小学数学六年级比的意义和性质单元练习题A

合集下载

小学六年级数学上册比练习题

小学六年级数学上册比练习题

4.比练习一【知识要点】比的意义,比的各部分名称。

【课内检测】1、两个数( )又叫做两个数的( )。

2、 如果A ∶B=C ,那么A 是比的( ),B 是比的( ),C 是比的( )。

3、4÷5=( )∶( )=()()4、从A 地到B 地共180千米,客车要行2小时,货车要行3小时。

客车所行的路程与所用时间的比是( ),比值是( );客车所用的时间与货车所用的时间比是( ),比值是( );货车与客车的速度比是( ),比值是( );客车与货车所行的路程比是( ),比值是( )。

5、判断。

①53可以读作五分之三,也可以读作三比五。

( ) ②配制一种盐水,在200克水中放了20克盐,盐和盐水的比是1∶10。

( )③比值是0.8的比只有一个。

( )④甲数与乙数的比是3∶4,则乙数是甲数的34倍。

( )【课外训练】1、甲数除以乙数的商是1 .4,乙数与甲数的比是( )。

2、正方形的周长与边长的比是( ),比值是( )。

3、长方形的长比宽多51,长方形的长与宽的比是( )。

4、一杯糖水,糖占糖水的101,糖与水的比是( )。

5、女生人数与全班人数的比是4∶9,男生人数与女生人数的比是( )。

练习二【知识要点】比的基本性质,化简比。

【课内检测】1、判断:比的前项和后项同时乘一个相同的数,比值不变。

( )2、8∶5=24∶( ) 42∶18=( )∶33、化简下面各比。

21∶35 65∶ 94 0.8∶0.324、一辆汽车3小时行驶135千米,汽车所行的路程和时间的比是( ),化成最简整数比是( )。

5、一根绳子全长2.4米,用去0.6米。

用去的绳子和全长的比是( ),化简比是( )。

【课外训练】1、化简下面各比。

35140 0.4∶32 0.3吨∶150千克 0.6∶322、判断:最简单的整数比,就是比的前项和后项都是质数的比。

( )3、5∶12的前项增加15,要使比值不变,后项应增加( )。

【新】西师大版小学数学六年级上册第四单元第一课 《比的意义和性质》说课稿附板书含反思及课堂练习和答案

【新】西师大版小学数学六年级上册第四单元第一课 《比的意义和性质》说课稿附板书含反思及课堂练习和答案
整节课无处不体现了学生是学习的主人,无时不渗透着学生主动探索的过程, 不论是学生对比的基本性质的语言描述,还是对化简比的方法的总结,都留下了学 生成功的脚印。同时采用讲练结合、说议感悟、对比总结、质疑探索、概括归纳的 方法,掌握知识、应用知识、深化知识,形成清晰的知识体系,培养学生的创新能 力和探索精神。学生学的轻松愉快!
我的说课完毕,谢谢各位老师!
九、教学反思
本节课,我把教学内容在知识点不变的基础上,以发挥学生主动性,学生通 过比与除法、分数的联系,通过类比,很快地类推出比的基本性质。这样一来节省 了很多的时间,二来也让学生初步感知了新知识。 总之,在以后的教学中,我 们要不断地去探索、去实践,争取逐步提高自己的教学水平。引导学生用一系列的 猜想来提高兴趣,增强数学的趣味性,从而引发学生探求新知的欲望。有了兴趣做 支撑,后面的新课学习就积极主动。
今天,我们再来学习一种新的表示两个量间数量关系的方 法。
教师揭示课题——比的意义。
(二)、探究新知
1.初步认识比及比的读、写方法。
教师:请同学们看例1中的表格,根据表格中信息写出用分数或除法表示
两个量之间的倍数关系。
学生用分数或除法表示表中两个量之间倍数关系。
预设:240÷5;200÷4;240÷200;5÷4……。
四、说教学重难点
【教学重点】
理解比的意义,让学生对比分数的基本性质,找到两者之 间的区别与联系,有助于学生加深记忆,在学习上降低难
度对比的意义有一个进一步 的理解,并且能够熟练准确地的求出一个比的比值。
五、说教法学法
以教师的引导为主导,体现先导后教"、进而无为而教"的教学思想。 以学生的学习为主体,体现先做后学"、进而自主学习"的学习思想;主 要采用了探究发现法、讨论归纳法,反思自己的学习过程,领会学习方 法,获得数学学习的经验,教师的鼓励,使学生体验到成功的喜悦,极 大地调动了学生学习的积极性。

小学六年级数学上册练习题第四单元-比

小学六年级数学上册练习题第四单元-比

小学六年级数学上册练习题第四单元-比第一课时 比的意义班级: 姓名:巩固达标 一、填空。

(1)在4:7=中,( )是比的前项,( )是比的后项,比值是( )。

(2)43=( )÷( ) =( ):( )(3)人体血液中,红细胞的平均寿命是120天,血小板的平均寿命是10天。

红细胞与血小板的寿命的比是( )。

(4)--辆“复兴号”高铁3小时行驶了1050km,这列高铁行驶的路程和时间的比是( ) :( ),比值是( ),比值表示( )。

(5)一条公路已修了全长的125,已修的和未修的比是( ),未修的和全长的比是( )。

(6)比与分数、除法的联系。

( )(7) 甲数是乙数的4倍,甲、乙两数的比是( ),乙数与两数和的比是( )。

(8)在100克水中加入10克盐,盐和盐水的比是( )。

二、判断。

(对的画“√”,错的画“X”)(1)在今年一场足球比赛中,法国1:0战胜比利时,所以比的后项为0。

( )(2) 小明的身高125cm,弟弟的身高是1m,小明和弟弟身高的比是125:1。

( )三、求下面各比的比值。

0.36 : 0.45 1.5t:400kg 32:9420分: 0.25时能力拓展应用题。

1、小明体重40千克,相当于小军的910,小华的体重是小军的65。

小华体重多少千克?2、修一条工路,第一天修了全长的,第二天修的比第一天的少50米,两周共修了160米,这条路一共有多长?3、学校有彩色粉笔48盒,比白粉笔的少3盒,学校有白粉笔多少盒?4、一满杯糖水正好是200 g,其中含糖20g 。

从杯中倒出20g 糖水后,再往杯里加满水,这时杯子里的糖与水的质量比是多少?第二课时 比的基本性质班级: 姓名:巩固达标 1、填空(1).填表后再说一说比与分数、除法有怎样的关系。

(2)如果把3: 7的前项加上12,要使比值不变,后项应加上( )。

(3)12:16=( ):4=18÷( )=( ):0.8=32(4)甲数的43等于乙数的32,那么甲、乙两数的最简整数比是( ):( )。

六年级数学下册《比例的意义和性质》练习题(附答案解析)

六年级数学下册《比例的意义和性质》练习题(附答案解析)

六年级数学下册《比例的意义和性质》练习题(附答案解析)学校:___________姓名:___________班级:____________一、选择题1.能与11:34组成比例的是()。

A.4∶3B.3∶4C.1:43D.1:342.下面每组中的四个数,不能组成比例的是()。

A.2,0.25,3,0.375B.18,8,5.4,24C.5452,,,3767D.30,25,6,1253.下面能与3∶8组成比例的是()。

A.8∶3B.15∶40C.0.2∶0.6 4.下列哪个选项中的四个数不能组成比例。

()A.3,5,9,15B.1,2,3,4C.12,13,16,19D.2,4,7,145.如果a、b都是不为0的数,且56a=78b,则a和b的大小关系是()。

A.a<b B.a=b C.a>b6.能与13∶14组成比例的是()。

A.4∶13B.13∶4C.4∶3D.3∶47.下面各比中,能与0.14∶0.1组成比例的是()。

A.0.8∶0.25B.28∶20C.13∶35D.14∶18.在比例里,两个外项的积等于两个内项的积。

这叫做()。

A.比例的基本性质B.比例C.比例的外项9.根据下图中的信息判断,下列等式不成立的是()。

A.a∶c=d∶b B.a b=c dC.b d=c a10.如果a×3=b×4,那么a∶b=()。

A.4∶3B.3∶4C.1∶12二、填空题11.12的因数共有______个,选择其中的4个因数,把它们组成一个比例是______。

12.在30的因数中选择4个奇数组成一个比例:( )。

根据比例的基本性质把它改写成乘法等式:( )。

13.比值是2的一个比例是( )。

14.如果2a=3b(a、b≠0),那么a∶b=( )∶( );如果a∶b=5∶2 ,那么a∶5=( )∶( )。

15.比值是35的两个比可以为( ),( ),这两个比组成比例是( ).16.一个比例,等号左边的比和等号右边的比一定是( )的。

专题05《比的意义、性质和应用题》六年级数学上册

专题05《比的意义、性质和应用题》六年级数学上册

(2023年秋季班苏教版六上)知识拓展考点培优讲练知识点一:比的意义、各个部分的名称1.两个数量之间的关系可以用两个数的比来表示。

2.在两个数的比中,“∶”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项,比的前项除以后项所得的商叫做比值。

3.比的前项,后项和比值分别相当于除法算式中的:被除数,除数和商;分别相当于分数中的:分子、分母和分数值。

比的后项不能是0。

知识点二:比的基本性质和化简比1.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

2.化简比的方法:(1)化简整数比时,前、后项同时除以最大公因数。

(2)化简分数比时,前、后项同时乘它们分母的最小公倍数,转化成整数比,再化简。

(3)化简小数比:先把前、后项的小数点同时向右移动相同的位数,转化成整数比,再化简。

知识点三:按比分配按比分配的解题方法:方法一:把比看作份数之比。

先求每份是多少,再求几份是多少。

解题步骤:①求出总份数;②求出一份是多少;③求出各部分的数量。

方法二:把比转化成分率。

利用分数乘法解答。

解题步骤:①求出总份数;②求出各部分占总量的几分之几;③求出各部分的数量。

A.4∶3B.3∶4【变式1-4】(2017•东台市模拟)桃树的棵数比李树多,桃树棵数和李树棵数的比是(A.黄花、蓝花的总数比红花多20%B.三种花的总数是蓝花的6倍C.红花比黄花多买了10盆D.黄花和蓝花的数量比为3∶5【变式6-1】(2023•石河子)29.保洁阿姨用84消毒液与水按1∶80的比配制成消毒水对地面进行消毒,配制40毫升的消毒水需要()毫升84消毒液,()毫升水。

【变式6-2】(2023•洛阳)30.一个长方体的棱长总和是240厘米,它的长、宽、高的比是3∶2∶1,这个长方体的表面积是()平方分米,体积是()立方分米。

【变式6-3】(2023•淅川县)31.用同样长的铁丝围成两个长方形,甲长方形的长与宽之比为6∶1,乙长方形的长与宽之比为2∶1,那么,甲长方形的面积大于乙长方形的面积。

第6讲 比的意义和性质-六年级上册数学知识点汇总与错题专练(人教版)

第6讲 比的意义和性质-六年级上册数学知识点汇总与错题专练(人教版)

第6讲比的意义和性质六年级上册数学知识点汇总与错题专练(易错梳理+易错举例+易错题演练)【易错梳理】1、比的意义和各个部分的名称。

(1)比:两个数相除也叫两个数的比;(2)比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

(3)比的读法、写法:a比b记作a:b,读作a比b。

注意:比值是没有单位名称的。

2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

例:12∶20= =12÷20= =0.6 12∶20读作:12比20区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式,但是不能用整数和小数来表示。

3、比和除法、分数的区别。

4、比的基本性质。

比的前项和后项同时乘或者除以相同的数(0 除外),比值不变。

5、化简比的意义。

把两个数的比化成最简单的整数比(比的前项和后项是互质数的比),叫作化简比,也叫作比的化简。

6、化简比的方法。

(1)整数比的化简方法。

比的前项和后项同时除以它们的最大公因数。

(2)分数比的化简方法。

比的前项和后项同时乘它们分母的最小公倍数,先转化成整数比,再进行化简。

(3)小数比的化简方法。

通常把比的前、后项的小数点同时向右移动相同的位数,先转化成整数比,再进行化简。

注意点:1、一个比的前、后两个数位置不能颠倒。

2、比值和比是有区别的,比值是一个具体的数,可以是分数、小数、整数,而比表示两个数的关系。

3、比、分数、除法三者是有区别的,它们之间不是“等于”的关系,而只能是“相当于”的关系。

4、比的基本性质不是指同时加或者减相同的数,也不是指同时乘或者除以不同的数(0除外)。

5、一般情况下,小数比的化简要先把前、后项扩大相同的倍数化成整数比,再化成最简单的整数比。

【易错举例】易错点1:比的后项有的时候可以是0。

判断:六(①)班和六(2)班足球比赛的比分是3:0),所以比的后项可以是0。

六年级比的意义和基本性质练习题

六年级比的意义和基本性质练习题

比的意义和基本性质练习题一、基本知识储备1、比的意义:两个数()又叫做两个数的比。

2、比与除法、分数之间的区别与联系。

3、比的基本性质:比的前项和( )同时乘上或( )相同的数(0除外),比值不变。

4、“化简比”与“求比值”的区别。

二、经典例题 例1:用字母表示三者之间的内在联系。

a ︰b =( )÷( )=()()()0b ≠,比的后项()为0。

(填“能”或“不能”)举一反三1:一袋洗衣粉重320克,一块香皂重80克。

洗衣粉与香皂的重量比是(),比值是();香皂与洗衣粉的重量比是(),比值是()。

例2:盐与水的比是1︰10,则盐︰盐水=(︰),水︰盐=(︰),盐水︰水=(︰)。

举一反三2:两个正方形边长比是1︰3,这两个正方形的周长比是(︰)面积比是(︰)。

例3:男生与女生的人数比是3︰4,男生比女生少() ()。

举一反三3:1、某班有男生20人,女生30人,男生与全班人数的比是(),女生比男生多() ()。

2、甲数除以乙数的商是43,甲数与乙数的比是()。

例4:易错题分析1、在4︰9中,如果比的前项加上8,要使比值不变,后项应加上()。

易错题分析2、A ︰B=2︰3,B ︰C=4︰5,那么A ︰B ︰C=(︰︰)。

易错题分析3、一项工程,甲单独完成需要6小时完成,乙单独完成需要5小时完成,甲、乙工作效率之比是(︰)。

举一反三4:1、在3︰8中,如果比的前项加上15,要使比值不变,后项应加上()。

2、A ︰B=3︰4,B ︰C=5︰6,那么A ︰B ︰C =(︰︰)。

3、一辆汽车从甲地开往乙地,3小时到达,返回时4小时到达,前往速度与返回速度的比是(︰)。

三、迁移拓展 例1、如果532CB A ==(其中A 、B 、C 都不等于0),那么A ︰B ︰C=(︰︰)。

举一反三7:如果2A=3B=4C (其中A 、B 、C 都不等于0),那么A ︰B ︰C=(︰︰)。

例2、有两个重叠的正方形,大正方形的边长是5厘米,小正方形的边长是4厘米,重叠部分的面积是9平方厘米,求阴影部分面积。

六年级上册数学第四单元比的意义练习题

六年级上册数学第四单元比的意义练习题

比的意义练习题
一.填空。

1.两个数的比表示()。

2.在两个数的比中,比号前面的数叫比的(),比号后面的数叫(),
()叫比值。

3.比的前项相当于除法算式中的(),分数中的();比的后项相
当于除法算式中的(),分数中的(),比的后项不能()。

4.甲是乙的5倍,甲和乙的比是( ),乙和甲的比是()。

5. 3 :()= 0.6
():4 = 0.3
6.等腰直角三角形两个锐角的比是():()
7.等边三角形三个角的比是():():()
二.求比值。

1.0.9 : 1.8 =
=
2. 6 :1
7
3. 2.5km :50m =
4. 1.8t : 200kg =
5.2小时:45分钟=
6.6cm : 3m =
三.判断题。

1.比的前项不能为0.()。

2. 小红和妈妈去年的年龄比是5 :1,今年的年龄比与去年相同。

()。

3. 6cm : 2cm = 3cm : 1cm
4. 5km : 7km = 7
5
5. 比和比值的意义相同。

四.解决问题。

1. 五一班男生和女生的比是3:4,已知男生比女生少7人,男生和女生一
共有多少人?
2. 小明和小花年龄的比是3:5,已知他们的年龄的和是16岁,他们的年
龄分别是多少岁?
3. 妈妈和小玲今年的年龄分别是32和7岁,明年她们的年龄比是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学测练题(比的意义和性质A )
班级 姓名 评分
一.填空题。

30分
1、鸡有80只,鸭有100只,鸡和鸭只数的比是( ),比值是( )。

2、长方形长3分米,宽12厘米,长与宽的比是( ),比值是( )。

3、小李5小时加工60个零件,加工个数与时间的比是( ),比值是( )。

4、一本书读了55页,45页没有读,已读与总数的比是( ),比值是( )。

5、甲数相当于乙数的
9
2,甲数与乙数的比是( ),乙数与甲数的比是( )。

6、三好学生占全班人数的81,三好学生与全班人数的比是( )。

7、白兔24只,黑兔18只。

白兔与黑兔的比是( ),黑兔与白兔的比是( )
8、若A ÷B =5(A 、B 都不等于0)则A :B =( ):( ) 若A =B (A 、B 都不等于0) 则A :B =( ):( )
9、汽车商店销售小轿车140辆,面包车40辆。

面包车辆数是小轿车的( );小轿车和面包车辆数的比是( ),比值是( )。

10、药和水的比是1:100,药占药水的( ),水占药水的( )。

11、直角三角形,两个锐角度数比是1:2,这两个锐角的度数分别是( )和( )。

12、一本书已看10
3,已看页数和总页数的比是( ),已看页数和剩下页数的比是( ),剩下页数和总页数的比( )。

13、加工一批零件,按2:3:5分配个甲、乙、丙三人加工。

甲完成这批零件的( ),乙完成这批零件的( ),丙完成这批零件的( )。

14、两个正方形边长的比是5:3,周长的比是( ),面积的比是( )。

二.计算题: 1、求比值:8分
32:9
4 0.3:0.02 0.21:6.3 48:36 0.5: 52 7:3.
5 3: 11
6 1:0.125 2、化简比: 8分 35:45 360:450 0.3:0.15
18: 32 6:0.36 203:54 0.6:52 3
2:6
三.判断: 8分
1、5
4可以读作“4比5”。

( ) 2、比的前项和后项同时乘一个相同的数,比值不变。

( ) 3、20厘米:1米的比值是20。

( ) 4、比的前项乘5,后项除以5
1。

比值不变。

( ) 5、男生比女生多52,男生与女生人数的比是7:5。

( )6、5
9既可以看作分数,也可以看成一个比。

( ) 7、10克盐溶解在100克水中,这时盐和盐水的比是1:10。

( )8、3个43和3的4
3计算结果相同。

( ) 四、选择:6分
1、比的( )不能为零。

A 前项 B 后项 C 比值 D 无法确定
2、比的前项和后项都乘3
2,比值( )。

A 变大 B 变小 C 不变 D 无法确定
3、32:910的比值是( ),最简整数比是( )。

A 2720 B 35 C 5
3 D 3:5 4、在8:9中,如果前项增加16,要使比值不变,后项应( )。

A 增加16 B 乘2 C 不变 D 无法确定 5、糖占糖水的
51,糖与水的比是( ) A 1:5 B 1:4 C 1:6 D 无法确定 五、应用题: 40分
1、商店六月份与七月份销售额的比是5:6,七月份销售3000万元。

六月份销售多少万元?
2、甲工程队有150名工人,甲乙两个工程队人数比是3:2。

乙工程队有多少工人?
3、学校航模队有男生20人,女生15人。

男生是女生的几倍?女生人数是男生的几分之几?写出男生与女生人数的最简单的整数比,再求比值。

4、图书角中文艺书与故事书本数比是3:5,文艺书本数是故事书的几分之几?如果故事书有60本,文艺书有多少本?
5、六年级有250人,男生人数与女生人数的比是3:2,六年级有男生、女生各多少人?
6、小明身高1.5米,小红身高1米25厘米。

写出小红与小明身高的比,并化简。

7、小明体重40千克,相当于小军的
910,小华的体重是小军的65。

小华体重多少千克?
8、计划生产1800个零件,第一天生产了计划的
41,第二天生产了计划的61。

还剩下计划的几分之几没生产?还剩下多少个没生产?
9、一辆汽车从甲地到乙地,每小时行80千米,用了
43小时,返回时只用了85小时。

返回时每小时行多少千米?
10、商店售出2筐橙子,每筐24千克。

售出的橙子占水果总数的
116,售出的香蕉占水果总数的41。

售出香蕉多少千克?。

相关文档
最新文档