输出电压进行监测并与预设的输出电压进行比较。

如果输出电压偏离了预设值,反馈控制器会相应地调整开关管的开关周期和占空比,以使输出电压保持稳定。

这种开关操作的方式可以实现高效的能量转换,并且相比线性稳压器,DC-DC开关电源具有更高的效率和更小的体积。


广泛应用于电子设备中,如计算机、通信设备、电源适配器等。

自制12v开关电源电路图

自制12v开关电源电路图

自制12v开关电源电路图2011-08-19 11:56:50 来源:互联网关键字:12v 开关电源+12V、0.5A单片开关稳压电源的电路如图所示。

其输出功率为6W。

当输入交流电压在110~260V范围内变化时,电压调整率Sv≤1%。

当负载电流大幅度变化时,负载调整率SI=5%~7%。

为简化电路,这里采用了基本反馈方式。

接通电源后,220V交流电首先经过桥式整流和C1滤波,得到约+300V的直流高压,再通过高频变压器的初级线圈N1,给WSl57提供所需的工作电压。

从次级线圈N2上输出的脉宽调制功率信号,经VD7、C4、L和C5进行高频整流滤波,获得+12V、0.5A的稳压输出。

反馈线圈N3上的电压则通过VD6、R2、C3整流滤波后,将控制电流加至控制端C上。

由VD5、R1,和C2构成的吸收回路,能有效抑制漏极上的反向峰值电压。

该电路的稳压原理分析如下:当由于某种原因致使Uo↓时,反馈线圈电压及控制端电流也随之降低,而芯片内部产生的误差电压Ur↑时,PWM比较器输出的脉冲占空比D↑,经过MOSFET和降压式输出电路使得Uo↑,最终能维持输出电压不变。

反之亦然。

如图所示12v开关电源电路图分享到:相关阅读开关电源的基本控制原理2011-08-19 开关电源的种类2011-08-19 由MC33374T/TV构成52W开关电源的电路2011-08-19 ERICSSON型开关电源电路图,原理图2011-08-19 采用电容传感器的全电子开关电源设计2011-08-18 降压开关电源设计过程中控制技术的选择2011-08-18 通信用高频开关电源技术的发展2011-08-18 静电感应晶闸管(SITH)在开关电源电路中的应用2011-08-18 基于VIPer22A的空调开关电源设计2011-08-18 超低功耗开关电源零空载功耗的设计实现2011-08-16(本文转自电子工程世界:/mndz/2011/0819/article_11573.html) 开关电源的基本控制原理2011-08-19 12:13:12 来源:互联网关键字:开关电源控制原理一.开关电源的控制结构:一般地,开关电源大致由输入电路、变换器、控制电路、输出电路四个主体组成。

DCDC原理及指标介绍

DCDC原理及指标介绍

DC-DC原理及指标介绍1、开关电源:是一种高频化电能转换装置,其主要利用电子开关器件(如晶体管、MOS管、可控晶闸管等),通过控制电路,使电子开关器件周期性地"接通"和"关断",让电子开关器件对输入电压进行脉冲调制,从而实现电压变换以及输出电压可调和自动稳压的功能。

开关电源的优势:①功耗低,效率高。

②体积小,重量轻。

③稳压范围宽。

开关电源的损耗来源:①开关管损耗。

②电感电容损耗。

③二级管损耗。

开关电源的损耗分析:开关电源的效率可以达到90%以上,如果精心优化与设计,甚至可以达到95%以上,这在以电池作为电力来源的场合非常重要,例如手机、小型无人机等。

因此开关电源设计的优劣程度将直接影响设备的续航能力。

(1)开关管损耗:这是开关电源的主要损耗,主要包括开关损耗、导通损耗。

因此应该尽量选择导通电阻比较小的开关管作为开关电源的核心元器件。

(2)电感电容损耗:电感损耗主要包括直流电阻损耗,电容损耗主要包括漏电流损耗。

因此应该尽量选择直流电阻较小的电感和漏电流较小的电容元器件。

(3)二极管损耗:主要包括导通损耗和开关损耗。

因此应该尽量选择导通压降较小,反向恢复时间较短的二极管,例如肖特基二极管或快恢复二极管等。

2、开关电源的分类:按照调制方式的不同可分为脉宽调制(PWM)和脉频调制(PFM)两种,目前脉宽调制(PWM)在开关电源中占据主导地位。

按照管子的连接方式可分为串联式开关电源、并联式开关电源和变压器式开关电源三大类。

按照输出电压的不同可分为降压式开关电源和升压式开关电源两种。

按照输入输出类型可分为:AC-AC、DC-AC、AC-DC、DC-DC四种,这里以DC-DC为主进行介绍。

按照是否有电气隔离可分为隔离型开关电源和非隔离型开关电源两种。

3、开关电源的三种基本拓扑结构(以非隔离型为主):DC/DC变换器一般都包括两种基本工作模式:电感电流连续模式(CCM)、电感电流断续模式(DCM)。

200W开关电源设计PFC双管正激

200W开关电源设计PFC双管正激

学位论文200W开关电源设计——基于双管正激变换器摘要开关电源是一种由占空比控制的开关电路构成的电能变换装置,用于交流-直流或直流—直流电能变换,通常称其为开关电源。

其功率从零点几瓦到数十千瓦,广泛用于生活、生产、科研、军事等各个领域。

开关电源的核心为电力电子开关电路,根据负载对电源提出的输出稳压或稳流特性的要求,利用反馈控制电路,采用占空比控制方法,对开关电路进行控制。

本设计的交流输入电压范围是85V~265V,输出电压24V,输出功率200W。

该设计能够同时实现输入欠压保护、输出过压保护、功率因数校正等功能。

本设计主要采用单片开关电源芯片L6562D,NCP1015和NCP1217,线性光耦合器PC817A及可调式精密并联稳压器TL431等专用芯片以及其它的分立元件相配合,使设计出的开关电源具有稳压输出功能。

主要用到的开关电源电路拓扑有BUCK电路,BOOST电路和正激电路。

关键词:开关电源,功率因数校正,电路拓扑ABSTRACTThe switching power supply is a power conversion device for AC-DC or DC-DC conversion,which is consist of switching circuits controled by duty cycle.Its power varies from a few tenths of watts to tens of kilos watts,and it is widely used in life,production,scientific research, military and other fields.The core of the switching power supply is power electronic circuit.According to the request of steay output voltage or flow characteristics of power from the load,it can use feedback control circuit with duty cycle control method to control the switching circuit. The AC input voltage of this design ranges from 85V to 265V and the output voltage is 24V,the output power 200W.The design can simultaneously realize functions of input under-voltage protection, output overvoltage protection and power factor correction. The design mainly adopts dedicated chips ,such as single switching power supply chip L6562D, the NCP1015 and NCP1217A, a linear optocoupler PC817 and adustable precision shunt regulator control TL431 ,which is matched with other discrete components to make the switching power supply with voltage regulator output function. The main switching power supply circuit topology are Buck Circuit, the Boost Circuit and a Forward Circuit.Key words:the switching power supply,power factor correction,circuit topology目录第1章开关电源简介 (1)1.1 开关电源的发展简史 (1)1.2 开关电源的发展趋势和前景展望 (1)1.3 本文的主要工作 (2)1.3.1 基本要求 (3)1.3.2 发挥部分 (3)第2章开关电源的分类和基本工作原理 (4)2.1 开关电源的分类 (4)2.2 开关电源的基本工作原理 (4)2.3 PFC原理 (5)2.4 双管正激式变换器工作原理 (6)第3章交流输入部分电路的设计与实现 (8)3.1 原理图设计 (8)3.2 元件参数与选择 (8)3.2.1 压敏电阻 (8)3.2.2 安规电容 (8)3.2.3 泄放电路 (9)3.2.4 共模扼流圈 (9)3.2.5 整流桥和滤波电容 (9)第4章基于L6562D的连续型APFC电路设计与实现 (10)4.1 L6562D功能特点及其工作方式 (10)4.2 设计要求 (10)4.3 工作原理 (10)4.3.1 概述 (10)4.3.2 FOT峰值电流模式分析 (11)4.3.3 FOT峰值电流模式的输入电流畸变 (12)4.3.4 输入电流尖峰畸变的补偿电路 (12)4.4 原理图设计 (14)4.5 参数设计 (14)4.5.1 升压电感的设计 (14)4.5.2 确定电流取样电阻 (17)第5章基于NCP1217A双管正激变换器电路的设计与实现 (19)5.1 NCP1217A功能特点 (19)5.2 设计要求 (19)5.3 原理图设计 (19)5.4 参数设计 (21)5.4.1 变压器和输出电感的设计 (21)5.4.2 确定次级侧的整流二极管 (22)5.4.3 确定输出电容器 (23)5.4.4 脉冲驱动电路的设计 (23)5.4.5 稳压反馈电路设计 (24)第6章基于NCP1015的辅助电源设计与实现 (25)6.1 NCP1015功能特点 (25)6.2 设计要求 (25)6.3 原理图设计 (25)6.4 工作原理 (25)第7章测试报告 (26)7.1 概述 (26)7.1.1 输出电压精度 (26)7.1.2 线性调整率 (26)7.1.3 负载调整率 (27)7.1.4 工作效率 (28)7.1.5 PF值 (30)7.1.6 纹波 (31)7.2 毕设完成指数 (33)7.2.1 基本要求 (33)7.2.2 发挥部分 (33)第8章调试总结 (34)8.1.1 基于NCP1654的PFC调试 (34)8.1.2 基于NCP1217A的双管正激调试 (34)8.1.3 基于L6562D的APFC电路的调试 (34)8.1.4 联调 (35)8.1.5 心得体会 (35)参考文献 (37)附录A 原理图 (38)A.1 APFC设计部分 (38)A.2 双管正激部分 (39)A.3 交流输入部分 (40)A.4 NCP1217A设计部分 (40)A.5 辅助电源设计部分 (40)附录B 器件清单 (41)B.1 交流输入部分参数 (41)B.2 辅助电源设计部分参数 (41)B.3 NCP1217A设计部分参数 (41)B.4 APFC设计部分参数 (42)B.5 双管正激设计部分参数 (42)附录C APFC电路PCB (44)附录D 双管正激电路PCB (45)第1章开关电源简介1.1 开关电源的发展简史开关电源是相对线性电源说的。

dcdc开关电源原理

dcdc开关电源原理

dcdc开关电源原理DCDC开关电源是一种常见的电源转换器,广泛应用于电子设备中。

它通过将输入电压进行高频开关调制,经过变压器和滤波电路的处理,输出稳定的直流电压。

下面我将为大家详细介绍DCDC开关电源的工作原理。

一、开关电源的基本原理开关电源的基本组成包括输入电路、开关电路、变压器和输出电路。

其中,开关电路是核心部件,它负责将输入电压进行高频开关调制,产生一系列的脉冲信号。

变压器将这些脉冲信号变压、整形,然后经过滤波电路得到稳定的直流电压,最后通过输出电路供给给电子设备。

二、开关电源的工作过程1. 输入电路:开关电源的输入电路主要包括输入滤波器和整流电路。

输入滤波器用于滤除输入电压中的杂波和干扰,保证电源的工作稳定性。

整流电路将交流电转化为直流电,为后续的开关电路提供工作电源。

2. 开关电路:开关电路由开关管(或开关管组)和控制电路组成。

开关管根据控制电路的指令,周期性地开关和关闭,产生高频脉冲信号。

这些脉冲信号经过变压器的变压作用,形成高频交流电。

3. 变压器:变压器是开关电源中非常重要的组成部分。

它通过变压比的变化,将高频交流电转变为低压高频交流电。

在变压器的作用下,输入电压经过变压和整形,得到一个相对稳定的输出电压。

4. 输出电路:输出电路主要包括滤波电路和稳压电路。

滤波电路用于滤除输出电压中的纹波和杂波,使输出电压更加稳定。

稳压电路则通过反馈控制,根据输出电压的变化情况,调节开关电路的工作状态,使输出电压保持在设定值。

三、DCDC开关电源的优势相比传统的线性电源,DCDC开关电源具有以下优势:1. 高效率:开关电源采用高频开关调制技术,转换效率较高,能够充分利用输入电能,减少能量的损耗。

2. 小体积:开关电源采用高频调制,使得变压器可以采用小尺寸的铁芯,从而减小了整个电源的体积。

3. 宽输入电压范围:开关电源能够适应较宽范围的输入电压,具有较强的适应性。

4. 输出稳定:开关电源通过反馈控制,能够实现对输出电压的精确控制,保持输出的稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单位 Vdc A % % % %/℃ Vdc mA Vdc Vdc % % mVp-p S A Vdc
℃ ℃
技术指标
最小值
典型值
14.114.50源自0±0.5±0.1
±0.5
±0.01
0
-0.3 10
83 70
14.5
15.6
17.5
恒功率保护
80
85
70
75
最大值 14.90 13.8
±3 ±0.5 ±1 ±0.02 6.4
自然冷却
备注 外壳温度:从55℃到85℃,负 载从满载线性降到85%
正常工作,无冷凝
Telcordia Ta=25℃,满载
输入特性
序号
项目
单位
技术指标
最小值
典型值
最大值
备注
1
工作输入电压范围 Vdc
600
640
720
2
输入电流范围
A
1
3
输入欠压保护
Vdc
580
585
590
4
输入欠压恢复
Vdc
590
595
电气特性
环境特性
序号
项目
工作 环境温度
1
温度 外壳温度
2
储存温度
3
相对湿度
4
海拔高度
5 连续无故障工作时间
6
随机振动
7
冷却方式
技术指标
单位 最小值
典型值
最大值

-25
25
55

-25
25
85

-55
125
%
10
95
m
4000
H
20,000
25~500Hz,1.2mm,30g­­,10ct/min,8h
200W电动汽车DC/DC电源
BZD-200W-720S14.5Z是一款高效率、高可靠的电动 汽车专用DC/DC电源,600~720Vdc输入,14.5Vdc输出, 输出功率200W。
IP65以上防护等级。具备输入欠压保护,输出过 流、过压和短路保护,过温度保护,遥控开关机,故障 上报等功能。
200W系列电动汽车DC/DC电源适用于电动轿车、电动 货车和其它专用电动车辆的内部电器供电,标称输入包 括48V、96V、220V、320V、360V、640V等不同规格,输 出可根据用户需求灵活定制。
机型命名 BZD-200W-640S14.5Z BZD—系列名称//200W—输出功率//640—输入电压//S—输出路数//14.5—输出电压(V)//Z-自冷
引用标准 1、Q/DC COA 001—2004《兵装开关电源通用技术条件》 2、GB/T 24347-2009《电动汽车DC∕DC变换器》 3、GB/T 16821-1997《通信用电源设备通用实验》 4、GB/T 17619-1998《机动车电子电器组件的电磁辐射抗扰性限值和测量方法》 5、YD/T 732-94 《通信用直流-直流变换器检验方法》
2 1.5 15 87
140 3 16.0 19.8
90 80
备注 25℃环境温度
接口端使用高阻抗接收 正逻辑 标称输入,25℃环境温度 标称输入,25℃环境温度 示波器20M带宽 恒电流保护, 锁死,电压反馈环开环测试 短路四小时不损坏 热敏元件附近 热敏元件附近
安全特性
序号
项目
单位
1
抗电 强度
输入对输出 输入对机壳 输出对机壳
600
输出特性
-12-
序号
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
项目
输出电压 输出电流范围 输出电压精度 电压调整率 负载调整率
温度系数 故障上报端电平
遥控电流(CNT) 遥控关断 遥控开机 最高效率 满载效率 纹波+噪音
输出电压启动延时 过流保护 过压保护 短路保护 过温保护 过温恢复
Vdc Vdc Vdc
2
绝缘强度

技术指标 2500 2500 500 20
备注 测试电压:500Vdc
结构尺寸
1-Vo 2-Com 3-Cnt 4-Fault
OUTPUT
14 23
INPUT
1 23
1 Vin+ 2 Vin3 FG
-13-
相关文档
最新文档