六年级数学上比的意义

合集下载

六年级上册数学教案-比的意义-人教新课标

六年级上册数学教案-比的意义-人教新课标

六年级上册数学教案比的意义人教新课标教案:比的意义教学内容:本节课的教学内容选自人教新课标六年级上册数学教材,主要涉及第101页至第103页的“比的意义”部分。

具体内容包括:1. 比的概念:比较两个数的大小,可以用一个数除以另一个数得到一个比值,称为比。

比的格式通常为a:b或a/b,其中a称为比的前项,b称为比的后项。

2. 比的读写:比的读法有“a比b”和“a与b的比”,比的写法有a:b和a/b两种形式。

3. 比的大小:比值越大,表示前项相对于后项越大;比值越小,表示前项相对于后项越小。

4. 比的化简:比可以进行化简,化简后的比与原比相等。

化简比的方法是找到前项和后项的最大公因数,然后同时除以最大公因数。

5. 比的应用:比在生活中的应用,如长度、面积、体积的比较等。

教学目标:1. 理解比的概念,掌握比的读写方法。

2. 能够进行简单的比的大小比较。

3. 学会比的基本化简方法。

4. 能够运用比解决实际生活中的问题。

教学难点与重点:1. 比的概念及其读写方法。

2. 比的大小比较。

3. 比的基本化简方法。

教具与学具准备:1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:练习本、笔、尺子。

教学过程:一、情景引入(5分钟)1. 引导学生观察教室的长和宽,提问:如何比较长和宽的大小?二、比的概念(10分钟)1. 讲解比的概念,给出比的格式a:b或a/b,解释前项和后项的含义。

2. 演示比的读写方法,举例说明。

三、比的大小比较(10分钟)1. 讲解比的大小比较方法,引导学生理解比值越大,前项相对于后项越大。

2. 举例演示,让学生参与比较,巩固理解。

四、比的基本化简(10分钟)1. 讲解比的基本化简方法,引导学生找到前项和后项的最大公因数,然后同时除以最大公因数。

2. 举例演示,让学生参与化简,巩固理解。

五、比的应用(10分钟)1. 讲解比在生活中的应用,如长度、面积、体积的比较等。

2. 举例演示,让学生参与实际应用,巩固理解。

小学六年级上册数学《比的意义》教案三篇

小学六年级上册数学《比的意义》教案三篇

【导语】《⽐的意义》是在学⽣学过分数与除法的关系,分数乘除法的意义和计算⽅法,以及分数乘除法应⽤题的基础上进⾏教学的。

⽆忧考准备了以下教案,希望对你有帮助!篇⼀ 教学⽬标: 1、理解⽐的意义,学会⽐的读写法,掌握⽐的各部分名称及求⽐值的⽅法。

2、弄清⽐与除法、分数的联系,明确⽐的后项不能为0的道理,同时懂得事物之间是相互联系的。

3、通过主动发现的讨论式学习,激发合作意识,培养⽐较、分析、抽象、概括和⾃主学习的能⼒,培养爱国主义情感。

教学重点: ⽐的意义 教学准备: 多媒体课件、三⽀红粉笔、五⽀⽩粉笔 教学流程: ⼀、创设情境,理解意义 1、师:同学们,我们刚刚过完国庆节,你知道今年10⽉1⽇是祖国⼏周岁的⽣⽇吗?56年前的10⽉1⽇,五星红旗第⼀次在天安门⼴场上冉冉升起,让每⼀位中国⼈为之⾃豪。

但你们知道吗,我们的国旗中还隐藏着很多有趣的数学问题呢! 出⽰出⼀⾯国旗: 3、判断:⼩强⾝⾼1⽶,他的爸爸⾝⾼173厘⽶,⼩强和爸爸⾝⾼⽐是1∶173。

明确:同类量相⽐单位名称要相同。

四、总结全课,拓展延伸 1、去年奥运会中国⼥排在⾸场⽐赛中以3∶0击败了美国队,打出了我国的⼥排风采。

这⾥的3∶0表⽰什么意思?它和我们今天学习的⽐相同吗?为什么? 强调:这⾥的3∶0是表⽰两个队各赢了⼏局,不是相除关系,⽽今天学的⽐是指两个数的相除关系。

2、通过今天的学习,你有什么收获? 3、你知道吗?公元4世纪希腊数学家欧多克斯,利⽤线段找到了世界上最美丽的⼏何⽐——黄⾦分割,它的⽐值⼤约是0.618,⽐⼤约为2∶3。

介绍:黄⾦割应⽤⾮常⼴泛,国旗的宽与长的⽐是2⽐3,接近黄⾦分割,现在你们知道五星红旗为什么这么美观了吧! ⽣活中还有很多地⽅⽤到黄⾦分割: T型台上选模特也要求模特的⾝长与腿长的⽐符合黄⾦分割。

理发师也将黄⾦分割运⽤到发型设计中去。

…… 课后同学们还可以去调查。

篇⼆ 教学内容: 九年义务教育六年制⼩学数学课本第⼗⼀册“⽐的意义”。

六年级上册数学试题比的意义和基本性质

六年级上册数学试题比的意义和基本性质

六年级上册数学试题比的意义和基本性质【知识点】1、两个数的比表示两个数相除2、在两个数的比中,比号前面的叫做比的前项,比前面的叫做比的后项,比的前项除以后项所得的商叫做比值3、比与比值的关系:比表示两个数量的相除关系,比值表示一个详细的数〔如分数和整数〕4、比的基本性质:比的前项和后项同时乘以或许除以一个相反的数比值不变5、最简整数比:比的前项和后项都是整数并且两者的最大公因数为1留意:比的后项不能为0【例题解说】例题1、两个数之间的数量关系可以用比来表示15比10 写作: 比值:20比14 写作: 比值:变式1、求下面各式的比值10:5 4:23 5.0:3.0 例题2、两个不同单位的数之间的比化简比4km:500m 5kg :1吨 600ml :5L变式2、40cm:1.2m 57分:2小时 780cm:24m例题3、分数化简比41:52 61:23 0.78:2 变式3、56:94 321:43 20:9.6 例题4、三个数的连比:单位1,中间量,设数甲数是乙数的103,乙数是丙数的94,求这三个数的连比? 变式4、奶糖是水果糖的51,水果糖是泡泡糖的61,求这三种糖果的连比? 例题5、处置实践效果两个盒子中都装有水果糖和奶糖,且两盒糖果的质量是相等,第一个盒子中的水果糖是奶糖的23,第二个盒子里的水果糖是奶糖的51,假定把这两个盒子里的糖果混合在一同,那么水果糖和奶糖的质量比是多少?变式5、在两个相反的瓶子里装满盐水,第一个瓶子中盐和水的比是1:8,第二个瓶子中的盐和水的比是3:15,把两个瓶子的盐水混合在一同,这时盐和盐水的质量比是多少?【基础达标】1、求比值2.0:52 1.5:35 43:85 2、判别(1)比的后项不能够为0 〔 〕(2)比值只能用分数表示 〔 〕(3)一场球赛的比分是2:0,所以比的后项可以是0 〔 〕(4)从学校到图书馆,甲用了7分钟,乙用了6分钟,甲速:乙速=7:6 〔 〕(5)2kg:500g 的比值是2501 〔 〕 3、大齿轮有100个齿,每分钟转25转,小齿轮有25个齿,每分钟转100转(1)写出大齿轮和小齿轮齿数的比,并求出比值(2)写出大齿轮和小齿轮每分钟转数的比,并求出比值4、假定甲比乙多41,那么甲:乙=〔 〕:〔 〕 5、假定a 是b 的四倍,c 是b 的51,那么a:b:c=〔 〕:〔 〕:〔 〕 【课堂稳固】1、化简比54:81 2.0:45.0 1.2米:10分米 1.2:532:65 41千米:60米 2、判别 (1)化简比就是求两个数的比值 〔 〕(2)最复杂的整数比就是比的前项和后项都是整数,并且这两个数的只要公因数1 〔 〕(3)把4:5的前项加上8,要使比值不变,后项也要加上8 〔 〕(4)平行四边形的底和高的比是5:7,说明平行四边形的底是5cm ,高是7cm 〔 〕(5)甲绳长1m ,乙绳长85cm ,甲绳长和乙绳长的比是1:85 〔 〕3、把下面的格比化成后项是100的比(1)一杯盐水,盐和盐水的质量比是9:25(2)某公司一月份的销量和二月份的销量比是178:2004、如以下图,两个长方形堆叠在一同,甲长方形没有堆叠的局部面积为S ,相当于甲长方形面积的65;乙长方形没有堆叠的局部的面积为B ,相当于乙长方形的面积的87,那么S 与B 的面积比是多少?【比的运用知识点】1、平均分法:总份数 总数量 每份是多少 各局部区分的数量举例2、转化法:总份数为单位1,各局部的量是分子,占总份数的几分之几,总数量乘以分率 举例规范量=比竞赛 分率。

六年级上册数学教案-《比的意义》人教新课标(2023秋)

六年级上册数学教案-《比的意义》人教新课标(2023秋)
举例解释:
-在理解比的抽象概念时,可以通过图形、物品等具体事物进行引导,帮助学生从直观过渡到抽象。
-在比的表示方法的转换上,可以设计练习题,让学生将一种表示方法转换为另一种,如将3:4转换为分数线表示,得到3/4。
-对于比值不变性质的应用,可以通过实际问题,如“如果小明和小红每人都增加了2个苹果,他们的苹果数量比是多少?”来引导学生理解。
在接下来的教学中,我打算增加一些更具挑战性的问题,让学生们在解决问题的过程中,更深入地理解和掌握比的性质和应用。此外,我还计划在课堂上提供更多的时间和机会,让学生进行互动交流和反思,以提高他们的数学思维能力和解决实际问题的能力。通过这样的教学反思,我相信能够不断优化我的教学方法,更好地帮助学生掌握比的意义。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了比的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对比的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调比的定义、表示方法以及比的基本性质。对于难点部分,比如比的性质,我会通过具体的例子和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与比相关的实际问题,如比较两组物品的数量、身高、体重等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用小石子或计数棒来演示比的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)

数学比的知识点六年级上册

数学比的知识点六年级上册

数学比的知识点六年级上册数学比的知识点——六年级上册数学是一门需要系统学习和掌握的学科,其中比的概念在数学中有着重要的地位。

本文将为大家总结六年级上册数学中与比相关的重要知识点。

一、比的概念比是数学中常用的一种表示两个数量大小关系的方式。

在比中,我们通过比较两个数的大小来获得更多信息。

比的基本表示形式为“a∶b”,读作“a比b”。

其中,a称为被比数,b称为比数。

例如,2∶3读作“2比3”。

二、比的意义比的意义在于揭示事物之间的数量关系,帮助我们更好地理解和分析问题。

比可以应用于实际生活中的各种情境,例如购物时比较两种商品的价格,比较两个地方的距离等。

三、比的性质1. 同比例倍数性质:如果a∶b=c∶d,那么a∶b=m∶n,其中m和n是相应的同比例倍数。

2. 反比例性质:如果a∶b=c∶d,那么a∶c=b∶d,叫做反比例性质。

四、比的应用1. 比的扩大与缩小:我们可以根据比的性质将比进行扩大或缩小,得出新的比。

比如,将2∶3扩大2倍,得到4∶6;将4∶5缩小3倍,得到4∶15。

2. 比例的平均数:当我们知道两个比例之间的关系时,可以求出它们的平均比。

例如,如果a∶b=3∶4,b∶c=5∶6,我们可以求出a∶c的比例关系。

3. 同种比例关系的变化:如果有两个比例关系,我们可以根据其中一个比例和一个已知的数量,求解出另一个比例中对应的数量。

例如,已知2∶5=6∶x,我们可以求解出x的值。

五、比的运算1. 同种比例的乘法和除法:当两个比例相等时,我们可以进行乘法和除法运算。

例如,如果a∶b=c∶d,那么a×d=b×c;a÷b=c÷d。

2. 被比数和比数的乘除法:当我们知道比的值和其中一个数量时,可以通过乘法和除法运算求解出另一个数量。

例如,已知3∶5=12∶x,我们可以求解出x的值。

六、比的综合运用在实际问题中,我们经常会遇到需要利用比进行分析和解决的情况。

例如,购物时比较不同商品的价格、计算不同地点之间的距离等等。

新人教版六年级数学上册《比的意义》课件

新人教版六年级数学上册《比的意义》课件

百分数表示法
将比写成百分数形式,如 67%。
比的化简、扩大
学习如何对比进行化简和扩大,是我们在解决实际问题时需要掌握的重要技巧。
1
化简
将比的分子和分母同时除以一个相同
扩大
2
的数,使得比值保持不变,如2:3可以 化简为2:6。
将比的分子和分母同时乘以一个相同
的数,使得比值保持不变,如2:3可以
扩大为4:6。
比例中的单位和量的关系
比例中的单位和量之间有着密切的关系,我们需要掌握它们之间的转换和计算方法。
量的单位 长度 重量 时间
与比例中的分母的单位一致 厘米、米等子的单位一致 厘米、米等 克、千克等 秒、分钟等
比的应用
比的应用非常广泛,它能够帮助我们解决各种实际问题。
日常生活
比可以应用于购物、烹饪和计 算等各个方面。
商业领域
比可以用于分析市场份额、销 售增长和盈利能力等。
科技领域
比可以应用于实验设计、数据 分析和模型建立等。
比的注意事项
在使用比进行问题计算时,我们需要注意一些常见的问题和陷阱。
单位一致
比的两个量应该具有相同的单位,否则比较 将失去意义。
化简和扩大
2 练习题2
3:5=9:?
比例中的分子
比例中的分子是比例的关键部分,它描述了比例中各项的数量关系。
1
分子的意义
分子表示比例中某一项的具体数量,
分子的运算
2
它通常与比例中的其他分子进行比较。
根据比例的性质,我们可以通过已知
比例中的分子计算未知分子的值。
3
实际应用
比例中的分子常常用于计算和预测, 我们可以通过知道比例中的其他分子 来确定某一特定分子的值。

人教版六年级上册数学第四单元《比》的知识点总结+相关练习!

人教版六年级上册数学第四单元《比》的知识点总结+相关练习!

人教版六年级上册数学第四单元《比》的知识点总结+相关练习!一、 比的意义1、两个数相除又叫做两个数的比。

“:”是比号;读作“比”。

比号前面的数叫做比的前项;比号后面的数叫做比的后项。

比的后项不能是零。

例如21:7 其中21是前项;7是后项。

2、比的前项除以后项所得的商;叫做比值。

比值通常用分数表示;也可以用小数表示;有时也可能是整数。

;如:甲∶乙=5∶6;乙∶丙3;因为[6;4]=12;所以5∶ 6=10∶ 12; 4∶3=12∶9;得到甲∶乙∶丙=10∶12∶9。

3、比与分数、除法之间的关系。

比同除法比较:比的前项相当于被除数;后项相当于除数;比值相当于商。

比同分数相比较:比的前项相当于分子;后项相当于分母;比值相当于分数值。

二、比的基本性质1、比的前项和后项同时乘或除以相同的数(0除外);比值不变;这叫做分数的基本性质。

2、比的前项和后项是互质数的比;叫做最简单的整数比。

把两个数的比化简成最简单的整数比叫做化简比;也叫做比的化简。

3、整数比的化简方法:把比的前项和后项同时除以它们的最大公因数。

例如:180:120=(180÷60):(120÷60)=3:24、分数比的化简方法:比的前项和后项同时乘它们分母的最小公倍数;变成整数比;再进行化简:例如:61:92=(61×18):(92×18)=3:4 5、小数比的化简方法:把比的前项和后项的小数点同时向右移动相同的位数;变成整数比;再化简。

例如:0.75:0.2=(0.75×100):(0.2×100)=75:20=15:46、一个比中;既有小数;又有分数;可以把小数化成分数;按照化简分数比的方法进行化简;也可以把分数化成小数;按照化简小数比的方法进行化简。

例如: 0.5:53=21:53=5:6 0.5:52=0.5:0.4=5:4 三、求比值和化简比的比较1.目的不同。

求比值就是求比的前项除以后项所得的商;而化简比是把两个数的比化成最简单的整数比;也就是化简后的比要符合两个条件;一是比的前、后项都应是整数;二是前、后项的两个数要互质。

《比的意义》说课-(人教版六年级上册)

《比的意义》说课-(人教版六年级上册)

《比的意义》说课 (人教版六年级上册)P43《比的意义》说课一、对教材的分析和理解:这是义务教育六年制小学数学第12册教材第三单元的第一课内容, 本单元的知识与方法具有上位特征, 基本上是对原来概念的进一步提升, 因而具有更大的包容性和普遍性, 学习了这些概念以后, 对原来的观念和方法可以作进一步沟通和理解, 解决问题的方法将更趋多样化, 数学能力将得到有效提高。

概念间和计算方法的的联系、辨析、沟通以及正确合理地计算, 在本单元的学习中具有重要意义。

作为本单元的第一课内容, 比的意义是本单元的起始概念也是本单元的核心概念, 这节课学生是在学过分数与除法的关系, 分数乘除法的意义和计算方法, 以及分数乘除法应用题的基础上进行学习的。

它在教材中起着承上启下的重要作用, 让学生切实地理解、掌握比的意义, 对学生进一步学习比的性质、比的应用和比例的相关知识打下坚实的基础。

教材在安排比的意义的学习时, 分为三个阶段:比的意义、比的各部分名称、比与分数及除法的关系。

比的意义教材是从日常生活中的相除关系的例子中引出的, 通过对具体例子的讨论, 明确了比的概念是建立在除法的意义基础之上的, 揭示了比与除法之间的本质联系, 是一种以“倍比”为基础的比较关系。

教材在介绍比的各部分名称时提出了比值的意义, 它既是一个知识点, 又有助于进一步理解比的意义。

比与分数、除法的关系是本节课的又一教学要点, 理解它们之间的关系, 对后继学习特别是综合应用各种知识解决问题具有重要意义, 同时也是理解比的后项不能为0的认知基础。

二、教学目标的设计新课标上有这样一段话:义务教育阶段的数学课程, 其基本出发点是促进学生全面、持续、和谐地发展。

它不仅要考虑数学自身的特点, 更应遵循学生学习数学的心理规律, 强调从学生已有的生活经验出发, 让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程, 进而使学生获得对数学理解的同时, 在思维能力、情感态度与价值观等多方面得到进步和发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4比
第1课时比的意义
【教学内容】
比的意义(教材第48~49页的内容及练习十一的第1~3题)。

【教学目标】
1.使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。

2.引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。

【重点难点】
1.比与除法、分数的关系。

2.理解比的意义。

【复习导入】
1.某车间有男工人5人,女工人8人,男工人人数是女工人人数的几分之几?女工人人数是男工人人数的几倍?
2.分数与除法有什么关系?
【新课讲授】
1.教学比的意义。

(1)教学同类量的比。

A.2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。

在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。

杨利伟展示的两面旗都是长15cm,宽10cm,怎样用算式表示它们的长和宽倍数的关系?(引导学生说出:可以求长是宽的几倍,或求红旗的宽是长的几分之几。


B.这两个关系都是用什么方法来求的?(除法)
C.比较这两个数量之间的关系,除了除法,还有一种表示方法,即“比”。

可以说成是:长和宽的比是15比10,或宽和长的比是10比15。

D.不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。

(2)教学不同类量的比。

A.“神舟”五号进入运行轨道后,在距地350 km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252 km。

怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?(路程÷时间=速度,算式:42252÷90)
B.对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,这里的42252千米与90分钟是两个不同类的量。

(3)归纳比的意义。

A.通过上面两个例子,你认为什么是比?(学生试说,教师总结:两个数相除,又叫做两个数的比。


B.练习:判断,下面数量间的关系是表示两个数的比吗?
①甲数是9,乙数是7,甲数和乙数的比是9比7;乙数和甲数的比是7比9。

②拖拉机45分钟耕了2公顷地,工作总量和工作时间的比是2比45。

③足球比赛,甲队和乙队的比分是3比2。

2.教学比的写法、比的各部分名称。

(1)比的写法。

15比10 记作15∶10 10比15 记作10∶15
42252比90记作42252∶90
(2)比的各部分名称。

A.学生自学课本,小组讨论概括知识点。

B.小组汇报并举例:
“∶”是比号,读作“比”。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

例如:
3.教学比与除法、分数的关系。

(1)比与除法的关系。

A.观察上面的式子,比的前项相当于什么?(被除数),后项相当于什么?(除数)比值相当于什么?(商)。

B.比的后项能不能是零?为什么?(比的后项不能是零。

因为比的后项相当于除数,除数不能是0,所以比的后项也不能是0。


C.比值通常用分数表示,也可以用小数或整数表示。

(2)比与分数的关系。

A.根据分数与除法的关系,可以推知比与分数有什么关系?(引导学生回答:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。


B.两个数的比也可以写成分数的形式。

例如
15∶10,可写成15
10,读作15比10。

结合上面的讲解,板书下表:
(3)比、分数、除法之间的区别。

①意义不同:比表示两个量(或数)的一种关系;除法是一种运算;分数则是一个数。

②表示方法不同:作为一种运算,除法算式不能用分数表示;比可以用分数表示;但分数不一定表示两个量的比。

③结果表达不同:除法一般要求出商;比只有要求计算比值时才通过计算求出商;而分数本身就是一个数值,无需计算。

4.典例讲析。

例求下列各比中的x 。

(1)141∶x=38
1 (2)x ∶0.1=0.0
2 分析:(1)x 是比的后项,已知比的前项和比值,求比的后项。

比的后项= 比的前项÷比值,因此x=1
41÷381=52。

(2)x 是比的前项,已知比的后项和比值,求比的前项。

比的前项=比的后
项×比值。

因此x=0.1×0.02=0.002。

解:(1)1
41∶x=38
1 x=141÷38
1 x=5
2 (2)x ∶0.1=0.02
x=0.1×0.02
x=0.002
【课堂作业】
1.完成教材第49页“做一做”。

2.完成教材第52页练习十一第1~3题。

答案:1.“做一做”第1题:6∶8 0.75 1.8∶2.4 0.75
第2题:分析:把括号中的数看作x ,第1小题求比的后项,用比的前项除以比值。

第2小题求比的前项,用比值乘比的后项。

解答:8
1 4 2.练习十一第1题:(1)14∶8
4
7 (2)16∶1058 10∶26 13
5 (3)18∶12 23 第2题:分析:把一个小格的长度看作一个单位长度,看每面红旗的长和宽是几个单位长度,把长和宽写成比的形式,看哪面红旗的比是3∶2。

计算比较得出,第①面红旗长和宽的比是6∶5;第②面红旗长和宽的比是3∶2;第③面红旗的长和宽的比是9∶4。

解答:第②面红旗长和宽的比是3∶2。

【课堂小结】
今天我们学到了什么知识?比的意义是什么?
【课后作业】
完成《创优作业100分》本课时练习。

第1课时比的意义
3
3∶2=3÷2=
2
本节课的教学内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。

这节课的知识点较多,有比的意义、读写以及各部分名称;有比值的概念及其求法;还有比与除法、分数的区别与联系等。

针对本课内容的特点,在教学中,我注意了这样几个方面:一是通过讲导结合,理解比的意义。

在学习比的意义的时候,考虑到学生对比缺乏认知,所以主要通过教师的“导”,引导学生明确:对两个数量进行比较,可以用除法,也可以用比的方法,并通过同类量和不同类量的比,引出比的意义。

二是注意学生自学能力的培养和小组合作学习的开展。

在学习比的各部分名称及读法、写法时,采用了让学生看书自学的方式,在学习中通过探索问题,解决问题,也同样达到了掌握知识的目的。

在学习比和除法以及和分数关系的时候采用小组合作学习的方式,让学生借助教材,围绕问题展开讨论,总结出三者之间的联系和区别,实现了自主学习,突破了教材的重难点。

相关文档
最新文档