2020届高考数学(理)二轮复习专题强化训练:(十九)解析几何理+Word版含答案

合集下载

2020高考数学(理科)二轮专题复习课标通用版跟踪检测:解析几何含答案

2020高考数学(理科)二轮专题复习课标通用版跟踪检测:解析几何含答案
(2)过点A(1,0)且斜率不为0的直线l与椭圆交于M,N两点,记MN中点为B,坐标原点为O,直线BO交椭圆于P,Q两点,当四边形MPNQ的面积为 时,求直线l的方程.
解析(1)设椭圆的焦距为2c,则 = ,又a2=b2+c2,所以b=c= .因为4× ×b× b=2 ,所以b=1,a= ,故所求椭圆的标准方程为 +y2=1.
所以弦长|PQ|=2 =2 .
不妨设点M在直线OB:y=- x上方,点N在直线OB:y=- x下方,即 x1+y1>0, x2+y2<0.
所以点M(x1,y1)到直线PQ的距离为d1= = = ,点N(x2,y2)到直线PQ的距离为d2= =- .
所以d1+d2=
= =2 .
所以面积S= |PQ|·(d1+d2)= ·2 ·2 =2 = ⇒m=±2.
(2)设A ,B ,S(xS,yS).
因为 - = - = ,所以 =2,所以y3-y4=8,
因为线段AB的中点的纵坐标为8,所以y3+y4=16,
联立解得y3=12,y4=4,所以A(36,12),B(4,4).
设直线SA的斜率为k,则直线SA的方程为y-12=k(x-36),
由 消去x得 -与y轴负半轴的交点,经过F的直线l与椭圆交于点M,N,经过B且与l平行的直线与椭圆交于点A,若|MN|= |AB|,求直线l的方程.
解析(1)设椭圆的标准方程为 + =1(a>b>0),
依题意知,c=1,e= = ,所以a= ,b2=a2-c2=1,
所以所求椭圆的标准方程为 +y2=1.
A. B.
C.2D.
D解析抛物线y2=4x的焦点为F(1,0),准线l的方程为x=-1,所以|OF|=1,又双曲线的渐近线方程为y=± x,不妨设A ,B ,所以|AB|= =4|OF|=4,所以b=2a,所以e= = = .故选D项.

2020年高考文科数学二轮专题复习九:解析几何(附解析)

2020年高考文科数学二轮专题复习九:解析几何(附解析)

2020年高考文科数学二轮专题复习九:解析几何(附解析)从近五年的高考试题来看,该部分的试题是综合性的,题目中既有直线和圆的方程的问题,又有圆锥曲线与方程的问题.考查的重点:直线方程与两直线的位置关系;圆的方程;点、线、圆的位置关系;椭圆、双曲线、抛物线及其性质;直线与圆锥曲线的位置关系;曲线的方程;圆锥曲线的综合问题.1.直线方程与圆的方程 (1)直线方程的五种形式(①两条直线平行:对于两条不重合的直线1l ,2l ,若其斜率分别为1k ,2k ,则有1212//l l k k ⇔=; 当直线1l ,2l 不重合且斜率都不存在时,12//l l . ②两条直线垂直:如果两条直线1l ,2l 的斜率存在,设为1k ,2k ,则有1212·1l l k k ⊥⇔=-; 当其中一条直线的斜率不存在,而另一条直线的斜率为0时,12l l ⊥. (3)两条直线的交点的求法直线1l :1110A x B y C ++=,2l :2220A x B y C ++=, 则1l 与2l 的交点坐标就是方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩的解.(4)三种距离公式①111(,)P x y ,222(,)P x y两点之间的距离:12||PP = ②点000(,)P x y 到直线l :0Ax By C ++=的距离:d =.③平行线10Ax By C ++=与20Ax By C ++=间距离:d =.(5)圆的定义及方程点00()M x y ,与圆222()()x a y b r -+-=的位置关系: ①若00()M x y ,在圆外,则22200()()x a y b r -+->. ②若00()M x y ,在圆上,则22200()()x a y b r -+-=. ③若00()M x y ,在圆内,则22200()()x a y b r -+-<.2.直线、圆的位置关系(1)直线与圆的位置关系(半径为r ,圆心到直线的距离为d )0∆<0∆=0∆>(2设两圆的圆心距为d ,两圆的半径分别为R ,()r R r >,则3.圆锥曲线及其性质(1)椭圆的标准方程及几何性质,()0F c -0(),F c ()0,F c -()0,F c220+=<mx ny mn1()(4.圆锥曲线的综合问题(1)直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By C ++=(A ,B 不同时为0)代入圆锥曲线C 的方程0()F x y =,,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即联立0(,)0Ax By C F x y ++=⎧⎨=⎩,消去y ,得20ax bx c ++=.①当0a ≠时,设一元二次方程20ax bx c ++=的判别式为∆, 则0∆>⇔直线与圆锥曲线C 相交;0∆=⇔直线与圆锥曲线C 相切; 0∆<⇔直线与圆锥曲线C 相离.②当0a =,0b ≠时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. (2)圆锥曲线的弦长设斜率为(0)k k ≠的直线l 与圆锥曲线C 相交于M ,N 两点,11(,)M x y ,22(,)N x y ,则12|||MN x x =-=12|||MN y y =-=.1.(2019·全国Ⅰ卷)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为︒130,则C 的离心率为( )A .︒40sin 2B .︒40cos 2C .︒50sin 1 D .︒50cos 12.(2019·全国II 卷)若抛物线)0(22>=p px y 的焦点是椭圆1322=+py p x 的一个焦点,则=p ( )A .2B .3C .4D .83.(2019·全国III 卷)已知F 是双曲线22:145x y C -=的一个焦点,点P 在C 上,O 为坐标原点.若||||PO OF =,则△OPF 的面积为( )A .32 B .52 C .72 D .924.(2019·全国III 卷)设1F 、2F 为椭圆22:13620x y C +=的两个焦点,M 为C 上一点且在第一象限,若△12MF F 为等腰三角形,则M 的坐标为________.5.(2019·全国Ⅰ卷)已知点,A B 关于坐标原点O 对称,4AB =,M e 过点,A B 且与直线20x +=相切.(1)若A 在直线0x y +=上,求M e 的半径;(2)是否存在定点P ,使得当A 运动时,MA MP -为定值?并说明理由.经典常规题(45分钟)1.(2019·江西省上高县第二中学期末考试)若(2,3)A -,(3,2)B -,1(,)2C m 三点共线,则m 的值为( ) A .12 B .12- C .2- D .2 2.(2019·内蒙古乌兰察布市集宁第一中学适应性考试)过抛物线24y x =的焦点F 作与抛物线对称轴垂直的直线交抛物线于A ,B 两点,则以AB 为直径的圆的标准方程为( )A .22(1)4x y ++=B .22(1)4x y -+=C .22(1)4x y ++=D .22(1)4x y +-=3.(2019·宁夏银川一中调研考试)双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = . 4.(2019·广东省5月仿真冲刺模拟卷)斜率为(0)k k <的直线l 过点(0,1)F ,且与曲线21(0)4y x x =≥ 及直线1y =-分别交于,A B 两点,若||6||FB FA =,则k =_____.5.(2019·河南省八校高三1月尖子生联赛)已知椭圆2222:1(0)x y C a b a b+=>>,1(2,2)P,2P ,3(2,3)P -,4(2,3)P 四点中恰有三点在椭圆C 上. (1)求C 的方程;(2)已知点(0,1)E ,问是否存在直线p 与椭圆C 交于M ,N 两点且||||ME NE =?若存在,求出直线p斜率的取值范围;若不存在,请说明理由.高频易错题1.(2019·江西省新余市第一中学模拟考试)若113420x y --=,223420x y --=,则过11(,)A x y ,22(,)B x y 两点的直线方程是( )A .4320x y +-=B .3420x y --=C .4320x y ++=D .3420x y -+=2.(2019·湖南、湖北、河南、河北、山东五省名校4月模拟)已知椭圆的长轴长是倍,则该椭圆的离心率是( )A .31 B.3 C.3 D.33.(2019·山东省济南第一中学2月适应考试)已知△ABC 的顶点0()5,A -,()5,0B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是( )A .221916x y -=B .221169x y -=C .221(3)916x y x -=>D .221(4)169x y x -=>4.(2019·广东省高三二月调研考试)以抛物线24y x =的焦点为圆心且过点(5,P -的圆的标准方程为____________.5.(2019·湖南、湖北、河南、河北、山东五省名校高考适应性考试)过抛物线2:4C y x =的焦点F的直线交C 于点M (M 在x 轴上方),l 为C 的准线,N 点在l 上,且MN l ⊥,则M 到直线NF 的距离为_____精准预测题2020年高考文科数学二轮专题复习九:解析几何(解析)从近五年的高考试题来看,该部分的试题是综合性的,题目中既有直线和圆的方程的问题,又有圆锥曲线与方程的问题.考查的重点:直线方程与两直线的位置关系;圆的方程;点、线、圆的位置关系;椭圆、双曲线、抛物线及其性质;直线与圆锥曲线的位置关系;曲线的方程;圆锥曲线的综合问题.1.直线方程与圆的方程(1)直线方程的五种形式(①两条直线平行:对于两条不重合的直线1l ,2l ,若其斜率分别为1k ,2k ,则有1212//l l k k ⇔=; 当直线1l ,2l 不重合且斜率都不存在时,12//l l . ②两条直线垂直:如果两条直线1l ,2l 的斜率存在,设为1k ,2k ,则有1212·1l l k k ⊥⇔=-; 当其中一条直线的斜率不存在,而另一条直线的斜率为0时,12l l ⊥. (3)两条直线的交点的求法直线1l :1110A x B y C ++=,2l :2220A x B y C ++=, 则1l 与2l 的交点坐标就是方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩的解.(4)三种距离公式①111(,)P x y ,222(,)P x y 两点之间的距离:12||PP = ②点000(,)P x y 到直线l :0Ax By C ++=的距离:d =.③平行线10Ax By C ++=与20Ax By C ++=间距离:d =.(5)圆的定义及方程点00()M x y ,与圆222()()x a y b r -+-=的位置关系: ①若00()M x y ,在圆外,则22200()()x a y b r -+->. ②若00()M x y ,在圆上,则22200()()x a y b r -+-=. ③若00()M x y ,在圆内,则22200()()x a y b r -+-<.2.直线、圆的位置关系(1)直线与圆的位置关系(半径为r ,圆心到直线的距离为d )0∆<0∆=0∆>(2设两圆的圆心距为d ,两圆的半径分别为R ,()r R r >,则3.圆锥曲线及其性质(1)椭圆的标准方程及几何性质,()0F c -0(),F c ()0,F c -()0,F c22+=mx ny(4.圆锥曲线的综合问题(1)直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By C ++=(A ,B 不同时为0)代入圆锥曲线C 的方程0()F x y =,,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即联立0(,)0Ax By C F x y ++=⎧⎨=⎩,消去y ,得20ax bx c ++=.①当0a ≠时,设一元二次方程20ax bx c ++=的判别式为∆, 则0∆>⇔直线与圆锥曲线C 相交;0∆=⇔直线与圆锥曲线C 相切; 0∆<⇔直线与圆锥曲线C 相离.②当0a =,0b ≠时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. (2)圆锥曲线的弦长设斜率为(0)k k ≠的直线l 与圆锥曲线C 相交于M ,N 两点,11(,)M x y ,22(,)N x y ,则12|||MN x x =-=12|||MN y y =-=.1.(2019·全国Ⅰ卷)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为︒130,则C 的离心率为( )A .︒40sin 2B .︒40cos 2C .︒50sin 1 D .︒50cos 1【答案】D【解析】根据题意可知︒=-130tan a b ,所以︒︒=︒=50cos 50sin 50tan a b , 离心率︒=︒=︒︒+︒=︒︒+=+=50cos 150cos 150cos 50sin 50cos 50cos 50sin 1122222222a b e . 2.(2019·全国II 卷)若抛物线)0(22>=p px y 的焦点是椭圆1322=+py p x 的一个焦点,则=p ( )A .2B .3C .4D .8 【答案】D【解析】抛物线)0(22>=p px y 的焦点是)0,2(p,椭圆1322=+p y p x 的焦点是)0,2(p ±,∴p p22=,∴8=p .经典常规题3.(2019·全国III 卷)已知F 是双曲线22:145x y C -=的一个焦点,点P 在C 上,O 为坐标原点.若||||PO OF =,则△OPF 的面积为( )A .32 B .52 C .72 D .92【答案】B【解析】依据题意222224,5,9a b c a b ===+=, 设F 为右焦点,(3,0)F ,设P 在第一象限,(,)P x y ,根据||||PO OF =,22229145x y x y ⎧+=⎪⎨-=⎪⎩,得到53y =,所以15||22OPF S OF y ∆=⋅⋅=.4.(2019·全国III 卷)设1F 、2F 为椭圆22:13620x y C +=的两个焦点,M 为C 上一点且在第一象限,若△12MF F 为等腰三角形,则M 的坐标为________. 【答案】)15,3(【解析】由椭圆22:13620x y C +=可知,6=a ,4=c ,由M 为C 上一点且在第一象限,故等腰三角形12MF F 中,8211==F F MF ,4212=-=MF a MF ,415828sin 2221=-=∠M F F ,15sin 212=∠=M F F MF y M , 代入22:13620x y C +=可得3=M x ,故M 的坐标为)15,3(.5.(2019·全国Ⅰ卷)已知点,A B 关于坐标原点O 对称,4AB =,M e 过点,A B 且与直线20x +=相切.(1)若A 在直线0x y +=上,求M e 的半径;(2)是否存在定点P ,使得当A 运动时,MA MP -为定值?并说明理由.【答案】(1)2或6;(2)存在,(1,0)P ,详见解析.【解析】(1)∵M e 过点,A B ,∴圆心在AB 的中垂线上即直线y x =上, 设圆的方程为222()()x a y a r -+-=,又4AB =,根据222AO MO r +=,得2242a r +=,∵M e 与直线20x +=相切,∴2a r +=,联解方程得0a =,2r =或4a =,6r =. (2)设M 的坐标为(,)x y ,根据条件22222AO MO r x +==+,即22242x y x ++=+,化简得24y x =,即M 的轨迹是以(1,0)为焦点,以1x =-为准线的抛物线, 所以存在定点(1,0)P ,使(2)(1)1MA MP x x -=+-+=.1.(2019·江西省上高县第二中学期末考试)若(2,3)A -,(3,2)B -,1(,)2C m 三点共线,则m 的值为( ) A .12 B .12- C .2- D .2 【答案】A【解析】2321132232AB BC m k k m --+=⇒=⇒=+-. 2.(2019·内蒙古乌兰察布市集宁第一中学适应性考试)过抛物线24y x =的焦点F 作与抛物线对称轴垂直的直线交抛物线于A ,B 两点,则以AB 为直径的圆的标准方程为( )高频易错题(45分钟)A .22(1)4x y ++=B .22(1)4x y -+=C .22(1)4x y ++=D .22(1)4x y +-= 【答案】B【解析】由抛物线的性质知AB 为通径,焦点坐标为(1,0),直径224R AB p ===,即2R =,所以圆的标准方程为22(1)4x y -+=.3.(2019·宁夏银川一中调研考试)双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = . 【答案】5【解析】由双曲线的标准方程可得渐近线方程为3y x a=±,结合题意可得5a =. 4.(2019·广东省5月仿真冲刺模拟卷)斜率为(0)k k <的直线l 过点(0,1)F ,且与曲线21(0)4y x x =≥ 及直线1y =-分别交于,A B 两点,若||6||FB FA =,则k =_____.【答案】12-【解析】易知曲线21(0)4y x x =≥是抛物线2:4C x y =的右半部分,如图,其焦点为(0,1)F ,准线1y =-,过点A 作AH ⊥准线,垂足为H ,则||||AH AF =, 因为||6||FB FA =,所以||5||AB AH =,||tan||AHABHBH∠===,故直线l的斜率为.5.(2019·河南省八校高三1月尖子生联赛)已知椭圆2222:1(0)x yC a ba b+=>>,1(2,2)P,2P,3(2,3)P-,4(2,3)P四点中恰有三点在椭圆C上.(1)求C的方程;(2)已知点(0,1)E,问是否存在直线p与椭圆C交于M,N两点且||||ME NE=?若存在,求出直线p斜率的取值范围;若不存在,请说明理由.【答案】(1)2211612x y+=;(2)存在,11(,)22-.【解析】(1)由于3P,4P两点关于y轴对称,故由题设知C经过34,P P两点,又由22224449a b a b+<+知C不经过点1P,所以点2P在C上.因此222221211649121abba b⎧=⎪⎧=⎪⎪⇒⎨⎨=⎪⎩⎪+=⎪⎩,所以C的方程为2211612x y+=.(2)假设存在满足条件的直线:p y kx m=+,设11(,)M x y,22(,)N x y.将直线:p y kx m=+与椭圆联立可得22222(34)8448011612y kx mk x kmx mx y=+⎧⎪⇒+++-=⎨+=⎪⎩.222222644(34)(448)01612k m k m k m∆=-+->⇒+>①,故122834kmx xk-+=+,212244834mx xk-=+,设MN 的中点为00(,)F x y ,故12024234x x km x k +-==+,002334my kx m k =+=+, 因为||||ME NE =,所以EF MN ⊥,所以1EF k k =-,所以22231341(43)434mk k m k km k -+⋅=-⇒=-+-+, 代入①得22242111612(43)1683022k k k k k +>+⇒+-<⇒-<<, 故存在直线p 使得||||ME NE =,且直线p 斜率的取值范围是11(,)22-.1.(2019·江西省新余市第一中学模拟考试)若113420x y --=,223420x y --=,则过11(,)A x y ,22(,)B x y 两点的直线方程是( )A .4320x y +-=B .3420x y --=C .4320x y ++=D .3420x y -+= 【答案】B【解析】由题意得11(,)A x y ,22(,)B x y 两点的坐标都满足方程3420x y --=, 所以过11(,)A x y ,22(,)B x y 两点的直线方程是3420x y --=.2.(2019·湖南、湖北、河南、河北、山东五省名校4月模拟)已知椭圆的长轴长是倍,则该椭圆的离心率是( )A .31 B.3 C.3 D.3精准预测题【答案】C【解析】由题可知a =,则3c e a ===. 3.(2019·山东省济南第一中学2月适应考试)已知△ABC 的顶点0()5,A -,()5,0B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是( )A .221916x y -=B .221169x y -= C .221(3)916x y x -=> D .221(4)169x y x -=> 【答案】C【解析】如图,||||8AD AE ==,||||2BF BE ==,||||CD CF =,所以|||||82610|CA CB AB -=-=<=.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,且0y ≠, 故轨迹方程为221(3)916x y x -=>. 4.(2019·广东省高三二月调研考试)以抛物线24y x =的焦点为圆心且过点(5,P -的圆的标准方程为____________.【答案】22(1)36x y -+=【解析】由题意知,P 在抛物线上,且F 的坐标为(1,0),则||55162p PF =+=+=, 故所求的圆的标准方程为22(1)36x y -+=.5.(2019·湖南、湖北、河南、河北、山东五省名校高考适应性考试)过抛物线2:4C y x =的焦点F的直线交C 于点M (M 在x 轴上方),l 为C 的准线,N 点在l 上,且MN l ⊥,则M 到直线NF 的距离为_____.【答案】【解析】设00(,)M x y ,∴2004y x =,∴0y =,∴0sin 60︒=,020043214x x x =++, ∴20031030x x -+=,解得0=3x 或013x =(舍去),∴4MF =, ∵MN MF =,60NMF ∠=︒,∴△MNF 为等边三角形,∴M 到NF直线的距离为42⨯=。

2020届高考数学(理)二轮复习专题强化训练:(十九)解析几何理

2020届高考数学(理)二轮复习专题强化训练:(十九)解析几何理

专题强化训练(十九) 解析几何1.[2019·长沙一模]已知椭圆C :+=1(a >b >0)的离心率为,左、右焦点分x 2a 2y 2b 213别为F 1,F 2,A 为椭圆C 上一点,AF 1与y 轴相交于B ,|AB |=|F 2B |,|OB |=(O 为坐标原43点).(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A 1,A 2,过A 1,A 2分别作x 轴的垂线l 1,l 2,椭圆C 的一条切线l :y =kx +m (k ≠0)分别与l 1,l 2交于点M ,N ,求证:∠MF 1N =∠MF 2N .解:(1)如图,连接AF 2,由题意得|AB |=|F 2B |=|F 1B |,所以BO 为△F 1AF 2的中位线,又BO ⊥F 1F 2,所以AF 2⊥F 1F 2,且|AF 2|=2|BO |==,b 2a 83又e ==,a 2=b 2+c 2,所以a 2=9,b 2=8,c a 13故所求椭圆C 的方程为+=1.x 29y 28(2)由(1)可得,F 1(-1,0),F 2(1,0),l 1的方程为x =-3,l 2的方程为x =3.由Error!得Error!由Error!得Error!所以M (-3,-3k +m ),N (3,3k +m ),所以=(-2,-3k +m ),=(4,3k +m ),F 1M → F 1N → 所以·=-8+m 2-9k 2.F 1M → F 1N → 联立Error!得(9k 2+8)x 2+18kmx +9m 2-72=0.因为直线l 与椭圆C 相切,所以Δ=(18km )2-4(9k 2+8)(9m 2-72)=0,化简得m 2=9k 2+8.所以·=-8+m 2-9k 2=0,F 1M → F 1N → 所以⊥,故∠MF 1N =.F 1M → F 1N → π2同理可得⊥,∠MF 2N =.F 2M → F 2N → π2故∠MF 1N =∠MF 2N .2.[2019·合肥质检二]已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点,且l 1与C 2相切.动点M 在C 1的准线上,动点A 在C 1上,若C 1在A 点处的切线l 2交y 轴于点B ,设=+,求证:点N 在定直线上,并求该定MN → MA → MB → 直线的方程.解:解法一:依题意设M (m ,-3),由(1)知抛物线C 1的方程为x 2=12y ,所以y =,x 212所以y ′=,x 6设A (x 1,y 1),则以A 为切点的切线l 2的斜率为k =,x 16所以切线l 2的方程为y =x 1(x -x 1)+y 1.16令x =0,则y =-x +y 1=-×12y 1+y 1=-y 1,即B 点的坐标为(0,-y 1),162116所以=(x 1-m ,y 1+3),MA → =(-m ,-y 1+3),MB → 所以=+=(x 1-2m,6),MN → MA → MB → 所以=+=(x 1-m,3).ON → OM → MN → 设N 点坐标为(x ,y ),则y =3,所以点N 在定直线y =3上.解法二:设M (m ,-3),由(1)知抛物线C 1的方程为x 2=12y ①,设l 2的斜率为k ,A,则以A 为切点的切线l 2的方程为y =k (x -x 1)+x (x 1,112x 21)11221②,联立①②得,x 2=12,(k (x -x 1)+112x 21)因为Δ=144k 2-48kx 1+4x =0,所以k =,21x 16所以切线l 2的方程为y =x 1(x -x 1)+x .1611221令x =0,得B 点坐标为,(0,-112x 21)所以=,MA → (x 1-m ,112x 21+3)=,MB → (-m ,-112x 21+3)所以=+=(x 1-2m,6),MN → MA → MB → 所以=+=(x 1-m,3),ON → OM → MN → 所以点N 在定直线y =3上.3.[2019·武汉4月调研]已知椭圆Γ:+=1(a >b >0)经过点M (-2,1),且右焦x 2a 2y 2b 2点F (,0).3(1)求椭圆Γ的标准方程;(2)过N (1,0)且斜率存在的直线AB 交椭圆Γ于A ,B 两点,记t =·,若t 的最MA → MB → 大值和最小值分别为t 1,t 2,求t 1+t 2的值.解:(1)由椭圆+=1的右焦点为(,0),知a 2-b 2=3,即b 2=a 2-3,则+x 2a 2y 2b 23x 2a 2=1,a 2>3.y 2a 2-3又椭圆过点M (-2,1),∴+=1,4a 21a 2-3又a 2>3,∴a 2=6.∴椭圆Γ的标准方程为+=1.x 26y 23(2)设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),由Error!得x 2+2k 2(x -1)2=6,即(1+2k 2)x 2-4k 2x +2k 2-6=0,∵点N (1,0)在椭圆内部,∴Δ>0,∴Error!,则t =·=(x 1+2)(x 2+2)+(y 1-1)(y 2-1)MA → MB → =x 1x 2+2(x 1+x 2)+4+(kx 1-k -1)(kx 2-k -1)=(1+k 2)x 1x 2+(2-k 2-k )(x 1+x 2)+k 2+2k +5 ③,将①②代入③得,t =(1+k 2)·+(2-k 2-k )·+k 2+2k +5,2k 2-62k 2+14k 22k 2+1∴t =,15k 2+2k -12k 2+1∴(15-2t )k 2+2k -1-t =0,k ∈R ,则Δ1=22+4(15-2t )(1+t )≥0,∴(2t -15)(t +1)-1≤0,即2t 2-13t -16≤0,由题意知t 1,t 2是2t 2-13t -16=0的两根,∴t 1+t 2=.1324.[2019·石家庄一模]已知抛物线C :y 2=2px (p >0)上一点P (x 0,2)到焦点F 的距离|PF |=2x 0.(1)求抛物线C 的方程;(2)过点P 引圆M :(x -3)2+y 2=r 2(0<r ≤)的两条切线PA 、PB ,切线PA 、PB 与抛2物线C 的另一交点分别为A 、B ,线段AB 中点的横坐标记为t ,求t 的取值范围.解:(1)由抛物线定义,得|PF |=x 0+,p2由题意得:Error!解得Error!所以抛物线的方程为y 2=4x .(2)由题意知,过P 引圆(x -3)2+y 2=r 2(0<r ≤)的切线斜率存在,2设切线PA 的方程为y =k 1(x -1)+2,则圆心M 到切线PA 的距离d ==r ,|2k 1+2|k 21+1整理得,(r 2-4)k -8k 1+r 2-4=0.21设切线PB 的方程为y =k 2(x -1)+2,同理可得(r 2-4)k -8k 2+r 2-4=0,2所以k 1,k 2是方程(r 2-4)k 2-8k +r 2-4=0的两根,k 1+k 2=,k 1k 2=1.8r 2-4设A (x 1,y 1),B (x 2,y 2),由Error!得k 1y 2-4y -4k 1+8=0,由韦达定理知y 1+y 2=,y 1y 2=,4k 18-4k 1k 1所以y 1==-2=4k 2-2,同理可得y 2=4k 1-2.4-2k 1k 14k 1设点D 的横坐标为x 0,则x 0====x 1+x 22y 21+y 28(4k 2-2)2+(4k 1-2)282(k +k )-2(k 1+k 2)+1=2(k 1+k 2)2-2(k 1+k 2)-3.212设m =k 1+k 2,则m =∈[-4,-2),8r 2-4所以x 0=2m 2-2m -3,对称轴m =>-2,所以9<x 0≤37,即t ∈(9,37].125.[2019·太原模拟]已知椭圆C :+=1(a >b >0)的左、右焦点分别是x 2a 2y 2b 2F 1,F 2,A ,B 分别是其左右顶点,点P 是椭圆C 上任一点,且△PF 1F 2的周长为6,若△PF 1F 2面积的最大值为.3(1)求椭圆C 的方程;(2)若过点F 2且斜率不为0的直线交椭圆C 于M ,N 两个不同点,证明:直线AM 与BN 的交点在一条定直线上.解:(1)由题意,得Error!解得Error!所以椭圆C 的方程为+=1.x 24y 23(2)由(1)得A (-2,0),B (2,0),F 2(1,0).设直线MN 的方程为x =my +1,M (x 1,y 1),N (x 2,y 2).由Error!得(4+3m 2)y 2+6my -9=0∴y 1+y 2=-,y 1y 2=-,6m 4+3m 294+3m 2∴my 1y 2=(y 1+y 2).32∵直线AM 的方程为y =(x +2),y 1x 1+2直线BN 的方程为y =(x -2),y 2x 2-2∴(x +2)=(x -2),y 1x 1+2y 2x 2-2∴===3,x +2x -2y 2(x 1+2)y 1(x 2-2)my 1y 2+3y 2my 1y 2-y 1∴x =4,∴直线AM 与BN 的交点在直线x =4上.6.[2019·北京卷]已知抛物线C :x 2=-2py 经过点(2,-1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B ,求证:以AB 为直径的圆经过y 轴上的两个定点.解:(1)由抛物线C :x 2=-2py 经过点(2,-1),得p =2.所以抛物线C 的方程为x 2=-4y ,其准线方程为y =1.(2)抛物线C 的焦点为F (0,-1).设直线l 的方程为y =kx -1(k ≠0).由Error!得x 2+4kx -4=0.设M (x 1,y 1),N (x 2,y 2),则x 1x 2=-4.直线OM 的方程为y =x .y 1x 1令y =-1,得点A 的横坐标x A =-.x 1y 1同理得点B 的横坐标x B =-.x 2y 2设点D (0,n ),则=,DA → (-x 1y 1,-1-n )=,DB → (-x 2y 2,-1-n )·=+(n +1)2=+(n +1)2DA → DB → x 1x 2y 1y 2x 1x 2(-x 214)(-x 24)=+(n +1)2=-4+(n +1)2.16x 1x 2令·=0,即-4+(n +1)2=0,得n =1或n =-3.DA → DB → 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).7.[2019·洛阳统考]已知抛物线C :y 2=2px (p >0),其焦点为F ,O 为坐标原点,直线l 与抛物线C 相交于不同的两点A ,B ,M 为AB 的中点.(1)若p =2,M 的坐标为(1,1),求直线l 的方程.(2)若直线l 过焦点F ,AB 的垂直平分线交x 轴于点N ,试问:是否为定值?若2|MN |2|FN |为定值,试求出此定值;否则,说明理由.解:(1)由题意知直线l 的斜率存在且不为0,故设直线l 的方程为x -1=t (y -1),即x =ty +1-t ,设A (x 1,y 1),B (x 2,y 2).由Error!,得y 2-4ty -4+4t =0,∴Δ=16t 2+16-16t =16(t 2-t +1)>0,y 1+y 2=4t ,∴4t =2,即t =.12∴直线l 的方程为2x -y -1=0.(2)为定值2p ,证明如下.2|MN |2|FN |∵抛物线C :y 2=2px (p >0),∴焦点F 的坐标为.(p 2,0)由题意知直线l 的斜率存在且不为0,∵直线l 过焦点F ,故设直线l 的方程为x =ty +(t ≠0),p 2设A (x 1,y 1),B (x 2,y 2).由Error!,得y 2-2pty -p 2=0,∴y 1+y 2=2pt ,Δ=4p 2t 2+4p 2>0.∴x 1+x 2=t (y 1+y 2)+p =2pt 2+p ,∴M .(pt 2+p 2,pt )∴MN 的方程为y -pt =-t .(x -pt 2-p 2)令y =0,解得x =pt 2+,N ,3p 2(pt 2+3p 2,0)∴|MN |2=p 2+p 2t 2,|FN |=pt 2+-=pt 2+p ,3p 2p 2∴==2p .2|MN |2|FN |2(p 2+p 2t 2)pt 2+p 8.[2019·浙江卷]如图,已知点F (1,0)为抛物线y 2=2px (p >0)的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记△AFG ,△CQG 的面积分别为S 1,S 2.(1)求p 的值及抛物线的准线方程;(2)求的最小值及此时点G 的坐标.S 1S 2解:(1)由题意得=1,p 2即p =2.所以,抛物线的准线方程为x =-1.(2)设A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),重心G (x G ,y G ).令y A =2t ,t ≠0,则x A =t 2.由于直线AB 过点F ,故直线AB 的方程为x =y +1,代入y 2=4x ,得y 2-t 2-12t y -4=0,2(t 2-1)t 故2ty B =-4,即y B =-,所以B .2t (1t 2,-2t )又由于x G =(x A +x B +x C ),y G =(y A +y B +y C )及重心G 在x 轴上,故2t -+y C =0,13132t 得C ,G .((1t -t )2,2(1t -t ))(2t 4-2t 2+23t 2,0)所以,直线AC 的方程为y -2t =2t (x -t 2),得Q (t 2-1,0).由于Q 在焦点F 的右侧,故t 2>2.从而===2-.S 1S 212|FG |·|yA |12|QG |·|yC |2t 4-t 2t 4-1t 2-2t 4-1令m =t 2-2,则m >0,=2-=2-≥2-=1+.S 1S 2m m 2+4m +31m +3m +412m ·3m +432当m =即t 2=+2时,取得最小值1+,此时G (2,0).33S 1S 232。

2020新高考数学(理)二轮专题培优新方案主攻40个必考点练习:解析几何+考点过关检测二十二+Word版含解析

2020新高考数学(理)二轮专题培优新方案主攻40个必考点练习:解析几何+考点过关检测二十二+Word版含解析

考点过关检测(二十二)1.(2019·豫东联考)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆的方程为( )A.x 24+y 23=1 B.x 28+y 26=1 C.x 22+y 2=1D.x 24+y 2=1解析:选A 依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1.又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆的方程为x 24+y 23=1,故选A.2.(2019·菏泽期末)已知等边△AOB (O 为坐标原点)的三个顶点在抛物线Γ:y 2=2px (p >0)上,且△AOB 的面积为93,则p =( )A. 3 B .3 C.32D .2 3解析:选C 根据抛物线和等边三角形的对称性,可知A ,B 两点关于x 轴对称,不妨设直线OB :y =33x ,与y 2=2px 联立,解得B (6p,23p ),故|OB |=43p .因为△AOB 的面积为93,所以34×(43p )2=93,解得p =32.故选C.3.若圆x 2+y 2-3x -4y -5=0关于直线ax -by =0(a >0,b >0)对称,则双曲线x 2a 2-y 2b2=1的离心率为( ) A.43 B.53 C.54D.74解析:选C 圆的圆心为⎝ ⎛⎭⎪⎫32,2,满足题意时,直线过圆心,即32a -2b =0,∴b a =34,∴双曲线的离心率e =c a =1+b 2a 2=54.4.(2019·青岛二模)若直线l :x -2y -5=0过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点且与其一条渐近线平行,则该双曲线的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 24-y 2=1D .x 2-y 24=1解析:选A 根据题意,令y =0,则x =5,即c =5.又b a =12,所以a 2=20,b 2=5,所以双曲线的方程为x 220-y25=1.5.(2019·海珠模拟)双曲线E 的中心在原点,离心率等于2,若它的一个顶点恰好是抛物线y 2=8x 的焦点,则双曲线E 的虚轴长等于( )A .4 B. 3 C .2 3D .4 3解析:选D 设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),因为y 2=8x 的焦点坐标是(2,0),所以双曲线E 的一个顶点为(2,0),即a =2.又因为离心率e =ca =c2=2,所以c =4.因此b =16-4=23,虚轴长等于2b =43,故选D.6.(2019·唐山一模)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A .x 2=833yB .x 2=1633y C .x 2=8yD .x 2=16y解析:选D 因为双曲线的离心率e =ca =1+b 2a 2=2,所以b 2=3a 2,所以双曲线的渐近线方程为y =±b a x =±3x .又抛物线的焦点为⎝ ⎛⎭⎪⎫0,p 2,故焦点到渐近线的距离d =⎪⎪⎪⎪⎪⎪p 21+(3)2=p4=2,所以p =8,所以抛物线C 2的方程为x 2=16y .7.(2019·桂林期末)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为( ) A .2 B .3 C .6D .8解析:选C 设点P (x 0,y 0),则x 204+y 203=1,即y 20=3-3x 24.又因为点F (-1,0),所以OP →·FP →=x 0(x 0+1)+y 20=14x 20+x 0+3=14(x 0+2)2+2.又x 0∈[-2,2],所以(OP →·FP →)max=6.8.(2019·通化三模)已知直线l :y =kx +2过椭圆x 2a 2+y 2b 2=1(a >b >0)的上顶点B 和左焦点F ,且被圆x 2+y 2=4截得的弦长为L ,若L ≥455,则椭圆离心率e的取值范围是( )A.⎝⎛⎭⎪⎫0,55B.⎝ ⎛⎦⎥⎤0,255 C.⎝⎛⎦⎥⎤0,355 D.⎝⎛⎦⎥⎤0,455 解析:选B 依题意,知b =2,kc =2.设圆心到直线l 的距离为d ,则L =24-d 2≥455,解得d 2≤165.又因为d =21+k 2,所以11+k 2≤45.因为e 2=c 2a 2=c 2b 2+c 2=11+k2,所以0<e 2≤45,解得0<e ≤255.故选B. 9.(2019·河南中原名校联考)直线l 与抛物线y 2=4x 交于两不同点A ,B ,其中A (x 1,y 1),B (x 2,y 2),若y 1y 2=-36,则直线l 恒过点的坐标是________.解析:设直线l 的方程为x =my +n ,则由⎩⎪⎨⎪⎧x =my +n ,y 2=4x ,得y 2-4my -4n =0,∴y 1y 2=-4n ,又y 1y 2=-36,∴-4n =-36,∴n =9,∴直线l 的方程为x =my +9,恒过(9,0). 答案:(9,0)10.设抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,A 为C 上一点,以F 为圆心,|F A |为半径的圆交l 于B ,D 两点.若∠ABD =90°,且△ABF 的面积为93,则下列说法正确的是________(填序号).①△ABF 是等边三角形; ②|BF |=3;③点F 到准线的距离为3; ④抛物线C 的方程为y 2=6x .解析:∵以F 为圆心,|F A |为半径的圆交l 于B ,D 两点,∠ABD =90°,由抛物线的定义可得|AB |=|AF |=|BF |,∴△ABF 是等边三角形,∴∠FBD =30°.∵△ABF 的面积为34|BF |2=93,∴|BF |=6.又点F 到准线的距离为|BF |sin 30°=3=p ,则该抛物线的方程为y 2=6x .答案:①③④11.(2019·泉州期末)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,且|F 1F 2|=2b 2a ,P 为双曲线C 右支上一点,I 为△PF 1F 2的内心,若S △IPF 1=S △IPF 2+λS △IF 1F 2成立.则双曲线的离心率为________,λ的值为________.解析:由F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,且|F 1F 2|=2b 2a ,可得2c =2b 2a =2c 2-2a 2a,化简得e 2-e -1=0.∵e >1,∴e =1+52.设△PF 1F 2的内切圆半径为r ,由双曲线的定义得 |PF 1|-|PF 2|=2a ,|F 1F 2|=2c ,S △IPF 1=12|PF 1|·r ,S △IPF 2=12|PF 2|·r ,S △IF 1F 2=12·2c ·r =cr ,由S △IPF 1=S △IPF 2+λS△IF1F2得,12|PF1|·r=12|PF2|·r+λcr,故λ=|PF1|-|PF2|2c=ac=11+52=5-12.答案:5+125-12。

新高考2020版高考数学二轮复习主攻36个必考点解析几何考点过关检测十九文

新高考2020版高考数学二轮复习主攻36个必考点解析几何考点过关检测十九文

考点过关检测(十九)1.(2020届高三·唐山联考)已知F 为抛物线E :y 2=4x 的焦点,过点P (0,2)作两条互相垂直的直线m ,n ,直线m 交E 于不同的两点A ,B ,直线n 交E 于不同的两点C ,D ,记直线m 的斜率为k .(1)求k 的取值范围;(2)设线段AB ,CD 的中点分别为点M ,N ,证明:直线MN 过定点Q (2,0).解:(1)由题设可知k ≠0,所以直线m 的方程为y =kx +2,与y 2=4x 联立,整理得ky 2-4y +8=0.①由Δ1=16-32k >0,解得k <12. 直线n 的方程为y =-1kx +2,与y 2=4x 联立, 整理得y 2+4ky -8k =0,由Δ2=16k 2+32k >0,解得k >0或k <-2.所以k <-2或0<k <12, 故k 的取值范围为(-∞,-2)∪⎝ ⎛⎭⎪⎫0,12. (2)证明:设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0).由①得,y 1+y 2=4k ,则y 0=2k ,x 0=2k 2-2k, 所以M ⎝ ⎛⎭⎪⎫2k 2-2k ,2k . 同理可得N (2k 2+2k ,-2k ).直线MQ 的斜率k MQ =2k 2k 2-2k-2=-k k 2+k -1, 直线NQ 的斜率k NQ =-2k 2k 2+2k -2=-k k 2+k -1=k MQ , 所以直线MN 过定点Q (2,0).2.(2019·兰州模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)短轴的一个端点与其两个焦点构成面积为3的直角三角形.(1)求椭圆C 的方程;(2)过圆E :x 2+y 2=2上任意一点P 作圆E 的切线l ,l 与椭圆C 交于A ,B 两点,以AB为直径的圆是否过定点,若过定点,求出该定点;若不过定点,请说明理由.解:(1)因为椭圆C 短轴的一个端点和其两个焦点构成直角三角形,所以b =c ,12·2c ·b =b 2=3,又因为a 2=b 2+c 2,所以a 2=6,b 2=3.故椭圆C 的方程为x 26+y 23=1. (2)圆E 的方程为x 2+y 2=2,设O 为坐标原点,①当直线l 的斜率不存在时,不妨设直线AB 的方程为x =2,A (2,2),B (2,-2),所以∠AOB =90°,所以以AB 为直径的圆过坐标原点O (0,0).②当直线l 的斜率存在时,设其方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).因为直线与相关圆相切,所以d =|m |1+k 2=m 21+k 2=2,所以m 2=2+2k 2. 联立方程组⎩⎪⎨⎪⎧ y =kx +m ,x 26+y 23=1消去y ,得(1+2k 2)x 2+4kmx +2m 2-6=0, 则Δ=16k 2m 2-4(1+2k 2)(2m 2-6)=8(6k 2-m 2+3)=8(4k 2+1)>0,且x 1+x 2=-4km 1+2k2,x 1x 2=2m 2-61+2k2, 所以x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=(1+k 2)(2m 2-6)1+2k 2-4k 2m 21+2k 2+m 2=3m 2-6k 2-61+2k2=0, 所以OA →⊥OB →,所以以AB 为直径的圆恒过坐标原点O (0,0).综合①②可知,以AB 为直径的圆恒过坐标原点O (0,0).3.(2019·柳州联考)已知抛物线C 的顶点在原点,焦点在x 轴上,且抛物线上有一点P (4,m )到焦点的距离为5.(1)求该抛物线C 的方程;(2)已知抛物线上一点M (t,4),过点M 作抛物线的两条弦MD 和ME ,且MD ⊥ME ,判断直线DE 是否过定点?并说明理由.解:(1)由题意知抛物线C 的焦点在x 轴的正半轴上,可设抛物线的方程为y 2=2px (p >0),其准线方程为x =-p 2, ∵P (4,m )到焦点的距离等于点P 到准线的距离,∴4+p 2=5,∴p =2. ∴抛物线C 的方程为y 2=4x .(2)把M (t,4)代入抛物线C 的方程,得16=4t ,∴t =4,∴M (4,4).由题易知直线DE 的斜率不为0,设直线DE 的方程为x =ky +n ,联立⎩⎪⎨⎪⎧ x =ky +n ,y 2=4x 消去x ,得y 2-4ky -4n =0, Δ=16k 2+16n >0,①设D (x 1,y 1),E (x 2,y 2),则y 1+y 2=4k ,y 1y 2=-4n .∵MD ⊥ME ,∴MD →·ME →=(x 1-4,y 1-4)·(x 2-4,y 2-4)=x 1x 2-4(x 1+x 2)+16+y 1y 2-4(y 1+y 2)+16=y 214·y 224-4⎝ ⎛⎭⎪⎫y 214+y 224+16+y 1y 2-4(y 1+y 2)+16 =(y 1y 2)216-(y 1+y 2)2+3y 1y 2-4(y 1+y 2)+32 =n 2-16k 2-12n +32-16k =0,即n 2-12n +32=16k 2+16k ,得(n -6)2=4(2k +1)2,∴n -6=±2(2k +1),得n =4k +8或n =-4k +4,当n =4k +8时,代入①式满足Δ>0,∴直线DE 的方程为x =ky +4k +8=k (y +4)+8,直线过定点(8,-4).当n =-4k +4时,代入①式,当k ≠2时,Δ>0,此时直线DE 的方程为x =k (y -4)+4,直线过定点(4,4),不合题意,舍去.∴直线过定点(8,-4). 4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎪⎫1,22,且两焦点与短轴的一个端点的连线构成等腰直角三角形.(1)求椭圆的方程.(2)动直线l :mx +ny +13n =0(m ,n ∈R )交椭圆C 于A ,B 两点,试问:在坐标平面上是否存在一个定点T ,使得以AB 为直径的圆恒过点T .若存在.求出点T 的坐标;若不存在,请说明理由.解:(1)∵椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等腰直角三角形,∴a =2b ,∴x 22b 2+y 2b 2=1. 又∵椭圆经过点P ⎝ ⎛⎭⎪⎫1,22,将点P 的坐标代入椭圆方程得b 2=1,∴a 2=2,故椭圆方程为x 22+y 2=1. (2)由题意动直线l 过点⎝ ⎛⎭⎪⎫0,-13. 当l 与x 轴平行时,以AB 为直径的圆的方程为 x 2+⎝ ⎛⎭⎪⎫y +132=⎝ ⎛⎭⎪⎫432; 当l 与y 轴平行时,以AB 为直径的圆的方程为x 2+y 2=1.由⎩⎪⎨⎪⎧ x 2+⎝ ⎛⎭⎪⎫y +132=⎝ ⎛⎭⎪⎫432,x 2+y 2=1,解得⎩⎪⎨⎪⎧ x =0,y =1,即两圆相切于点(0,1),因此,如果所求的点T 存在,只能是(0,1),下证点T (0,1)就是所求的点.证明如下:当直线l 垂直于x 轴时,以AB 为直径的圆过点T (0,1).当直线l 不垂直于x 轴,可设直线l :y =kx -13. 由⎩⎪⎨⎪⎧ y =kx -13,x 22+y 2=1消去y 并整理,得(18k 2+9)x 2-12kx -16=0. 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=12k 18k 2+9,x 1x 2=-1618k 2+9. 又∵TA →=(x 1,y 1-1),TB →=(x 2,y 2-1),∴TA →·TB →=x 1x 2+(y 1-1)(y 2-1)=x 1x 2+⎝⎛⎭⎪⎫kx 1-43⎝ ⎛⎭⎪⎫kx 2-43 =(1+k 2)x 1x 2-43k (x 1+x 2)+169=(1+k 2)·-1618k 2+9-43k ·12k 18k 2+9+169=0. ∴TA ⊥TB ,即以AB 为直径的圆恒过点T (0,1), ∴在坐标平面上存在一个定点T (0,1)满足条件.。

河南省卢氏一中2020届高考数学二轮专题《解析几何》训练

河南省卢氏一中2020届高考数学二轮专题《解析几何》训练

河南省卢氏一中2020届高考数学二轮《解析几何》专题训练一、选择题(本大题共10小题,每小题5分,共50分)1.(2020·北京高考)已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( )A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)解析:因为P ∪M =P ,所以M ⊆P ,即a ∈P ,得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1].答案:C2.(2020·北京西城模拟)设向量a =(1,sin θ),b =(3sin θ,1),且a ∥b ,则cos2θ等于( )A .-13B .-23C.23D.13解析:∵a ∥b ,∴1=3sin 2θ.即sin 2θ=13.∴cos2θ=1-2sin 2θ=1-23=13.答案:D3.(2020·烟台模拟)等比数列{a n }中,a 3=6,前三项和S 3=⎠⎛034x d x ,则公比q 的值为( )A .1B .-12C .1或-12D .-1或-12解析:因为S 3=2x 2|x =3-2x 2|x =0=18, 所以6q +6q2+6=18,化简得2q 2-q -1=0, 解得q =1或q =-12.答案:C4.(2020·南昌二模)一个几何体的三视图如图所示,这个几何体的体积是( )[ : ]A.253πB.343π C .3+163πD .12+163π解析:由三视图知该几何体为一个半球和一个正四棱柱的组合体.体积V =V 半球+V 正四棱柱=12×43πr 3+Sh =12×43π×23+2×2×3=163π+12. 答案:D5.(2020·合肥模拟)已知双曲线的渐近线是2x -3y =0和2x +3y =0,且过点(6,6),则双曲线的标准方程是( )A.x 23-y 24=1B.y 24-x 23=1C.x 29-y 212=1D.y 216-x 212=1 解析:依题意,设所求双曲线方程是(2x -3y )(2x +3y )=m (m ≠0),即4x 2-3y 2=m ,则有4×62-3×62=m ,m =36,因此所求双曲线方程是4x 2-3y 2=36,即x 29-y 212=1.答案:C6.抛物线y 2=8x 的焦点到双曲线x 212-y 24=1的渐近线的距离为( )A .1 B. 3 C.33D.36解析:由题意可知,抛物线y 2=8x 的焦点为(2,0),双曲线x 212-y 24=1的渐近线为y =±33x ,所以焦点到双曲线的渐近线的距离为|2×(±3)|3+9=1.答案:A7.已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是( )A .5B .8 C.17-1D.5+2解析:抛物线y 2=4x 的焦点为F (1,0),圆x 2+(y -4)2=1的圆心为C (0,4),设点P 到抛物线的准线距离为d ,根据抛物线的定义有d =|PF |,∴|PQ |+d =|PQ |+|PF |≥(|PC |-1)+|PF |≥|CF |-1=17-1.答案:C8.(2020·杭州模拟)已知双曲线C :x 2a 2-y 2b 2=1(a ,b >0)的左、右焦点分别为F 1,F 2,过F 2作双曲线C 的一条渐近线的垂线,垂足为H ,若F 2H 的中点M 在双曲线C 上,则双曲线C 的离心率为( )A. 2B. 3 C .2D .3解析:如图,OH :y =b ax ,HF 2:y =-ab (x -c ),由⎩⎪⎨⎪⎧y =b a x ,y =-ab (x -c ),解得H (a 2c ,ab c),所以HF 2的中点为M (a 2+c 22c ,ab2c),代入双曲线方程整理得:c 2=2a 2,所以e = 2. 答案:A9.若函数f (x )=-1be ax 的图像在x =0处的切线l 与圆C :x 2+y 2=1相离,则P (a ,b )与圆C 的位置关系是( )A .在圆外B .在圆内C .在圆上D .不能确定解析:由f ′(x )=-a be ax, ∴k =f ′(0)=-a b.切线l 的方程为y +1b =-abx .即ax +by +1=0,又l 与⊙C 相离. ∴1a 2+b2>1,点P 与圆心的距离d =a 2+b 2<1.∴点P 在圆内. 答案:B10.(2020·浙江高考)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y 24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A 、B 两点,若C 1恰好将线段AB 三等分,则( )A .a 2=132B .a 2=13 C .b 2=12D .b 2=2解析:容易求得双曲线的渐近线为y =±2x ,因线段AB 被C 1三等分,而AB =2a ,则第一象限内的等分点的坐标为(a 35,2a 35),代入椭圆方程得,(a 35)2a 2+(2a 35)2b 2=1,又a 2-b 2=5,故b 2=12.答案:C二、填空题(本大题共有4小题,每小题5分,共20分)11.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称.直线4x -3y -2=0与圆C 相交于A 、B 两点,且|AB |=6,则圆C 的方程为____________________.解析:y 2=4x ,焦点F (1,0), ∴圆心O (0,1).O 到4x -3y -2=0的距离d =55=1,则圆半径r 满足r 2=12+32=10,∴圆C 的方程为x 2+(y -1)2=10. 答案:x 2+(y -1)2=1012.(2020·浙江高考)设F 1,F 2分别为椭圆x 23+y 2=1的左,右焦点,点A ,B 在椭圆上,若1F A u u u r =52F B u u u u r,则点A 的坐标是________.解析:根据题意设A 点坐标为(m ,n ),B 点坐标为(c ,d ).F 1、F 2分别为椭圆的左、右焦点,其坐标分别为(-2,0),(2,0),可得1F A u u u r =(m +2,n ),2F B u u u u r=(c -2,d ).∵1F A u u u r =52F B u u u u r ,∴c =m +625,d =n 5.∵点A 、B 都在椭圆上,∴c 23+d 2=1,(m +625)23+(n5)2=1.解得m =0,n =±1,故点A 坐标为(0,±1).答案:(0,±1)13.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则1P A u u u r ·2PF u u u r的最小值为________.解析:由题可知A 1(-1,0),F 2(2,0),设P (x ,y )(x ≥1),则1PF u u u r=(-1-x ,-y ),PF 2―→=(2-x ,-y ),1P A u u u r ·2PF u u u r =(-1-x )(2-x )+y 2=x 2-x -2+y 2=x 2-x -2+3(x 2-1)=4x 2-x -5,∵x ≥1,函数f (x )=4x 2-x -5的图像的对称轴为x =18,∴当x =1时,1P A u u u r ·2PF u u u r取最小值-2.答案:-214.从圆(x -1)2+(y -1)2=1外一点P (2,3)向这个圆引切线,切点分别为A 、B ,则点P 到直线AB 的距离为________.解析:如图,圆心为C (1,1),半径r =1,则CA ⊥AP ,且PC ⊥AB 于H ,故|PH |为点P 到直线AB 的距离.又|PC |=(2-1)2+(3-1)2=5,故切线长|PA |=|PC |2-r 2=(5)2-12=2,在Rt △PAC 中,由射影定理可得|PA |2=|PH |×|PC |,故|PH |=|PA |2|PC |=225=455.答案:455三、解答题(本大题共有4小题,共50分)15.(本小题满分12分)(2020·福建高考)已知直线l :y =x +m ,m ∈R.(1)若以点M (2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,求该圆的方程; (2)若直线l 关于x 轴对称的直线为l ′,问直线l ′与拋物线C :x 2=4y 是否相切?说明理由.解:(1)法一:依题意,点P 的坐标为(0,m ). 因为MP ⊥l ,所以0-m2-0×1=-1,解得m =2,即点P 的坐标为(0,2).[ : ] 从而圆的半径r =|MP |=(2-0)2+(0-2)2=22,[ :21世纪教育网]故所求圆的方程为(x -2)2+y 2=8.法二:设所求圆的半径为r ,则圆的方程可设为(x -2)2+y 2=r 2. ⎩⎪⎨⎪⎧4+m 2=r 2,|2-0+m |2=r ,解得⎩⎨⎧m =2,r =2 2.所以所求圆的方程为(x -2)2+y 2=8. (2)因为直线l 的方程为y =x +m , 所以直线l ′的方程为y =-x -m .由⎩⎪⎨⎪⎧y =-x -m ,x 2=4y ,得x 2+4x +4m =0.Δ=42-4×4m =16(1-m ).(1)当m =1,即Δ=0时,直线l ′与拋物线C 相切; (2)当m ≠1,即Δ≠0时,直线l ′与拋物线C 不相切.综上,当m =1时,直线l ′与拋物线C 相切;当m ≠1时,直线l ′与拋物线C 不相切.16.(本小题满分12分)(2020·北京高考)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面PAC ;(2)若PA =AB ,求PB 与AC 所成角的余弦值; (3)当平面PBC 与平面PDC 垂直时,求PA 的长. 解:(1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .又因为PA ⊥平面ABCD ,所以PA ⊥BD ,又AC ∩PA =A , 所以BD ⊥平面PAC . (2)设AC ∩BD =O .因为∠BAD =60°,PA =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,建立空间直角坐标系O -xyz 则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0),所以PB u u u r=(1,3,-2),AC u u u r =(0,23,0).设PB 与AC 所成的角为θ,则cos θ=PB u u u r ·ACu u ur | PB u u u r ||AC u u u r |=622×23=64∴PB 与AC 所成角的余弦值为64. (3)由(2)知BC u u u r=(-1,3,0)设P (0,-3,t )(t >0),则BP u u u r=(-1,-3,t ),设平面PBC 的一个法向量m =(x ,y ,z ),则BC u u u r ·m =0,BP u u u r·m =0, 所以⎩⎨⎧-x +3y =0,-x -3y +tz =0.令y =3,则x =3,z =6t.所以m =(3,3,6t).同理,平面PDC 的一个法向量n =(-3,3,6t).因为平面PBC ⊥平面PDC , 所以m ·n =0,即-6+36t2=0.解得t =6, 所以PA = 6.17.(本小题满分12分)设A (x 1,y 1),B (x 2,y 2)是椭圆y 2a 2+x 2b2=1(a >b >0)上的两点,已知向量m =(x 1b ,y 1a ),n =(x 2b ,y 2a ),若m·n =0且椭圆的离心率e =32,短轴长为2,O 为坐标原点.(1)求椭圆的方程;(2)若直线AB 的斜率存在且直线AB 过椭圆的焦点F (0,c )(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.解:(1)由题意知2b =2,b =1,e =c a =a 2-b 2a =32,则a =2,c = 3.椭圆的方程为y 24+x 2=1.(2)由题意,设直线AB 的方程为y =kx +3,由⎩⎪⎨⎪⎧y =kx +3,y 24+x 2=1,得(k 2+4)x 2+23kx -1=0.x 1+x 2=-23k k 2+4,x 1x 2=-1k 2+4. 由m·n =0得:x 1x 2b 2+y 1y 2a 2=x 1x 2+14(kx 1+3)(kx 2+3) =(1+k 24)x 1x 2+3k 4(x 1+x 2)+34=k 2+44(-1k 2+4)+3k 4·-23k k 2+4+34=0,[ : ] 解得k =± 2.(3)①当直线AB 的斜率不存在时, 即x 1=x 2,y 1=-y 2, 由m·n =0,得x 21-y 214=0,即y 21=4x 21,又A (x 1,y 1)在椭圆上,所以x 21+4x 214=1,所以|x 1|=22,|y 1|=2,所以△AOB =12|x 1|·|y 1-y 2|=|x 1|·|y 1|=1.所以△AOB 的面积为定值.②当直线AB 的斜率存在时:设直线AB 的方程为y =kx +b ,由⎩⎪⎨⎪⎧y =kx +b y 24+x 2=1得(k 2+4)x 2+2kbx +b 2-4=0,则x 1+x 2=-2kb k 2+4,x 1x 2=b 2-4k 2+4,由x 1x 2+y 1y 24=0,得x 1x 2+(kx 1+b )(kx 2+b )4=0,整理得: 2b 2-k 2=4,所以S △AOB =12·|b |1+k2|AB |=12|b |(x 1+x 2)2-4x 1x 2=|b |4k 2-4b 2+16k 2+4=4b 22|b |=1,所以△AOB 的面积为定值.18.(本小题满分14分)(2020·淄博模拟)椭圆G :x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为5 2.(1)求此时椭圆G 的方程;(2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于过点P (0,33)、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由.解:(1)根据椭圆的几何性质,线段F 1F 2与线段B 1B 2互相垂直平分, 故椭圆中心即为该四点外接圆的圆心.[ : ]故该椭圆中a =2b =2c ,即椭圆方程可为x 2+2y 2=2b 2. 设H (x ,y )为椭圆上一点,则|HN |2=x 2+(y -3)2=-(y +3)2+2b 2+18,其中-b ≤y ≤b , 若0<b <3,则y =-b 时,|HN |2有最大值b 2+6b +9. 由b 2+6b +9=50得b =-3±52(舍去), 若b ≥3,当y =-3时,|HN |2有最大值2b 2+18. 由2b 2+18=50得b 2=16, ∴所求椭圆方程为x 232+y 216=1.(2)设E (x 1,y 1),F (x 2,y 2),Q (x 0,y 0),则由⎩⎪⎨⎪⎧x 2132+y 2116=1,x 2232+y2216=1,两式相减得x 0+2ky 0=0.③又直线PQ ⊥直线m ,∴直线PQ 方程为y =-1k x +33将点Q (x 0,y 0) 代入上式得,y 0=-1k x 0+33④由③④得Q (233k ,-33),而Q 点必在椭圆内部.∴x 2032+y 2016<1.由此得k 2<472,又k ≠0,∴-942<k <0或0<k <942. 故当k ∈(-942,0)∪(0,942)时,E 、F 两点关于点P 、Q 的直线对称.。

2020高考数学(理科)二轮专题复习课标通用版跟踪检测:解析几何含答案 (3)

解析(1)证明:直线恒过定点(1,1),且这个点在圆内,故直线l与圆C总有两个不同的交点.
(2)设A(x1,y1),B(x2,y2),则 =(1-x1,1-y1), =(x2-1,y2-1).由 = P 得x2=3-2x1,将直线与圆的方程联立得(1+m2)x2-2m2x+m2-5=0,(*)
所以x1+x2= ,可得x1= ,代入(*)式,解得m=±1,所以直线方程为x-y=0或x+y-2=0.
②若直线l的斜率不存在,因为直线l经过点(-1,1),所以直线l的方程为x=-1,此时A(-1, ),B(-1,- ),而O ·O =(-1, )·(-1,- )=-2,不满足 · =0.综上可知,存在直线l:x-y+2=0满足条件.
因为圆心到原点的距离为 =2,
所以x2+y2的最大值是(2+ )2=7+4 ,最小值是(2- )2=7-4 .
10.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.
(1)求证:对m∈R,直线l与圆C总有两个不同的交点;
(2)若定点P(1,1)分弦AB所得向量满足A = P ,求此时直线l的方程.
能力提升(建议用时:25分钟)
11.若圆x2+y2-4x-4y-10=0上至少有三个不同的点到直线l:ax+by=0的距离为2 ,则直线l的倾斜角的取值范围是________.
解析圆x2+y2-4x-4y-10=0化为标准方程为(x-2)2+(y-2)2=18,所以圆心坐标为C(2,2),半径r=3 .因为在圆上至少有三个不同的点到直线l:ax+by=0的距离为2 ,所以圆心到直线的距离小于或等于r-2 = ,由点到直线的距离公式得 ≤ ,所以(2a+2b)2≤2(a2+b2),整理得 2-4 +1≤0,解得2- ≤- ≤2+ ,因为直线l:ax+by=0的斜率k=- ,所以2- ≤k≤2+ ,设直线l的倾斜角为α,则2- ≤tanα≤2+ ,即tan ≤tanα≤tan ,即tan ≤tanα≤tan .由此可得直线l的倾斜角的取值范围是 .

2020学年高考数学(理)二轮复习解题方法与技巧试题(9)解析几何 Word版含答案

(9)解析几何1、若直线()(213)a x a y ++-=与直线1230))2((a x a y -+++=互相垂直,则a 等于( ) A .1B .-1C .±1D .-22、在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )A. B.C. D.3、已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( ) A .2k ≥或34k ≤B .324k ≤≤C .34k ≥D .2k ≤4、直线l 过点()1,2P -且与以点()3,2M --、()4,0N 为端点的线段恒相交,则l 的斜率取值范围是( )A. 2,55⎡⎤-⎢⎥⎣⎦B. (]2,00,25⎡⎫-⋃⎪⎢⎣⎭C. [)2,5,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D. [)2,2,5⎛⎤-∞-⋃+∞ ⎥⎝⎦5、若直线0)12()1(:=--+-m y m x m l 与曲线()224:2+--=x y C 有公共点,则直线l 的斜率的最小值是( ) A.5623+ B.41 C. 5623-D.516、椭圆22221+=x y a b (0)>>a b 与圆222()2+=+b x y c (c 为椭圆半焦距)有四个不同交点,则离心率的取值范围是 ( )A .5355<<eB .315<<eC .515<<e D .305<<e7、如图,已知抛物线1C 的顶点在坐标原点,焦点在x 轴上,且过点(2,4),圆222:430C x y x +-+=,过圆心2C 的直线l 与抛物线和圆分别交于,,,,P Q M N 则9PN QM +的最小值为( )A.36 B .42 C.49D .508、若M 是椭圆22194x y +=上任意一点,则点M 到直线2100x y +-=的距离的最小值为( )A. 5B. 10C.10D. 59、过点(0,1)A 作直线l ,与双曲线2219y x -=有且只有一个公共点,则符合条件的直线的条数为( )A.0B.2C.4D.无数 10、如图,过抛物线24y x =的焦点F 作倾斜角为α的直线l ,l 与抛物线及其准线从上到下依次交于A 、B 、C 点,令1AF BF λ=,2BC BFλ=,则当3πα=时, 12λλ+的值为( )A.4B.5C.6D.711、过点1(,1)2M 的直线与圆22:(1)4C x y -+=交于A B 、两点,C 为圆心,当ACB ∠最小时,直线的方程为__ _.12、已知P 是椭圆2214x y +=上的动点,则P 点到直线:250l x y +-=的距离的最小值为___________13、已知00(,)M x y 是双曲线22:12x C y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF ⋅<,则0y 的取值范围是____________.14、已知直线l 过点(0,3)M ,l 与抛物线2y x =交于,E F 两点,当l 不与y 轴垂直时,在y 轴上存在一点(0,)P t ,使得PEF △的内心在y 轴上,则实数t =__________.15、已知焦点在y 轴上的抛物线1C 过点()2,1,椭圆2C 的两个焦点分别为12,F F ,其中2F 与1C 的焦点重合,过点1F 与2C 的长轴垂直的直线交2C 于A ,B 两点,且3AB =,曲线3C 是以坐标原点O 为圆心,以2OF 为半径的圆. (1)求2C 与3C 的标准方程;(2)若动直线l 与3C 相切,且与2C 交于M,N 两点,求OMN △的面积S 的取值范围.答案以及解析1答案及解析: 答案:C 解析:2答案及解析: 答案:C 解析:3答案及解析: 答案:A 解析:4答案及解析: 答案:D解析:如图,∵()()()1,2,3,2,4,0P M N ---,∴()22231PM k --==---,()022415PN k -==---.由图可知,使直线l 与线段MN 相交的l 的斜率取值范围是[)2,2,5⎛⎤-∞-⋃+∞ ⎥⎝⎦.故选D.考点:直线的倾斜角和斜率.5答案及解析: 答案:D 解析:6答案及解析: 答案:A 解析:7答案及解析:答案:B 解析:8答案及解析: 答案:A 解析:9答案及解析: 答案:C解析:由题意可知所求直线l 的斜率一定存在,设直线l 的斜率一定存在,设直线方程为1y kx =+由22119y kx y x =+⎧⎪⎨-=⎪⎩得22(9)2100k x kx ---= (*) ①当290k -=,即3k =±时,(*)式只有一解,即方程组只有一解,此时直线l 与双曲线的渐近线平行,有两条符合题意的直线;②当290k -=时,令0∆=,即22440(9)0k k +-=解得10k =±此时直线l 与双曲线相切,符合题意的直线有两条 综上,符合条件的直线有4条10答案及解析: 答案:B 解析:11答案及解析: 答案:2430x y -+= 解析:12答案及解析: 答案:102解析:13答案及解析:答案:33,33⎛⎫- ⎪ ⎪⎝⎭解析:14答案及解析: 答案:-3 解析:15答案及解析: 答案:(1)由已知设抛物线1C 的方程为()220x py p =>, 则42p =,解得2p =,即1C 的标准方程为24x y =.则()20,1F ,不妨设椭圆2C 的方程为()222210,0y x a b a b +=>>,由222211y x a by ⎧+=⎪⎨⎪=-⎩,得2b x a =±,所以223b AB a ==, 又221a b =+,所以2,3a b ==,故2C 的标准方程为22143y x +=.易知21OF =,所以3C 的标准方程为221x y +=.(2)因为直线l 与3C 相切,所以圆心O 到直线l 的距离为1.所以1122MN S MN =⨯⨯=.当直线l 的斜率不存在时,其方程为1x =±,易知两种情况所得到的OMN △的面积相等. 由221431y x x ⎧+=⎪⎨⎪=⎩,得263y =±. 不妨设26261,,1,33M N ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则463MN =, 此时2623MN S ==. 当直线l 的斜率存在时,设其方程为y kx m =+,则211m k -=+,即221m k =+.由22143y x y kx m ⎧+=⎪⎨⎪=+⎩,得()2223463120k x kmx m +++-=, 所以 ()()()()222222236434312484348230k m k m k m k ∆=-+-=+-=+>恒成立. 设()(),,,M M N N M x y N x y ,则2226312,3434M N M N km m x x x x k k --+==++. 所以 ()()2222222222222114224823163121231231412343423434MN M NMN S k x x x x k km m k k k k k k k k ==++-+--++⎛⎫=+-⨯=+=⎪++++⎝⎭.令()2344k t t +=≥,则243t k -=, 所以22223212311233t t S t t t--⎛⎫==--+ ⎪⎝⎭, 令1'm t =,则1'(0,]4m ∈, 易知2''2y m m =--+区间1(0,]4上单调递减,所以 32623S ≤<.综上,OMN △的面积S 的取值范围为326[,)23.解析:。

2020高考数学(理科)二轮专题复习课标通用版跟踪检测:解析几何含答案 (2)

2020高考数学(理科)二轮专题复习课标通用版跟踪检测:解析几何含答案 (2)
编 辑:__________________
时 间:__________________
一部分专题5第3讲
题型
对应题号
1.圆锥曲线中的定点与定值问题
5,9,10
2.圆锥曲线中的最值与范围问题
1,2,3,4,6,7,8,11
因为点R(x0,y0)在椭圆C上,所以 + =1,
所以k1k2= = =- .
设P(x1,y1),Q(x2,y2),所以|OP|= ·|x1|,
点Q到直线OP的距离d= = = ,又因为P,Q在椭圆C上,
所以
所以|x1|= ,|x2|= ,
所以△OPQ的面积S= |OP|·d= |x1|· = |x1x2|·|k1-k2|= · · =3 = .
答案3
8.已知抛物线y2=4x,过焦点F的直线与抛物线交于A,B两点,过A,B分别作x轴、y轴的垂线,垂足分别为C,D,则|AC|+|BD|的最小值为________.
解析不妨设A(x1,y1)(y1>0),B(x2,y2)(y2<0).则|AC|+|BD|=y1+x2=y1+ .又y1y2=-p2=-4.
4.(20xx·全国卷Ⅰ)设A,B是椭圆C: + =1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是( )
A.(0,1]∪[9,+∞)
B.(0, ]∪[9,+∞)
C.(0,1]∪[4,+∞)
D.(0, ]∪[4,+∞)
A解析若焦点在x轴上,依题意得0<m<3,且 ≥tan = ,所以0<m<3且m≤1,则0<m≤1;若焦点在y轴上,依题意得m>3,且 ≥tan = ,所以m≥9.综上,m的取值范围是(0,1]∪[9,+∞).故选A项.

2020版高考数学大二轮复习专题 解析几何增分强化练 理

增分强化练一、选择题1.直线(1-2a )x -2y +3=0与直线3x +y +2a =0垂直,则实数a 的值为( ) A .-52B.72C.56D.16解析:∵直线(1-2a )x -2y +3=0与直线3x +y +2a =0垂直,∴3(1-2a )-2=0,∴a =16,故选D. 答案:D2.过点(1,-1)且与直线x -2y +1=0平行的直线方程为( ) A .x -2y -1=0 B .x -2y +1=0 C .x -2y -3=0D .2x +y -1=0解析:由题意得所求直线的斜率为12,又直线过点(1,-1),故所求直线的方程为y +1=12(x-1),即x -2y -3=0.故选C. 答案:C3.已知直线l 1:(3+m )x +4y =5-3m ,l 2:2x +(5+m )y =8平行,则实数m 的值为( ) A .-7 B .-1 C .-1或-7D.133解析:当m =-3时,两条直线分别化为:2y =7,x +y =4,此时两条直线不平行;当m =-5时,两条直线分别化为:x -2y =10,x =4,此时两条直线不平行;当m ≠-3,-5时,两条直线分别化为:y =-3+m 4x +5-3m 4,y =-25+m x +85+m ,∵两条直线平行,∴-3+m 4=-25+m ,5-3m 4≠85+m ,解得m =-7.综上可得:m =-7.故选A. 答案:A4.在直线3x -4y -27=0上到点P (2,1)距离最近的点的坐标是( ) A .(5,-3) B .(9,0) C .(-3,5)D .(-5,3)解析:根据题意可知:所求点即为过P 点垂直于已知直线的直线与已知直线的交点,因为已知直线3x -4y -27=0的斜率为34,所以过P 点垂直于已知直线的斜率为-43,又P (2,1),则该直线的方程为:y -1=-43(x -2)即4x +3y -11=0,与已知直线联立得⎩⎪⎨⎪⎧4x +3y -11=0 ①3x -4y -27=0 ②①×4+②×3得25x =125,解得x =5, 把x =5代入①解得y =-3,所以⎩⎪⎨⎪⎧x =5y =-3,所以直线3x -4y -27=0上到点P (2,1)距离最近的点的坐标是(5,-3). 故选A. 答案:A5.圆x 2+y 2=8与圆x 2+y 2+4x -16=0的公共弦长为( ) A .8 B .4 C .2D .1解析:两圆方程作差得x =2,当x =2时,由x 2+y 2=8得y 2=8-4=4,即y =±2, 即两圆的交点坐标为A (2,2),B (2,-2), 则|AB |=2-(-2)=4, 故选B. 答案:B6.过点(2,1)的直线中被圆(x -1)2+(y +2)2=5截得的弦长最大的直线方程是( )A .3x -y -5=0B .3x +y -7=0C .x +3y -5=0D .x -3y +5=0解析:∵过点(2,1)的直线中被圆(x -1)2+(y +2)2=5截得的弦长最大的直线方程经过圆心, ∴其直线方程为过点(2,1)和圆心(1,-2)的直线, ∴其方程为:y +2x -1=1+22-1, 整理,得3x -y -5=0. 故选A. 答案:A7.圆C :x 2+y 2-2x =0被直线y =3x 截得的线段长为( ) A .2 B. 3 C .1D. 2解析:圆C :x 2+y 2-2x =0的圆心为(1,0),半径为1,圆心到直线y =3x 的距离为d =|3|(3)2+1=32,弦长为2·1-⎝⎛⎭⎪⎫322=1,故选C. 答案:C8.已知直线l :y =kx +1与圆O :x 2+y 2=2相交于A ,B 两点,则 “k =1”是“∠AOB =120°”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由题意得圆心(0,0)到直线l :y =kx +1的距离为d =11+k2,若∠AOB =120°,则有11+k2=2·12,该方程等价于k 2=1即k =±1,若k =1时,则∠AOB =120°,但∠AOB =120°时,k =-1或k =1,故选A. 答案:A9.(2019·青岛模拟)已知圆C :x 2+y 2=1和直线l :y =k (x +2),在(-3,3)上随机选取一个数k ,则事件“直线l 与圆C 相交”发生的概率为( ) A.15 B.14 C.13D.12解析:直线l 方程为kx -y +2k =0, 当直线l 与圆C 相切时可得|2k |k 2+1=1,解得k =±33,∴直线l 与圆C 相交时,k ∈⎝⎛⎭⎪⎫-33,33, ∴所求的概率P =23323=13.故选C. 答案:C10.(2019·威海模拟)已知圆(x -2)2+y 2=1上的点到直线y =3x +b 的最短距离为3,则b 的值为( )A .-2或2B .2或43+2C .-2或43+2D .-43-2或2解析:由圆(x -2)2+y 2=1,可得圆心坐标为(2,0),半径r =1,设圆心(2,0)到直线y =3x +b 的距离为d ,则d =|23+b |3+1,因为圆(x -2)2+y 2=1上的点到直线y =3x +b 的最短距离为3,所以d -r =3,即|23+b |3+1-1=3,解得b =2或b =-43-2,故选D.答案:D11.圆C 1:(x -1)2+(y -3)2=9和C 2:x 2+(y -2)2=1,M ,N 分别是圆C 1,C 2上的点,P 是直线y =-1上的点,则|PM |+|PN |的最小值是( ) A .52-4 B.17-1 C .6-2 2D.17解析:圆C 1关于y =-1的对称圆的圆心坐标A (1,-5),半径为3,圆C 2的圆心坐标(0,2),半径为1,由图象(图略)可知当P ,C 2,A ,三点共线时,|PM |+|PN |取得最小值,|PM |+|PN |的最小值为圆A 与圆C 2的圆心距减去两个圆的半径和,即|AC 2|-3-1=1+49-4=52-4.故选A. 答案:A12.设过点P (-2,0)的直线l 与圆C :x 2+y 2-4x -2y +1=0的两个交点为A ,B ,若8PA →=5AB →,则|AB |=( ) A.855 B.463 C.665D.453解析:由题意,设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my -2,由⎩⎪⎨⎪⎧x 2+y 2-4x -2y +1=0x =my -2,得(m 2+1)y 2-(8m +2)y +13=0,则y 1+y 2=8m +2m 2+1,y 1y 2=13m 2+1,又8PA →=5AB →,所以8(x 1+2,y 1)=5(x 2-x 1,y 2-y 1),故8y 1=5(y 2-y 1),即y 2=135y 1,代入y 1y 2=13m 2+1得:y 21=5m 2+1,故y 22=16925×5m 2+1,又(y 1+y 2)2=⎝ ⎛⎭⎪⎫8m +2m 2+12,即y 21+y 22+2y 1y 2=19425×5m 2+1+26m 2+1=⎝ ⎛⎭⎪⎫8m +2m 2+12,整理得:m 2-40m +76=0,解得m =2或m =38,又|AB |=1+m 2·(y 1+y 2)2-4y 1y 2=23m 2+8m -12m 2+1,当m =2时,|AB |=855;当m =38时,|AB |=855.综上,|AB |=855.故选A. 答案:A 二、填空题13.若直线(a +2)x +(1-a )y -3=0与(a -1)x +(2a +3)y +2=0互相垂直,则a 为________. 解析:∵直线(a +2)x +(1-a )y -3=0与(a -1)x +(2a +3)y +2=0互相垂直, ∴(a +2)(a -1)+(1-a )(2a +3)=0, ∴(a -1)(a +2-2a -3)=0, ∴(a -1)(a +1)=0, ∴a =1或a =-1. 答案:±114.已知圆C 与y 轴相切,圆心在x 轴的正半轴上,并且截直线x -y +1=0所得的弦长为2,则圆C 的标准方程是________.解析:设圆心为(t,0),且t >0, ∴半径为r =|t |=t ,∵圆C 截直线x -y +1=0所得的弦长为2,∴圆心到直线x -y +1=0的距离d =|t -0+1|2=t 2-1,∴t 2-2t -3=0, ∴t =3或t =-1(舍), 故t =3, ∴(x -3)2+y 2=9. 答案:(x -3)2+y 2=915.已知圆x 2+y 2=9被直线mx +y -2m -1=0所截得弦长为32,则实数m 的值为________. 解析:因为圆x 2+y 2=9的圆心是(0,0),半径为3, 根据弦长为32,所以圆心到直线的距离为d =9-⎝⎛⎭⎪⎫3222=322, 所以d =|-2m -1|m 2+1=322,解得m =1或m =7.答案:1或716.已知点P (-1,2)及圆(x -3)2+(y -4)2=4,一光线从点P 出发,经x 轴上一点Q 反射后与圆相切于点T ,则|PQ |+|QT |的值为________. 解析:点P 关于x 轴的对称点为P ′(-1,-2),由反射的对称性可知,P ′Q 与圆相切于点T ,|PQ |+|QT |=|P ′T |, ∵圆(x -3)2+(y -4)2=4的圆心坐标为A (3,4),半径r =2, ∴|AP ′|2=(-1-3)2+(-2-4)2=52, |AT |=r =2,∴|PQ |+|QT |=|P ′T |=|AP ′|2-|AT |2=4 3. 答案:4 3增分强化练考点一 圆锥曲线的定义及标准方程1.(2019·榆林模拟)已知抛物线y 2=2px (p >0)上的点M 到其焦点F 的距离比点M 到y 轴的距离大12,则抛物线的标准方程为( )A .y 2=x B .y 2=2x C .y 2=4xD .y 2=8x解析:由抛物线y 2=2px (p >0)上的点M 到其焦点F 的距离比点M 到y 轴的距离大12,根据抛物线的定义可得p 2=12,∴p =1,所以抛物线的标准方程为y 2=2x .故选B.答案:B2.(2019·株洲模拟)已知双曲线C :x 2a 2-y 2b 2=1的一条渐近线l 的倾斜角为π3,且C 的一个焦点到l 的距离为3,则双曲线C 的方程为( ) A.x 212-y 24=1 B.x 24-y 212=1 C.x 23-y 2=1 D .x 2-y 23=1解析:由x 2a 2-y 2b 2=0可得y =±b a x ,即渐近线的方程为y =±bax ,又一条渐近线l 的倾斜角为π3, 所以b a =tan π3= 3.因为双曲线C 的一个焦点(c,0)到l 的距离为3, 所以|bc |a 2+b 2=b =3,所以a =1,所以双曲线的方程为x 2-y 23=1.故选D. 答案:D3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且椭圆C 的长轴长与焦距之和为6,则椭圆C的标准方程为( ) A.4x 225+y26=1 B.x 24+y 22=1 C.x 22+y 2=1 D.x 24+y 23=1 解析:依题意椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12得c a =12,椭圆C 的长轴长与焦距之和为6,2a +2c =6, 解得a =2,c =1,则b =3,所以椭圆C 的标准方程为:x 24+y 23=1,故选D.答案:D4.设F 1,F 2是椭圆E :x 225+y 216=1的左右焦点,P 是椭圆E 上的点,则|PF 1|·|PF 2|的最小值是________.解析:由椭圆方程可知a =5,c =3,根据椭圆的定义,有|PF 2|=2a -|PF 1|=10-|PF 1|,故|PF 1|·|PF 2|=|PF 1|·(10-|PF 1|),由于|PF 1|∈[a -c ,a +c ]=[2,8]注意到二次函数y =x (10-x )的对称轴为x =5,故当x =2,x =8时,都是函数的最小值,即最小值为2×8=16. 答案:16考点二 圆锥曲线的性质1.已知椭圆C :16x 2+4y 2=1,则下列结论正确的是( ) A .长轴长为12B .焦距为34 C .短轴长为14D .离心率为32解析:由椭圆方程16x 2+4y 2=1化为标准方程可得x 2116+y 214=1 ,所以a =12,b =14,c =34,长轴为2a =1 ,焦距2c =32,短轴2b =12,离心率e =c a =32.故选D. 答案:D2.(2019·九江模拟)已知双曲线C :x 2a 2-y 2b2=1(a ,b >0)的右顶点A 和右焦点F 到一条渐近线的距离之比为1∶2,则C 的渐近线方程为( ) A .y =±x B .y =±2x C .y =±2xD .y =±3x解析:由双曲线方程可得渐近线为:y =±bax ,A (a,0),F (c,0), 则点A 到渐近线距离d 1=|ab |a 2+b2=ab c, 点F 到渐近线距离d 2=|bc |a 2+b2=bcc=b , ∴d 1∶d 2=ab c∶b =a ∶c =1∶2,即c =2a ,则b a =c 2-a 2a =a a=1, ∴双曲线渐近线方程为y =±x . 故选A. 答案:A3.已知双曲线C :x 2-y 2=1,则点(4,0)到C 的渐近线的距离为________.解析:双曲线C :x 2-y 2=1(a >b >0)的渐近线方程y =±x ,点(4,0)到C 的渐近线的距离为|±4|2=2 2. 答案:2 24.(2019·株洲模拟)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点,B 是短轴的一个端点,线段BF 2的延长线交椭圆C 于点D ,若△F 1BD 为等腰三角形,则椭圆C 的离心率为________. 解析:如图,不妨设点B 是椭圆短轴的上端点,则点D 在第四象限内,设点D (x ,y ). 由题意得△F 1BD 为等腰三角形,且|DF 1|=|DB |.由椭圆的定义得|DF 1|+|DF 2|=2a ,|BF 1|=|BF 2|=a , 又|DF 1|=|DB |=|DF 2|+|BF 2|=|DF 2|+a , ∴(|DF 2|+a )+|DF 2|=2a ,解得|DF 2|=a2.作DE ⊥x 轴于E ,则有|DE |=|DF 2|sin ∠DF 2E =|DF 2|sin ∠BF 2O =a 2×b a =b2,|F 2E |=|DF 2|cos ∠DF 2E =|DF 2|cos ∠BF 2O =a 2×c a =c 2,∴|OE |=|OF 2|+|F 2E |=c +c 2=3c2,∴点D 的坐标为⎝⎛⎭⎪⎫3c 2,-b 2.又点D 在椭圆上,∴⎝ ⎛⎭⎪⎫3c 22a2+⎝ ⎛⎭⎪⎫-b 22b2=1,整理得3c 2=a 2,所以e =c a =33. 答案:33考点三 直线与圆锥曲线的相关问题1.(2019·内江模拟)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1、F 2,上下顶点分别为A 、B ,直线AF 2与该椭圆交于A 、M 两点.若∠F 1AF 2=120°,则直线BM 的斜率为( )A.14B.34C.32D. 3解析:由题意,椭圆x 2a 2+y 2b2=1(a >b >0),且满足∠F 1AF 2=120°,如图所示,则在△AF 2O 中,|OA |=b ,|AF 2|=a ,且∠OAF 2=60°,所以a =2b , 不妨设b =1,则a =2,所以c =a 2-c 2=3,则椭圆的方程为x 24+y 2=1,又由A (0,1),F 2(3,0),所以kAF 2 =-33,所以直线AF 2的方程为y =-33x +1,联立方程组⎩⎪⎨⎪⎧y =-33x +1x 24+y 2=1,整理得7x 2-83x =0,解得x =0或x =837,把x =837代入直线y =-33x +1,解得y =-17,即M ⎝ ⎛⎭⎪⎫837,-17 , 又由点B (0,-1),所以BM 的斜率为k BM =-17-(-1)837-0=34,故选B.答案:B2.已知直线l :y =2x +b 被抛物线C :y 2=2px (p >0)截得的弦长为5,直线l 经过C 的焦点,M 为C 上的一个动点,设点N 的坐标为(3,0),则MN 的最小值为________.解析:(1)∵⎩⎪⎨⎪⎧y =2x +by 2=2px ⇒4x 2+(4b -2p )x +b 2=0,则52=(1+22)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2b -p 22-4×b 42, 又直线l 经过C 的焦点,则-b 2=p 2,∴b =-p ,由此解得p =2, 抛物线方程为y 2=4x ,M (x 0,y 0),∴y 20=4x 0,则|MN |2=(x 0-3)2+y 20=(x 0-3)2+4x 0=(x 0-1)2+8, 故当x 0=1时,|MN |min =2 2. 答案:2 23.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的动点到其左焦点距离的最大值是最小值的3倍,且点P ⎝⎛⎭⎪⎫1,32在椭圆上.(1)求椭圆E 的标准方程;(2)过点G (0,1)作直线l 与曲线交于A ,B 两点,求△ABO 面积的最大值.解析:(1)由题意得,⎩⎪⎨⎪⎧a +c =3(a -c )a 2=b 2+c21a 2+94b2=1,解得a =2,b =3,∴椭圆的标准方程为x 24+y 23=1. (2)易知直线l 的斜率存在.设直线l 的方程为y =kx +1,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +1x 24+y23=1,消去y 得(3+4k 2)x 2+8kx -8=0,则x 1+x 2=-8k 3+4k 2,x 1x 2=-83+4k2,∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=46·1+2k23+4k2d =1k 2+1,∴S △ABO =12×d ×1+k 2|x 1-x 2|=26·1+2k 23+4k 2, 令 1+2k 2=t ,∵k 2≥0,∴t ≥1, ∴S △ABO =26t 2t 2+1=262t +1t,易证y =2t +1t 在[1,+∞)上单调递增,∴2t +1t≥3,∴S △ABO ≤263,∴△ABO 面积的最大值为263.增分强化练考点一 直线的方程1.直线mx +y -m +2=0恒经过定点( ) A .(1,-1) B .(1,2) C .(1,-2)D .(1,1)解析:直线mx +y -m +2=0,化为:m (x -1)+y +2=0,可知直线经过定点(1,-2).故选C. 答案:C2.(2019·南昌模拟)唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为x 2+y 2≤1,若将军从点A (2,0)处出发,河岸线所在直线方程为x +y =3,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( ) A.10-1 B .22-1 C .2 2D.10解析:设点A 关于直线x +y =3的对称点A ′(a ,b ),AA ′的中点为⎝⎛⎭⎪⎫a +22,b 2,k AA ′=b a -2,故⎩⎪⎨⎪⎧ba -2·(-1)=-1a +22+b 2=3,解得⎩⎪⎨⎪⎧a =3b =1,所以A ′(3,1).要使从点A 到军营总路程最短,即为点A ′到军营最短的距离,“将军饮马”的最短总路程为32+12-1=10-1,故选A. 答案:A3.过点(-2,4)且在两坐标轴上的截距互为相反数的直线的一般方程为________. 解析:①当在坐标轴上截距为0时,所求直线方程为:y =-2x ,即2x +y =0; ②当在坐标轴上截距不为0时,∵在坐标轴上截距互为相反数, ∴x -y =a ,将A (-2,4)代入得,a =-6, ∴此时所求的直线方程为x -y +6=0. 答案:2x +y =0或 x -y +6=04.平行线5x +12y -10=0和mx +6y +2=0的距离是________解析:由题意,两直线5x +12y -10=0和mx +6y +2=0平行,可得5m =126,解得m =52,即5x +12y +4=0,由两平行直线之间的距离公式,可得d =|-10-4|52+122=1413. 答案:1413考点二 圆的方程1.方程x 2+y 2+x +y -m =0表示一个圆,则m 的取值范围是( ) A .m >-12B .m <-12C .m ≤-12D .m ≥-12解析:因为方程x 2+y 2+x +y -m =0要表示一个圆,所以2+4m >0 解得:m >-12,故选A.答案:A2.点M ,N 是圆x 2+y 2+kx +2y -4=0上的不同两点,且点M ,N 关于直线x -y +1=0对称,则该圆的半径等于( ) A .2 2 B. 2 C .1D .3解析:圆x 2+y 2+kx +2y -4=0的圆心坐标为⎝ ⎛⎭⎪⎫-k2,-1,因为点M ,N 在圆x 2+y 2+kx +2y -4=0上,且点M ,N 关于直线l :x -y +1=0对称,所以直线l :x -y +1=0经过圆心,所以-k2+1+1=0,k =4. 所以圆的方程为:x 2+y 2+4x +2y -4=0,圆的半径为:12 42+22-4×(-4)=3. 故选D.答案:D3.已知圆C :(x -6)2+(y +8)2=4,O 为坐标原点,则以OC 为直径的圆的方程为( ) A .(x -3)2+(y +4)2=100 B .(x +3)2+(y -4)2=100 C .(x -3)2+(y +4)2=25 D .(x +3) 2+(y -4)2=25解析:由题意可知:O (0,0),C (6,-8),则圆心坐标为(3,-4),圆的直径为62+(-8)2=10,据此可得圆的方程为(x -3)2+(y +4)2=⎝ ⎛⎭⎪⎫1022,即(x -3)2+(y +4)2=25.故选C.答案:C4.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程是( )A .(x +1)2+y 2=2 B .(x +1)2+y 2=8 C .(x -1)2+y 2=2 D .(x -1)2+y 2=8解析:直线x -y +1=0与x 轴的交点坐标为(-1,0),因为圆C 与直线x +y +3=0相切,所以半径为圆心到切线的距离,即r =d =|-1+0+3|12+12=2,则圆C 的方程为(x +1)2+y 2=2,故选A. 答案:A考点三 直线与圆的位置关系1.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的公切线条数是( ) A .4条 B .3条 C .2条D .1条解析:圆O 1:x 2+y 2-2x =0的圆心(1,0)半径为1;圆O 2:x 2+y 2-4y =0的圆心(0,2)半径为2,O 1O 2=12+22=5,∵1<5<3,∴两个圆相交,所以圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的公切线条数2.故选C.答案:C2.(2019·南宁模拟)已知直线l :3x -4y -15=0与圆C :x 2+y 2-2x -4y +5-r 2=0(r >0)相交于A ,B 两点,若|AB |=6,则圆C 的标准方程为( ) A .(x -1)2+(y -2)2=25 B .(x -1)2+(y -2)2=36 C .(x -1)2+(y -2)2=16 D .(x -1)2+(y -2)2=49解析:圆C :x 2+y 2-2x -4y +5-r 2=0可化为(x -1)2+(y -2)2=r 2,设圆心(1,2)到直线l 的距离为d ,则d =|3-8-15|5=4,又|AB |=6,根据r 2=32+42=25,所以圆C 的标准方程为(x -1)2+(y -2)2=25.故选A. 答案:A3.(2019·汕头模拟)已知直线l 与圆x 2+y 2-4y =0相交于A ,B 两点,且线段AB 的中点P 的坐标为(-1,1),则直线l 的方程为________.解析:因为圆x 2+y 2-4y =0的圆心坐标为C (0,2),又点P 坐标为(-1,1), 所以直线CP 的斜率为k CP =2-10+1=1; 又因为AB 是圆的一条弦,P 为AB 的中点, 所以AB ⊥CP ,故k AB =-1,即直线l 的斜率为-1, 因此,直线l 的方程为y -1=-(x +1),即x +y =0. 答案:x +y =04.直线2x +y -3=0与圆x 2+y 2-2x -2y =0相交于A ,B 两点,O 为坐标原点,则|OA →+OB →|=________.解析:设A (x 1,y 1),B (x 2,y 2),AB 的中点为M ,联立直线方程与圆的方程⎩⎪⎨⎪⎧x 2+y 2-2x -2y =0y =-2x +3,整理可得5x 2-10x +3=0,故x 1+x 2=2,y 1+y 2=(-2x 1+3)+(-2x 2+3)=-2(x 1+x 2)+6=2, 据此可得M (1,1),|OM →|=1+1=2,结合平面向量的运算法则有|OA →+OB →| =|2OM →| =2 2. 答案:2 2增分强化练1.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F 为抛物线y 2=4x 的焦点,P ,Q 是椭圆C 上的两个动点,且线段PQ 长度的最大值为4. (1)求椭圆C 的标准方程;(2)若OP ⊥OQ ,求△OPQ 面积的最小值. 解析:(1)∵y 2=4x 的焦点为(1,0), ∴椭圆C 的右焦点F 为(1,0),即c =1, 又|PQ |的最大值为4,因此|PQ |=2a =4, ∴a 2=4,b 2=a 2-c 2=4-1=3, 所以椭圆C 的标准方程为x 24+y 23=1.(2)①当P ,Q 为椭圆顶点时,易得△OPQ 的面积为12×2×3=3,②当P ,Q 不是椭圆顶点时,设直线OP 的方程为y =kx (k ≠0),由⎩⎪⎨⎪⎧y =kx x 24+y23=1,得x 2=123+4k 2,所以|OP |=k 2+1 123+4k2, 由OP ⊥OQ ,得直线OQ 的方程为:y =-1kx ,所以|OQ |=1k2+1123+41k 2= 1+k 2123k 2+4, 所以S △OPQ =12|OP |·|OQ |=6(k 2+1)2(3+4k 2)(3k 2+4)=6(k 2+1)212k 4+25k 2+12=6 112+k 2(k 2+1)2,(k 2+1)2k2=k 2+1k2+2≥4,当且仅当k 2=1时等号成立,所以0<k 2(k 2+1)2≤14,所以127≤S △OPQ <3,综上,△OPQ 面积的最小值为127.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2分别为椭圆C 的左、右焦点,点P (263,33)满足PF →1·PF →2=0. (1)求椭圆C 的方程;(2)直线l 经过椭圆C 的右焦点与椭圆相交于M ,N 两点,设O 为坐标原点,直线OM ,直线l ,直线ON 的斜率分别为k 1,k ,k 2,且k 1,k ,k 2成等比数列,求k 1·k 2的值. 解析:(1)依题意F 1(-c,0), ∴PF →1·PF →2=-c 2+3=0,即c =3, ∵e =c a =32, ∴a =2, ∴b 2=a 2-c 2=1,∴椭圆C 的方程为x 24+y 2=1.(2)设直线l 的方程为y =k (x -3),M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 2=1y =k (x -3),得(1+4k 2)x 2-83k 2x +4(3k 2-1)=0,则x 1+x 2=83k 21+4k 2,x 1x 2=12k 2-41+4k 2,∵k 1,k ,k 2成等比数列,∴k 1·k 2=k 2=y 1y 2x 1x 2=k 2(x 1-3)(x 2-3)x 1x 2,则3(x 1+x 2)=3, 即83k21+4k 2=3, 解得k 2=14,故k 1k 2=14.3.已知抛物线C :y 2=2px (0<p <1)上的点P (m,1)到其焦点F 的距离为54.(1)求C 的方程;(2)已知直线l 不过点P 且与C 相交于A ,B 两点,且直线PA 与直线PB 的斜率之积为1,证明:l 过定点.解析:(1)由题意,得2pm =1,即m =12p.由抛物线的定义,得|PF |=m -(-p 2)=12p +p2.由题意,知12p +p 2=54,解得p =12或p =2(舍去).所以C 的方程为y 2=x . (2)证明:由(1)得P (1,1).设l :x =ny +t ,由于直线l 不过点P (1,1), 所以n +t ≠1.由⎩⎪⎨⎪⎧y 2=x ,x =ny +t消去x 并整理得y 2-ny -t =0.由题意,判别式Δ=n 2+4t >0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=n ,①y 1y 2=-t ,②则k PA k PB =y 1-1x 1-1·y 2-1x 2-1=y 1-1y 21-1·y 2-1y 22-1=1y 1y 2+(y 1+y 2)+1. 由题意,得y 1y 2+(y 1+y 2)+1=1, 即y 1y 2+(y 1+y 2)=0,③将①②代入③得-t +n =0,即t =n .所以l :x =n (y +1).显然l 过定点(0,-1).4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,焦距为2,长轴的长为4.(1)求椭圆C 的标准方程;(2)设过点F 1的直线l 与椭圆C 交于E ,D 两点,试问:在x 轴上是否存在定点M ,使得直线ME ,MD 的斜率之积为定值?若存在,求出该定值及定点M 的坐标;若不存在,请说明理由.解析:(1)因为椭圆C 的焦距为2,长轴的长为4, 所以2c =2,2a =4,解得c =1,a =2, 所以b 2=a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设E (x 1,y 1),D (x 2,y 2),M (m,0).易知F 1(-1,0),当直线l 的斜率存在时,设直线l 的方程为y =k (x +1).联立方程,得⎩⎪⎨⎪⎧y =k (x +1),x 24+y23=1,得(4k 2+3)x 2+8k 2x +4k 2-12=0, 则x 1+x 2=-8k 24k 2+3,x 1x 2=4k 2-124k 2+3.又y 1y 2=k 2(x 1+1)(x 2+1)=k 2(x 1x 2+x 1+x 2+1)=k 2(4k 2-124k 2+3-8k 24k 2+3+1)=-9k24k 2+3,直线ME ,MD 的斜率k ME =y 1x 1-m,k MD =y 2x 2-m,则k ME ·k MD =y 1x 1-m ·y 2x 2-m =y 1y 2(x 1-m )(x 2-m )=y 1y 2x 1x 2-m (x 1+x 2)+m 2=-9k 24k 2+34k 2-124k 2+3-m (-8k 24k 2+3)+m 2=-9k24k 2+34k 2-12+8mk 2+4m 2k 2+3m24k 2+3 =-9k2(4m 2+8m +4)k 2+3m 2-12. 要使直线ME ,MD 的斜率之积为定值,需3m 2-12=0, 解得m =±2.当m =2时,k ME ·k MD =-9k 2(4m 2+8m +4)k 2=-9k 236k 2=-14;当m =-2时,k ME ·k MD =-9k 2(4m 2+8m +4)k 2=-9k 24k 2=-94.当直线l 的斜率不存在时, 不妨设E (-1,32),D (-1,-32),此时,当m =2时,M (2,0),k ME ·k MD =-14;当m =-2时,M (-2,0),k ME ·k MD =-94.综上,在x 轴上存在两个定点M ,使得直线ME ,MD 的斜率之积为定值. 当定点M 的坐标为(2,0)时,直线ME ,MD 的斜率之积为定值-14;当定点M 的坐标为(-2,0)时,直线ME ,MD 的斜率之积为定值-94.增分强化练一、选择题1.双曲线x 23-y 29=1的渐近线方程是( )A .y =±3xB .y =±13xC .y =±3xD .y =±33x 解析:因为x 23-y 29=1,所以a =3,b =3,渐近线方程为y =±b ax , 即为y =±3x ,故选C. 答案:C2.已知双曲线my 2-x 2=1(m ∈R)与抛物线x 2=8y 有相同的焦点,则该双曲线的渐近线方程为( ) A .y =±3x B .y =±3x C .y =±13xD .y =±33x 解析:∵抛物线x 2=8y 的焦点为(0,2),∴双曲线的一个焦点为(0,2),∴1m +1=4,∴m =13,∴双曲线的渐近线方程为y =±3x , 故选A. 答案:A3.已知双曲线C :x 2m 2-y 23=1的离心率为2,则C 的焦点坐标为( )A .(±2,0)B .(±2,0)C .(0,±2)D .(0,±2)解析:由双曲线C :x 2m 2-y 23=1,离心率为2,可得m 2+3m=2,∴m 2=1, 则c =m 2+3=2,故双曲线C 的焦点坐标是(±2,0).故选A. 答案:A4.(2019·呼和浩特模拟)已知双曲线C 1:x 24-y 2k =1与双曲线C 2:x 2k -y 29=1有相同的离心率,则双曲线C 1的渐近线方程为( ) A .y =±32x B .y =±62x C .y =±34x D .y =±64x 解析:由双曲线方程可知k >0,双曲线C 1:x 24-y 2k =1的离心率为4+k2,双曲线C 2:x 2k -y 29=1的离心率为k +9k,由题意得4+k 2=k +9k ,解得k =6, 双曲线C 1为x 24-y26=1,则渐近线方程为y =±62x , 故选B. 答案:B5.已知双曲线C 的一个焦点坐标为(3,0),渐近线方程为y =±22x ,则C 的方程是( ) A .x 2-y 22=1 B.x 22-y 2=1 C.y 22-x 2=1 D .y 2-x 22=1解析:因为双曲线C 的一个焦点坐标为(3,0),所以c =3,又因为双曲线C 的渐近线方程为y =±22x ,所以有b a =22⇒a =2b ,c =3,而c =a 2+b 2,所以解得a =2,b =1,因此双曲线方程为x 22-y 2=1,故选B.答案:B6.(2019·岳阳模拟)过抛物线x 2=4y 的焦点F 作直线,交抛物线于P 1(x 1,y 1),P 2(x 2,y 2)两点,若y 1+y 2=6,则|P 1P 2|=( ) A .5 B .6 C .8D .10解析:x 2=4y 的焦点为(0,1),准线为y =-1,因为P 1(x 1,y 1),P 2(x 2,y 2)两点是过抛物线焦点的直线与抛物线的交点,所以P 1(x 1,y 1),P 2(x 2,y 2)两点到准线的距离分别是y 1+1,y 2+1,所以由抛物线的定义知|P 1P 2|=|P 1F |+|P 2F |=y 1+1+y 2+1=y 1+y 2+2=6+2=8,故选C. 答案:C7.(2019·洛阳、许昌质检)若双曲线x 2-y 2b2=1 (b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个交点,则双曲线离心率的取值范围是( ) A .(1,2] B .[2,+∞) C .(1,3]D .[3,+∞)解析:双曲线x 2-y 2b2=1(b >0)的一条渐近线方程是bx -y =0,由题意圆x 2+(y -2)2=1的圆心(0,2)到bx -y =0的距离不小于1,即2b 2+1≥1,则b 2≤3,那么离心率e ∈(1,2],故选A. 答案:A8.(2019·咸阳模拟)已知椭圆、双曲线均是以直角三角形ABC 的斜边AC 的两端点为焦点的曲线,且都过B 点,它们的离心率分别为e 1,e 2,则1e 21+1e 22=( )A.32 B .2 C.52D .4解析:以AC 边所在的直线为x 轴,AC 中垂线所在的直线为y 轴建立直角坐标系(图略),设椭圆方程为x 2a 21+y 2b 21=1,设双曲线方程为x 2a 22-y 2b 22=1,焦距都为2c不妨设|AB |>|BC |,椭圆和双曲线都过点B , 则|AB |+|BC |=2a 1,|AB |-|BC |=2a 2, 所以|AB |=a 1+a 2,|BC |=a 1-a 2, 又因为△ABC 为直角三角形,|AC |=2c ,所以(a 1+a 2)2+(a 1-a 2)2=(2c )2,即a 21+a 22=2c 2,所以a 21c 2+a 22c 2=2,即1e 21+1e 22=2.故选B. 答案:B9.(2019·乌鲁木齐质检)已知抛物线C :y 2=8x 的焦点为F ,直线l 过焦点F 与抛物线C 分别交于A ,B 两点,且直线l 不与x 轴垂直,线段AB 的垂直平分线与x 轴交于点P (10,0),则△AOB 的面积为( ) A .4 3 B .4 6 C .8 2D .8 6解析:设直线l :x =ty +2,A (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧y 2=8x x =ty +2可以得到y 2-8ty -16=0,所以AB 的中点M (4t 2+2,4t ),线段AB 的垂直平分线与x 轴交于点P (10,0),故t ≠0. 所以AB 的中垂线的方程为y =-1t (x -4t 2-2)+4t =-1t ·x +8t +2t,令y =0可得x =8t 2+2,解方程10=8t 2+2得t =±1. 此时AB = 1+t 2|y 1-y 2|=81+t 2t 2+1=16,O 到AB 的距离为d =21+t2=2,所以S ΔOAB =12×16×2=8 2.故选C. 答案:C10.(2019·滨州模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为P ,直线l :4x -3y =0与椭圆C 相交于A ,B 两点.若|AF |+|BF |=6,点P 到直线l 的距离不小于65,则椭圆离心率的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,59 B.⎝ ⎛⎦⎥⎤0,32 C.⎝ ⎛⎦⎥⎤0,53 D.⎝ ⎛⎦⎥⎤13,32 解析:如图所示,设F ′为椭圆的左焦点, 连接AF ′,BF ′,则四边形AFBF ′是平行四边形,∴6=|AF |+|BF |=|AF ′|+|AF |=2a ,∴a =3.取P (0,b ),∵点P 到直线l ∶4x +3y =0的距离不小于65,∴|3b |16+9≥65,解得b ≥2. ∴c ≤9-4=5,∴0<c a ≤53. ∴椭圆E 的离心率范围是⎝⎛⎦⎥⎤0,53. 故选C. 答案:C11.(2019·济宁模拟)已知直线l 过抛物线C :y 2=3x 的焦点F ,交C 于A ,B 两点,交C 的准线于点P ,若AF →=FP →,则|AB |=( ) A .3 B .4 C .6D .8解析:如图所示:不妨设A 在第一象限,由抛物线C :y 2=3x 可得F ⎝ ⎛⎭⎪⎫34,0,准线DP :x =-34.因为AF →=FP →,所以F 是AP 的中点,则AD =2CF =3.所以可得A ⎝ ⎛⎭⎪⎫94,332,则k AF =3,所以直线AP 的方程为:y =3⎝ ⎛⎭⎪⎫x -34, 联立方程⎩⎪⎨⎪⎧y =3⎝ ⎛⎭⎪⎫x -34y 2=3x,整理得:x 2-52x +916=0所以x 1+x 2=52,则|AB |=x 1+x 2+p =52+32=4.故选B.答案:B12.(2019·晋城模拟)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若AF →=3FB →,则该双曲线的离心率为( ) A.52 B.62C.233D. 3解析:由题意得直线l 的方程为x =b ay +c ,不妨取a =1,则x =by +c ,且b 2=c 2-1.将x =by +c 代入x 2-y 2b2=1,(b >0),得(b 4-1)y 2+2b 3cy +b 4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-2b 3c b 4-1,y 1y 2=b4b 4-1.由AF →=3FB →,得y 1=-3y 2,所以⎩⎪⎨⎪⎧-2y 2=-2b 3cb 4-1-3y 22=b 4b 4-1,得3b 2c 2=1-b 4,解得b 2=14,所以c=b 2+1=54=52,故该双曲线的离心率为e =c a =52,故选A. 答案:A 二、填空题13.(2019·合肥质检)抛物线x 2=8y 的焦点坐标为________.解析:由抛物线方程x 2=8y 知,抛物线焦点在y 轴上,由2p =8,得p2=2,所以焦点坐标为(0,2). 答案:(0,2)14.已知过P (1,1)的直线l 与双曲线C :x 2-y 2=1只有一个公共点,则直线l 的条数为________. 解析:双曲线C :x 2-y 2=1的渐近线方程y =±x , 其中一条渐近线y =x 过点P (1,1),所以过点P (1,1)的直线x =1与双曲线右支相切,只有一个公共点,过P (1,1)与y =-x 平行的直线y =-x +2和双曲线右支相交,只有一个公共点, 综上共有2条直线符合要求. 答案:215.(2019·泰安模拟)抛物线C :y 2=4x 的焦点为F ,动点P 在抛物线C 上,点A (-1,0),当|PF ||PA |取得最小值时,直线AP 的方程为________. 解析:设P 点的坐标为(4t 2,4t ), ∵F (1,0),A (-1,0),∴|PF |2=(4t 2-1)2+16t 2=16t 4+8t 2+1, |PA |2=(4t 2+1)2+16t 2=16t 4+24t 2+1, ∴⎝ ⎛⎭⎪⎫|PF ||PA |2=16t 4+8t 2+116t 4+24t 2+1=1-16t 216t 4+24t 2+1=1-1616t 2+1t2+24≥1-16216t 2·1t2+24=1-1632=12,当且仅当16t 2=1t 2,即t =±12时取等号,此时点P 坐标为(1,2)或(1,-2),此时直线AP 的方程为y =±(x +1),即x +y +1=0或x -y +1=0. 答案:x +y +1=0或x -y +1=016.抛物线C :y 2=2px (p >0)的焦点为A ,其准线与x 轴的交点为B ,如果在直线3x +4y +25=0上存在点M ,使得∠AMB =90°,则实数p 的取值范围是________.解析:由题得A ⎝ ⎛⎭⎪⎫p 2,0,B ⎝ ⎛⎭⎪⎫-p2,0, ∵M 在直线3x +4y +25=0上,设点M ⎝ ⎛⎭⎪⎫x ,-3x -254,∴AM →=⎝ ⎛⎭⎪⎫x -p 2,-3x -254, BM →=⎝⎛⎭⎪⎫x +p 2,-3x -254, 又∠AMB =90°,∴AM →·BM →=⎝ ⎛⎭⎪⎫x -p 2⎝ ⎛⎭⎪⎫x +p 2+⎝ ⎛⎭⎪⎫-3x -2542=0,即25x 2+150x +625-4p 2=0, ∴Δ≥0,即1502-4×25×(625-4p 2)≥0, 解得p ≥10或p ≤-10,又p >0,∴p 的取值范围是[10,+∞). 答案:[10,+∞) 三、解答题17.已知椭圆的焦点F 1(-4,0),F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,并且|F 1B |+|F 2B |=10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:|F 2A |,|F 2B |,|F 2C |成等差数列. (1)求椭圆的方程; (2)求弦AC 中点的横坐标.解析:(1)由题意可知2a =|F 1B |+|F 2B |=10. 所以a =5,又c =4,所以b =a 2-c 2=3, 所以椭圆方程为:x 225+y 29=1.(2)由点B (4,y B )在椭圆上,得|F 2B |=|y B |=95.由|F 2A |,|F 2B |,|F 2C |成等差数列, 得 (x 1-4)2+y 21+ (x 2-4)2+y 22=2×95,①点A (x 1,y 1)在椭圆x 2125+y 219=1上,得y 21=925(25-x 21),所以 (x 1-4)2+y 21 =x 21-8x 1+16+925(25-x 21)= ⎝ ⎛⎭⎪⎫5-45x 12=15(25-4x 1),② 同理可得 (x 2-4)2+y 22=15(25-4x 2),③将②③代入①式,得15(25-4x 1)+15(25-4x 2)=185,所以x 1+x 2=8,设AC 中点坐标为(x 0,y 0),则横坐标x 0=x 1+x 22=4.18.(2019·合肥质检)已知F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,点P ⎝⎛⎭⎪⎫1,22在椭圆C 上,且△PF 1F 2的面积为22. (1)求椭圆C 的方程;(2)设过点F 1的直线l 交椭圆于A ,B 两点,求F 2A →·F 2B →的取值范围. 解析:(1)由椭圆C 经过点P ⎝ ⎛⎭⎪⎫1,22,且△PF 1F 2的面积为22, 得1a 2+12b 2=1,且12×2c ×22=22,即c =1. 又a 2-b 2=c 2=1,解得a 2=2,b 2=1. 所以椭圆C 的方程为x 22+y 2=1.(2)由(1)知F 1(-1,0),F 2(1,0).设A (x 1,y 1),B (x 2,y 2). 若直线l 的斜率不存在,可得点A ,B 的坐标为⎝ ⎛⎭⎪⎫-1,22,⎝ ⎛⎭⎪⎫-1,-22, 则F 2A →·F 2B →=72.当直线l 的斜率存在时,设l :y =k (x +1),代入椭圆方程得(1+2k 2)x 2+4k 2x +2(k 2-1)=0. 则Δ=16k 4-8(1+2k 2)(k 2-1)=8k 2+8>0恒成立. 所以x 1+x 2=-4k 21+2k 2,x 1x 2=2(k 2-1)1+2k 2.所以F 2A →·F 2B →=(x 1-1)(x 2-1)+y 1y 2 =(1+k 2)x 1x 2+(k 2-1)(x 1+x 2)+k 2+1=7k 2-11+2k 2=72-92(1+2k 2). 又k 2≥0,则F 2A →·F 2B →=72-92(2k 2+1)∈⎣⎢⎡⎭⎪⎫-1,72. 综上可知,F 2A →·F 2B →的取值范围为⎣⎢⎡⎦⎥⎤-1,72.增分强化练(三十一)考点一 范围、最值问题(2019·大连模拟)已知抛物线C :x 2=2py (p >0),其焦点到准线的距离为2,直线l 与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线C 的切线l 1,l 2,l 1与l 2交于点M . (1)求p 的值;(2)若l 1⊥l 2,求△MAB 面积的最小值.解析:(1)由题意知,抛物线焦点为:⎝ ⎛⎭⎪⎫0,p 2,准线方程为:y =-p2,焦点到准线的距离为2,即p =2. (2)抛物线的方程为x 2=4y ,即y =14x 2,所以y ′=12x ,设A (x 1,y 1),B (x 2,y 2),l 1:y -x 214=x 12(x -x 1),l 2:y -x 224=x 22(x -x 2),由于l 1⊥l 2,所以x 12·x 22=-1,即x 1x 2=-4.设直线l 方程为y =kx +m ,与抛物线方程联立,得⎩⎪⎨⎪⎧y =kx +m x 2=4y ,所以x 2-4kx -4m =0,Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m =-4,所以m =1.即l :y =kx +1,联立方程⎩⎪⎨⎪⎧y =x 12x -x 214y =x 22x -x224,得⎩⎪⎨⎪⎧x =2k y =-1,即M (2k ,-1),M 点到直线l 的距离d =|k ·2k +1+1|1+k 2=2|k 2+1|1+k 2, |AB |=(1+k 2)[](x 1+x 2)2-4x 1x 2=4(1+k 2),所以S =12×4(1+k 2)×2|k 2+1|1+k 2=4(1+k 2)32≥4, 当k =0时,△MAB 面积取得最小值4. 考点二 定点、定值问题(2019·南昌模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0),点M 在C 的长轴上运动,过点M 且斜率大于0的直线l 与C 交于P ,Q 两点,与y 轴交于N 点.当M 为C 的右焦点且l 的倾斜角为π6时,N ,P 重合,|PM |=2. (1)求椭圆C 的方程;(2)当N ,P ,Q ,M 均不重合时,记NP →=λNQ →,MP →=μMQ →,若λμ=1,求证:直线l 的斜率为定值.解析:(1)因为当M 为C 的右焦点且l 的倾斜角为π6时,N ,P 重合,|PM |=2,所以a =|PM |=2,故b c =tan π6=33, 因为a 2=b 2+c 2, 因此c =3,b =1,所以椭圆C 的方程为x 24+y 2=1.(2)证明:设l :x =ty +m (m ≠0),所以M (m,0),N ⎝ ⎛⎭⎪⎫0,-m t ,所以k l =1t .因为斜率大于0,所以t >0,设P (x 1,y 1),Q (x 2,y 2),则NP →=⎝ ⎛⎭⎪⎫x 1,y 1+m t ,NQ →=⎝ ⎛⎭⎪⎫x 2,y 2+m t ,由NP →=λNQ →得,x 1=λx 2,①同理可得y 1=μy 2,②①②两式相乘得,x 1y 1=λμx 2y 2,又λμ=1,所以x 1y 1=x 2y 2,所以(ty 1+m )y 1=(ty 2+m )y 2,即t (y 21-y 22)=m (y 2-y 1),即(y 2-y 1)[]m +t (y 1+y 2)=0,由题意k l >0,知y 1-y 2≠0,所以m +t (y 1+y 2)=0.联立方程组⎩⎪⎨⎪⎧ x =ty +m x 24+y 2=1,得(t 2+4)y 2+2tmy +m 2-4=0,依题意,y 1+y 2=-2tmt 2+4,所以m -2t 2mt 2+4=0,又m ≠0,所以t 2=4,因为t >0,故得t =2,所以k l =1t =12,即直线l 的斜率为12.考点三 存在性问题已知抛物线y 2=4x ,过点P (8,-4)的动直线l 交抛物线于A ,B 两点.(1)当P 恰为AB 的中点时,求直线l 的方程;(2)抛物线上是否存在一个定点Q ,使得以弦AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标;若不存在,请说明理由.解析:(1)设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2),当P 恰为AB 的中点时,显然x 1≠x 2,故k AB =y 1-y 2x 1-x 2=4y 1+y 2,又y 1+y 2=-8,故k AB =-12, 则直线l 的方程为y =-12x . (2)假设存在定点Q ,设Q ⎝ ⎛⎭⎪⎫y 204,y 0,当直线l 斜率存在时,设l :y =k (x -8)-4(k ≠0),A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧ y 2=4x y =k (x -8)-4,整理得ky 2-4y -32k -16=0,Δ>0,y 1+y 2=4k ,y 1y 2=-32-16k, 由以弦AB 为直径的圆恒过点Q 知QA →·QB →=0,即⎝ ⎛⎭⎪⎫x 1-y 204⎝ ⎛⎭⎪⎫x 2-y 204+(y 1-y 0)(y 2-y 0)=0, 即⎝ ⎛⎭⎪⎫y 214-y 204⎝ ⎛⎭⎪⎫y 224-y 204+(y 1-y 0)(y 2-y 0)=⎣⎢⎡⎦⎥⎤(y 1+y 0)(y 2+y 0)16+1(y 1-y 0)(y 2-y 0)=0, 故(y 1+y 0)(y 2+y 0)=-16,即y 1y 2+y 0(y 1+y 2)+y 20+16=0,整理得(y 20-16)k +4(y 0-4)=0,即当y 0=4时,恒有QA →·QB →=0,故存在定点Q (4,4)满足题意;当直线l 斜率不存在时,l :x =8,不妨令A (8,42),B (8,-42),Q (4,4),也满足QA →·QB→=0,综上所述,存在定点Q (4,4),使得以弦AB 为直径的圆恒过点Q .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题强化训练(十九) 解析几何1.[2019·长沙一模]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为13,左、右焦点分别为F 1,F 2,A 为椭圆C 上一点,AF 1与y 轴相交于B ,|AB |=|F 2B |,|OB |=43(O 为坐标原点).(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A 1,A 2,过A 1,A 2分别作x 轴的垂线l 1,l 2,椭圆C 的一条切线l :y =kx +m (k ≠0)分别与l 1,l 2交于点M ,N ,求证:∠MF 1N =∠MF 2N .解:(1)如图,连接AF 2,由题意得|AB |=|F 2B |=|F 1B |,所以BO 为△F 1AF 2的中位线,又BO ⊥F 1F 2,所以AF 2⊥F 1F 2,且|AF 2|=2|BO |=b 2a =83,又e =c a =13,a 2=b 2+c 2,所以a 2=9,b 2=8,故所求椭圆C 的方程为x 29+y 28=1.(2)由(1)可得,F 1(-1,0),F 2(1,0),l 1的方程为x =-3,l 2的方程为x =3.由⎩⎪⎨⎪⎧x =-3,y =kx +m 得⎩⎪⎨⎪⎧x =-3,y =-3k +m ,由⎩⎪⎨⎪⎧x =3,y =kx +m ,得⎩⎪⎨⎪⎧x =3,y =3k +m ,所以M (-3,-3k +m ),N (3,3k +m ),所以F 1M →=(-2,-3k +m ),F 1N →=(4,3k +m ), 所以F 1M →·F 1N →=-8+m 2-9k 2.联立⎩⎪⎨⎪⎧x 29+y 28=1,y =kx +m得(9k 2+8)x 2+18kmx +9m 2-72=0.因为直线l 与椭圆C 相切,所以Δ=(18km )2-4(9k 2+8)(9m 2-72)=0, 化简得m 2=9k 2+8.所以F 1M →·F 1N →=-8+m 2-9k 2=0, 所以F 1M →⊥F 1N →,故∠MF 1N =π2.同理可得F 2M →⊥F 2N →,∠MF 2N =π2.故∠MF 1N =∠MF 2N .2.[2019·合肥质检二]已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点,且l 1与C 2相切.动点M 在C 1的准线上,动点A 在C 1上,若C 1在A 点处的切线l 2交y 轴于点B ,设MN →=MA →+MB →,求证:点N 在定直线上,并求该定直线的方程.解:解法一:依题意设M (m ,-3),由(1)知抛物线C 1的方程为x 2=12y ,所以y =x 212,所以y ′=x6,设A (x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16,所以切线l 2的方程为y =16x 1(x -x 1)+y 1.令x =0,则y =-16x 21+y 1=-16×12y 1+y 1=-y 1,即B 点的坐标为(0,-y 1),所以MA →=(x 1-m ,y 1+3), MB →=(-m ,-y 1+3),所以MN →=MA →+MB →=(x 1-2m,6), 所以ON →=OM →+MN →=(x 1-m,3). 设N 点坐标为(x ,y ),则y =3, 所以点N 在定直线y =3上. 解法二:设M (m ,-3),由(1)知抛物线C 1的方程为x 2=12y ①,设l 2的斜率为k ,A ⎝⎛⎭⎪⎫x 1,112x 21,则以A 为切点的切线l 2的方程为y =k (x -x 1)+112x 21 ②,联立①②得,x 2=12⎝⎛⎭⎪⎫k (x -x 1)+112x 21,因为Δ=144k 2-48kx 1+4x 21=0,所以k =x 16,所以切线l 2的方程为y =16x 1(x -x 1)+112x 21.令x =0,得B 点坐标为⎝ ⎛⎭⎪⎫0,-112x 21,所以MA →=⎝ ⎛⎭⎪⎫x 1-m ,112x 21+3,MB →=⎝⎛⎭⎪⎫-m ,-112x 21+3,所以MN →=MA →+MB →=(x 1-2m,6), 所以ON →=OM →+MN →=(x 1-m,3), 所以点N 在定直线y =3上.3.[2019·武汉4月调研]已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)经过点M (-2,1),且右焦点F (3,0).(1)求椭圆Γ的标准方程;(2)过N (1,0)且斜率存在的直线AB 交椭圆Γ于A ,B 两点,记t =MA →·MB →,若t 的最大值和最小值分别为t 1,t 2,求t 1+t 2的值.解:(1)由椭圆x 2a 2+y 2b 2=1的右焦点为(3,0),知a 2-b 2=3,即b 2=a 2-3,则x 2a2+y 2a 2-3=1,a 2>3.又椭圆过点M (-2,1),∴4a 2+1a 2-3=1,又a 2>3,∴a 2=6.∴椭圆Γ的标准方程为x 26+y 23=1.(2)设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 26+y 23=1y =k (x -1)得x 2+2k 2(x -1)2=6,即(1+2k 2)x 2-4k 2x +2k 2-6=0, ∵点N (1,0)在椭圆内部,∴Δ>0,∴⎩⎪⎨⎪⎧x 1+x 2=4k 21+2k2 ①x 1x 2=2k 2-62k 2+1 ②,则t =MA →·MB →=(x 1+2)(x 2+2)+(y 1-1)(y 2-1) =x 1x 2+2(x 1+x 2)+4+(kx 1-k -1)(kx 2-k -1) =(1+k 2)x 1x 2+(2-k 2-k )(x 1+x 2)+k 2+2k +5 ③, 将①②代入③得,t =(1+k 2)·2k 2-62k 2+1+(2-k 2-k )·4k22k 2+1+k 2+2k +5,∴t =15k 2+2k -12k 2+1, ∴(15-2t )k 2+2k -1-t =0,k ∈R , 则Δ1=22+4(15-2t )(1+t )≥0,∴(2t -15)(t +1)-1≤0,即2t 2-13t -16≤0, 由题意知t 1,t 2是2t 2-13t -16=0的两根, ∴t 1+t 2=132.4.[2019·石家庄一模]已知抛物线C :y 2=2px (p >0)上一点P (x 0,2)到焦点F 的距离|PF |=2x 0.(1)求抛物线C 的方程;(2)过点P 引圆M :(x -3)2+y 2=r 2(0<r ≤2)的两条切线PA 、PB ,切线PA 、PB 与抛物线C 的另一交点分别为A 、B ,线段AB 中点的横坐标记为t ,求t 的取值范围.解:(1)由抛物线定义,得|PF |=x 0+p2,由题意得:⎩⎪⎨⎪⎧2x 0=x 0+p2,2px 0=4,p >0,解得⎩⎪⎨⎪⎧p =2,x 0=1,所以抛物线的方程为y 2=4x .(2)由题意知,过P 引圆(x -3)2+y 2=r 2(0<r ≤2)的切线斜率存在, 设切线PA 的方程为y =k 1(x -1)+2, 则圆心M 到切线PA 的距离d =|2k 1+2|k 21+1=r , 整理得,(r 2-4)k 21-8k 1+r 2-4=0.设切线PB 的方程为y =k 2(x -1)+2, 同理可得(r 2-4)k 22-8k 2+r 2-4=0,所以k 1,k 2是方程(r 2-4)k 2-8k +r 2-4=0的两根,k 1+k 2=8r 2-4,k 1k 2=1.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k 1(x -1)+2,y 2=4x 得k 1y 2-4y -4k 1+8=0,由韦达定理知y 1+y 2=4k 1,y 1y 2=8-4k 1k 1,所以y 1=4-2k 1k 1=4k 1-2=4k 2-2,同理可得y 2=4k 1-2.设点D 的横坐标为x 0,则x 0=x 1+x 22=y 21+y 228=(4k 2-2)2+(4k 1-2)28=2(k 21+k 22)-2(k 1+k 2)+1=2(k 1+k 2)2-2(k 1+k 2)-3. 设m =k 1+k 2,则m =8r 2-4∈[-4,-2), 所以x 0=2m 2-2m -3,对称轴m =12>-2,所以9<x 0≤37,即t ∈(9,37].5.[2019·太原模拟]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1,F 2,A ,B 分别是其左右顶点,点P 是椭圆C 上任一点,且△PF 1F 2的周长为6,若△PF 1F 2面积的最大值为 3.(1)求椭圆C 的方程;(2)若过点F 2且斜率不为0的直线交椭圆C 于M ,N 两个不同点,证明:直线AM 与BN 的交点在一条定直线上.解:(1)由题意,得⎩⎪⎨⎪⎧2a +2c =6,12×2bc =3,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =3,c =1,所以椭圆C 的方程为x 24+y 23=1.(2)由(1)得A (-2,0),B (2,0),F 2(1,0).设直线MN 的方程为x =my +1,M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧x =my +1,x 24+y23=1,得(4+3m 2)y 2+6my -9=0∴y 1+y 2=-6m 4+3m 2,y 1y 2=-94+3m 2,∴my 1y 2=32(y 1+y 2).∵直线AM 的方程为y =y 1x 1+2(x +2),直线BN 的方程为y =y 2x 2-2(x -2),∴y 1x 1+2(x +2)=y 2x 2-2(x -2), ∴x +2x -2=y 2(x 1+2)y 1(x 2-2)=my 1y 2+3y 2my 1y 2-y 1=3, ∴x =4,∴直线AM 与BN 的交点在直线x =4上.6.[2019·北京卷]已知抛物线C :x 2=-2py 经过点(2,-1). (1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B ,求证:以AB 为直径的圆经过y 轴上的两个定点.解:(1)由抛物线C :x 2=-2py 经过点(2,-1),得p =2. 所以抛物线C 的方程为x 2=-4y ,其准线方程为y =1. (2)抛物线C 的焦点为F (0,-1). 设直线l 的方程为y =kx -1(k ≠0). 由⎩⎪⎨⎪⎧y =kx -1,x 2=-4y得x 2+4kx -4=0.设M (x 1,y 1),N (x 2,y 2),则x 1x 2=-4. 直线OM 的方程为y =y 1x 1x .令y =-1,得点A 的横坐标x A =-x 1y 1. 同理得点B 的横坐标x B =-x 2y 2.设点D (0,n ),则DA →=⎝ ⎛⎭⎪⎫-x 1y 1,-1-n ,DB →=⎝ ⎛⎭⎪⎫-x 2y 2,-1-n , DA →·DB →=x 1x 2y 1y 2+(n +1)2=x 1x 2⎝ ⎛⎭⎪⎫-x 214⎝ ⎛⎭⎪⎫-x 224+(n +1)2=16x 1x 2+(n +1)2=-4+(n +1)2.令DA →·DB →=0,即-4+(n +1)2=0,得n =1或n =-3. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).7.[2019·洛阳统考]已知抛物线C :y 2=2px (p >0),其焦点为F ,O 为坐标原点,直线l 与抛物线C 相交于不同的两点A ,B ,M 为AB 的中点.(1)若p =2,M 的坐标为(1,1),求直线l 的方程.(2)若直线l 过焦点F ,AB 的垂直平分线交x 轴于点N ,试问:2|MN |2|FN |是否为定值?若为定值,试求出此定值;否则,说明理由.解:(1)由题意知直线l 的斜率存在且不为0,故设直线l 的方程为x -1=t (y -1),即x =ty +1-t ,设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +1-t y 2=4x,得y 2-4ty -4+4t =0,∴Δ=16t 2+16-16t =16(t 2-t +1)>0,y 1+y 2=4t , ∴4t =2,即t =12.∴直线l 的方程为2x -y -1=0. (2)2|MN |2|FN |为定值2p ,证明如下.∵抛物线C :y 2=2px (p >0),∴焦点F 的坐标为⎝ ⎛⎭⎪⎫p2,0.由题意知直线l 的斜率存在且不为0,∵直线l 过焦点F ,故设直线l 的方程为x =ty +p2(t ≠0), 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +p 2y 2=2px,得y 2-2pty -p 2=0,∴y 1+y 2=2pt ,Δ=4p 2t 2+4p 2>0.∴x 1+x 2=t (y 1+y 2)+p =2pt 2+p , ∴M ⎝ ⎛⎭⎪⎫pt 2+p2,pt .∴MN 的方程为y -pt =-t ⎝ ⎛⎭⎪⎫x -pt 2-p 2.令y =0,解得x =pt 2+3p 2,N ⎝ ⎛⎭⎪⎫pt 2+3p 2,0,∴|MN |2=p 2+p 2t 2,|FN |=pt 2+3p 2-p 2=pt 2+p ,∴2|MN |2|FN |=2(p 2+p 2t 2)pt 2+p=2p . 8.[2019·浙江卷]如图,已知点F (1,0)为抛物线y 2=2px (p >0)的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记△AFG ,△CQG 的面积分别为S 1,S 2.(1)求p 的值及抛物线的准线方程; (2)求S 1S 2的最小值及此时点G 的坐标. 解:(1)由题意得p2=1,即p =2.所以,抛物线的准线方程为x =-1.(2)设A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),重心G (x G ,y G ).令y A =2t ,t ≠0,则x A =t 2.由于直线AB 过点F ,故直线AB 的方程为x =t 2-12t y +1,代入y 2=4x ,得y 2-2(t 2-1)ty -4=0,故2ty B =-4,即y B =-2t,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t .又由于x G =13(x A +x B +x C ),y G =13(y A +y B +y C )及重心G 在x 轴上,故2t -2t +y C =0,得C ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1t -t 2,2⎝ ⎛⎭⎪⎫1t -t ,G ⎝ ⎛⎭⎪⎫2t 4-2t 2+23t 2,0.所以,直线AC 的方程为y -2t =2t (x -t 2),得Q (t 2-1,0). 由于Q 在焦点F 的右侧,故t 2>2.从而 S 1S 2=12|FG |·|y A |12|QG |·|y C |=2t 4-t 2t 4-1=2-t 2-2t 4-1. 令m =t 2-2,则m >0,S 1S 2=2-m m 2+4m +3=2-1m +3m+4≥2-12m ·3m+4=1+32.当m =3即t 2=3+2时,S 1S 2取得最小值1+32,此时G (2,0).。

相关文档
最新文档