正弦定理典型例题与知识点

合集下载

正弦定理知识点与典型例题

正弦定理知识点与典型例题

正弦定理【基础知识点】1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==21ca sin B ; sin(A+B)=sinC, cos(A+B)=-cosC, sin(A+B)/2=cosC/2, cos(A+B)/2=sinC/22.三角形中的边角不等关系: A>B ⇔a>b,a+b>c,a-b<c ;3.【正弦定理】:A a sin =B b sin =Cc sin =2R (外接圆直径); 正弦定理的变式:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2;a ∶b ∶c =sin A ∶sin B ∶sin C .asinB=bsinA bsinC=csinB asinC=csinA sinA=a/2R sinB=b/2R sinC=c/2R4.正弦定理应用范围:①已知两角和任一边,求其他两边及一角.②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数.已知两边和其中一边的对角解三角形,有如下的情况:(1)A 为锐角a=bsin A bsin A<a<b a b ≥ 一解 两解 一解(2)A 为锐角或钝角当时有一解.典型例题:例1、在ABC ∆中,ο45,1,2===A b a 求B 的大小。

例2、在△ABC 中,已知3=a ,2=b ,B=45 求A 、C 及c .例3、在△ABC 中,a=15,b=10,A=ο60,则cosB 的值例4、在△ABC 中,ο30=B ,32=AB ,AC=2,求△ABC 的面积。

例5、在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.例6、在△ABC 中,)sin()()sin()(2222B A b a B A b a +-=-+,试判断△ABC 的形状例7、在△ABC 中,cos 2B 2=a +c 2c(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为?例8、在△ABC 中,tan A =12,cos B =31010,若最长边为1,则最短边的长例9、在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足cos A 2=255,AB →·AC →=3. (1)求△ABC 的面积;例10、设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且a cos C +12c =b . (1)求角A 的大小;(2)若a =1,求△ABC 的周长l 的取值范围.例11、在△ABC 中,sin(C-A)=1,sinB=31.(Ⅰ)求sinA 的值;(Ⅱ)设AC= 6 求△ABC 的面积.。

「正弦定理」用正弦定理解三角形常见的四个题型以及易错点分析.doc

「正弦定理」用正弦定理解三角形常见的四个题型以及易错点分析.doc

「正弦定理」用正弦定理解三角形常见的四个题型以及易错点分析
【方法总结】利用正弦定理解决“已知三角形的任意两边与其中一边的对角求其他边与角”的问题时,可能出现一解、两解或无解的情况,应结合“三角形大边对大角”来判断解的情况,做到正确取舍.
【变式2】满足a=4,b=3和A=45°的△ABC的个数为( ).
A.0个B.1个
C.2个D.无数多个
题型三利用正弦定理判断三角形的形状
【方法总结】依据条件中的边角关系判断三角形的形状时,主要有以下两种途径:
(1)利用正弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;
(2)利用正弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形得出内角的关系,从而判断出三角形的形状,此时要注意应用A+B+C=π这个结论.在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.题型四利用正弦定理求最值或范围
【题后反思】在三角形中解决三角函数的取值范围或最
值问题的方法:
(1)利用正弦定理理清三角形中基本量间的关系或求出某些量.
(2)将要求最值或取值范围的量表示成某一变量的函数(三角函数),从而转化为函数的值域或最值的问题.【易错点分析】忽视等价转化而致误
当两个角的某三角函数值相等时,我们并不能肯定这两个角一定相等,一定要根据两个角的取值范围结合诱导公式写出所有的情况.
灵活运用诱导公式sin(2kπ+α)=sin α(k∈Z),sin(π-α)=sin α是解三角形的关键,当出现sin A=sin B时,一是易忽略A、B的范围;二是易忽略A+B=π时,sin A=sin B同样成立.。

正余弦定理知识点及高考考试题型整理学生理

正余弦定理知识点及高考考试题型整理学生理

正、余弦定理一、知识总结 (一)正弦定理1.正弦定理:2,sin sin sin a b cR A B C===其中R 是三角形外接圆半径. 2.变形公式:(1)化边为角:(2)化角为边:(3)(4).3、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一)(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. (解可能不唯一)在△ABC 中,已知a 、b 和A 时,解的情况如下:a =b sin A b sin A <a <b a ≥b a >b 1.余弦定理: 2222cos a b c bc A =+-2222cos c a b ab C =+-2222cos b a c ac B =+-2.变形公式:222222222cos ,cos ,cos .222b c a a c b a b c A B C ab ac ab+-+-+-===.注:2a >22c b +⇒A 是钝角;2a =22c b +⇒A 是直角;2a <22c b +⇒A 是锐角;2sin ,2sin ,2sin ;a R A b R B c R C ===sin ,sin ,sin ;222a b cA B C R R R ===::sin :sin :sin a b c A B C =2sin sin sin sin sin sin a b c a b c RA B C A B C ++====++3.余弦定理可以解决的问题:(1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):4.由余弦定理判断三角形的形状a2=b2+c2⇔A是直角⇔△ABC是直角三角形,a2>b2+c2⇔A是钝角⇔△ABC是钝角三角形,a2<b2+c⇔A是锐角/△ABC是锐角三角形。

(注意:A是锐角/ △ABC是锐角三角形,必须说明每个角都是锐角)(三) ΔABC的面积公式:(1)1() 2a aS a h h a= 表示边上的高;(2)111sin sin sin() 2224abcS ab C ac B bc A RR====为外接圆半径;(3)1()() 2S r a b c r=++为内切圆半径(四) 实际问题中的常用角1.仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)2.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。

正弦定理知识点及题型总结

正弦定理知识点及题型总结

6.4.3.2正弦定理一、概念1.正弦定理:设ABC ∆的三个内角C B A ,,所对的边长分别为c b a ,,,外接圆的半径为R ,则R CcB b A a 2sin sin sin === 证明:2.正弦定理的变形(1)A R a sin 2=;B R b sin 2=;C R c sin 2= (2)=A sin R a 2;=B sin R b 2;=C sin Rc 2 (3)c b a C B A ::sin :sin :sin =(4)CB A cb a Cc B b A a sin sin sin sin sin sin ++++=== (5)C A c B A b a sin sin sin sin ==;C B c A B a b sin sin sin sin ==;ACa B Cbc sin sin sin sin == 3.三角形的面积公式:设ABC ∆的角C B A ,,所对的边长分别为c b a ,,,则ABC ∆的面积c b a ABC ch bh ah S 212121===∆(其中c b a h h h ,,分别为边c b a ,,上的高)B ca A bcC ab sin 21sin 21sin 21=== C BA cBC A b A C B a sin 2sin sin sin 2sin sin sin 2sin sin 222=== C B A R sin sin sin 22=(其中R 是ABC ∆的外接圆半径)R abc 4= )(21c b a r ++=(其中r 是ABC ∆的内切圆半径) 22)()(21AC AB AC AB ⋅-= ))()((c p b p a p p ---=(海伦公式)(其中p 为半周长2cb a p ++=) 特别地,若设点),(),,(2211y x B y x A ,则122121y x y x S OAB -=∆ 4.三角形解的个数ABC ∆中,已知b a ,和A 时,三角形的解得情况如下:A 为锐角 A 为钝角图形关系式 A b a sin <A b a sin =b a A b <<sinb a ≥b a ≥解的个数 无解一解两解一解一解例1.证明角平分线定理:ABC ∆中,AD 是角内A 或其外角的平分线,则CDBDAC AB =题型一 已知两角和一边,解三角形例2.在ABC ∆中,已知015=A ,045=B ,33+=c ,解这个三角形小结:已知三角形的两角及一边,解三角形的步骤: ①先由内角和定理求出第三个角; ②再用正弦定理另外两边.跟踪训练:在ABC ∆中,已知030=A ,0105=C ,10=a ,解这个三角形题型二 已知两边和其中一边的对角,解三角形 例2.在ABC ∆中,已知030=B ,2=b ,2=c ,解这个三角形小结:(1)已知三角形的两边及一边所对的角,解三角形的步骤: 解法1:①先由正弦定理求另外一边所对的角(注意大边对大角); ②再用内角和定理求第三个角; ③由正弦定理求第三边.解法2:①由已知角的余弦定理得到第三边的方程,解出第三边(注意大角对大边) ②再用余弦定理或正弦定理求出第二个角; ③用内角和定理求第三个角. 跟踪训练:在ABC ∆中,已知3=a ,2=b ,045=B ,解这个三角形题型三 判断三角形解得个数例3.在ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若3=a ,4=b ,030=A ,则此三角形( )A.有一解B.有两解C.无解D.不确定跟踪训练1.在ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若2=b ,4=c ,060=B ,则此三角形( )A.有一解B.有两解C.无解D.不确定跟踪训练2.在ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若18=a ,20=b ,0150=A ,则此三角形( )A.有一解B.有两解C.无解D.不确定跟踪训练 3.在ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,根据下列条件,判断三角形解得情况,其中正确的有①8=a ,16=b ,030=A ,有一个解; ②18=b ,20=c ,060=B ,有两个解 ③5=a ,2=c ,090=A ,无解; ④30=a ,25=b ,0150=A ,有一个解;题型四 判断三角形的形状例4.ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若22tan tan ba B A =,试判断三角形的形状小结:根据已知条件判断三角形形状,通常有两种思路:(1)化边为角:根据正弦定理把已知条件中的边角混合关系化为角的关系,再根据三角恒等变换化简,进而确定三角形的形状(2)化角为边:根据正弦定理和余弦定理把已知条件中的边角混合关系化为边的关系,再根据代数运算化简,进而确定三角形的形状跟踪训练1.ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若A a B c C b sin cos cos =+,试判断三角形的形状小结:三角形的射影定理:ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,则B cC b a cos cos +=,A c C a b cos cos +=,A b B a c cos cos +=注:a c b B c C b 22cos cos -=-,b c a A c C a 22cos cos -=-,cb a A b B a 22cos cos -=-跟踪训练2.ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若A b a B a c cos )2(cos -=-,试判断三角形的形状总结:三角形中常见的结论:设ABC ∆的角C B A ,,所对的边长分别为c b a ,,,则 (1)三角形的内角和定理:π=++C B A (2)三角形的大边对大角,大角对大边(3)锐角三角形的任何一个内角的正弦都大于其余角的余弦(4)平行四边形的性质:平行四边形的两条对角线的平方和等于四条边的平方和 (5)中线长定理:设ABC ∆的边c b a ,,上的中线分别为CF BE AD ,,,则222)(221a c b AD -+=,222)(221b c a BE -+=,222)(221c b a CF -+= (6)角平分线定理:ABC ∆中,AD 是角A 或其外角的平分线,则CD BDAC AB =(7)(1)=+)sin(B A ,=+)cos(B A ,=+)tan(B A ,=+2sinB A ,=+2cos B A ,=+2tan BA (8)B A B A =⇔-)sin(⇔ABC ∆为等腰三角形 (9)B A B A =⇔=2sin 2sin 或2π=+B A ⇔ABC ∆为等腰或直角三角形(10)B A b a B A >⇔>⇔>sin sin B A cos cos <⇔(11)三角形中的射影定理:B cC b a cos cos +=,A c C a b cos cos +=,A b B a c cos cos +=注:a c b B c C b 22cos cos -=-,b c a A c C a 22cos cos -=-,cb a A b B a 22cos cos -=-(12)ABC Rt ∆的内切圆半径22c b a c b a S r ABC -+=++=∆,旁切圆半径2'c b a r ++=(13)1tan tan >B A ⇔ABC ∆为锐角三角形;1tan tan =B A ⇒ABC ∆为直角三角形; 1tan tan <B A ⇔ABC ∆为锐角三角形;(14)若2sin sin sin 222<++C B A ,则ABC ∆为钝角三角形 若2sin sin sin 222=++C B A ,则ABC ∆为直角三角形 若2sin sin sin 222>++C B A ,则ABC ∆为锐角三角形(15)若c b a ,,成等差数列,则①C B A sin ,sin ,sin 也成等差数列;②30π≤<B(16)若c b a ,,成等比数列,则30π≤<B(17)ABC ∆中的恒等式:①1cos cos cos 2sin 2sin 2sin 4-++==C B A CB A R r ②2cos 2cos 2cos 4sin sin sin cB AC B A =++③2cos 2sin 2sin 4sin sin sin cB AC B A =-+④C B A C B A sin sin sin 42sin 2sin 2sin =++ ⑤1cos cos cos 42cos 2cos 2cos --=++C B A C B A ⑥C B A C B A tan tan tan tan tan tan =++⑦12tan 2tan 2tan 2tan 2tan 2tan=++AC C B B A ⑧2cot 2cot 2cot 2cot 2cot 2cot C B A C B A =++⑨1cot cot cot cot cot cot =++A C C B B A。

正弦定理知识点

正弦定理知识点

1.1.1正弦定理课上讲解:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC==2R其中R 为三角形外接圆半径。

2.正弦定理的基本作用:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

3.常用变形: ①π=++C B A②C B A C B A sin )cos(,sin )sin(=+=+ ③C ab S abc sin 21=∆题型一:已知两角和一边(唯一确定)例1. 已知在B b a C A c ABC 和求中,,,30,45,1000===∆.变式练习1:1.已知ΔABC ,已知A=600,B=300,a=3;求边b=():A.3B.2C.3D.2 2.已知ΔABC 已知A=450,B=750,b=8;求边a=()A.8B.4C.43-3D.83-8 3.已知a+b=12,B=450,A=600则a=_____,b=_____题型二:已知两边和其中一边所对的角(两种情况,由y=sin x 的性质决定) 例2.在C A a c B b ABC ,,1,60,30和求中,===∆变式练习1:C B b a A c ABC ,,2,45,60和求中,===∆变式练习2:02,135,3,ABC a A b B ∆===中,求变式练习3: 在ABC ∆中,已知角334,2245===b c B ,,则角A 的值是 A.15 B.75 C.105 D.75或15变式练习4:在ABC ∆中,若14,6760===a b B ,,则A= 。

题型三:外接圆问题 例3. 试推导在三角形中A a sin =B b sin =Ccsin =2R 其中R 是外接圆半径变式练习1:在△ABC 中,k CcB b A a ===sin sin sin ,则k 为( ) A 2R B RC 4RD R 2(R 为△ABC 外接圆半径)变式练习2:在ABC ∆中,5,40,20===c B A oo ,则R 2为 ( )A 、3310 B 、10 C 、25 D 、210变式练习3:在ABC ∆中,=+A Rb B R a cos 2cos 2 ( ) A 、B A sin sin + B 、)sin(B A +C 、)sin(B A -D 、)cos(B A -变式练习4:设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________.题型四:比例问题 例4.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状.变式练习1:已知∆ABC 满足条件cos cos a A b B =,判断∆ABC 的类型。

正弦定理经典题型归纳

正弦定理经典题型归纳

正弦定理1. 正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即公式适用于任意三角形。

2. 正弦定理的变形3. 判断三角形解的问题 “已知a,b 和A,解三角形”①当sin B >1,无解 ②sin B =1,一解 ③sinB <1,两个解(其中B 可能为锐角也可能为钝角,具体是锐角还是钝角还是两个都可以,要根据“大边对大角”及“三角形内角和等于180”来判断)题型一:已知两角及任意一边解三角形1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A. 6 B. 2 C. 3 D .2 62.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.3233.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12C .2 D.14变形:题型二:已知两边及一边对角解三角形1.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对2.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 3.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.4 .在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 5.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.6. 判断满足下列条件的三角形个数 (1)b=39,c=54,︒=120C 有________组解(2)a=20,b=11,︒=30B 有________组解(3)b=26,c=15,︒=30C 有________组解(4)a=2,b=6,︒=30A 有________组解7.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.8.在△ABC 中,B=4π,b=2,a=1,则A 等于 .题型三:正弦定理的边角转化1.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定2.在△ABC 中,若cos A cos B =b a,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 3.在△ABC 中,如果Cc B b A a tan tan tan ==,那么△ABC 是( ) A.直角三角形 B.等边三角形 C.等腰直角三角形 D.钝角三角形 4. 在△ABC 中,已知b B a 3sin 32=,且cosB=cosC ,试判断△ABC 形状。

(完整版)正弦定理知识点总结(精华)与试题

(完整版)正弦定理知识点总结(精华)与试题

正弦定理知识点总结(精华)与试题1.特殊情况:直角三角形中的正弦定理:sinA=sinB= sinC=1 即:c= c= c= ==c a c b A a sin B b sin C c sin A a sin B b sin Cc sin 2.能否推广到斜三角形?证明一(传统证法)在任意斜△ABC 当中:S △ABC =Abc B ac C ab sin 21sin 21sin 21==两边同除以即得:==abc 21A a sin B b sin Ccsin 3.用向量证明:证二:过A 作单位向量垂直于j AC+= 两边同乘以单位向量AC CB AB j •(+)=• 则:•+•=•j AC CB j AB j AC j CB j AB ∴||•||cos90︒+||•||cos(90︒-C)=||•||cos(90︒-A)j AC j CB j AB ∴ ∴=A c C a sin sin =A a sin Ccsin 同理:若过C 作垂直于得:= ∴==j CB C c sin B b sin A a sin B b sin Ccsin 当△ABC 为钝角三角形时,设 ∠A>90︒ 过A 作单位向量垂直于向量j AC 正弦定理:在一个三角形中各边和它所对角的正弦比相等,==A a sinB b sin Ccsin 注意:(1)正弦定理适合于任何三角形。

(2)可以证明===2R (R 为△ABC 外接圆半径)A a sin B b sin Ccsin (3)每个等式可视为一个方程:知三求一Cl l ngt h 5.知识点整理6、应用:例1、已知在Bb a C Ac ABC 和求中,,,30,45,100===∆解:21030sin 45sin 10sin sin ,sin sin 0=⨯==∴=C A c a C c A a 00105)(180=+-=C A B 25654262075sin 2030sin 105sin 10sin sin ,sin sin 00+=+⨯==⨯==∴=C B c b C c B b 又练习:1、在△ABC 中,已知A=450,B=600,a=42,解三角形.2、在△ABC 中,AC=,∠A=45°,∠C=75°,则BC 的长为.33、在△ABC 中,B=45,C=60,c=1,则最短边的边长等于例2.1 在CA a cB b ABC ,,1,60,30和求中,===∆解:21360sin 1sin sin ,sin sin 0=⨯==∴=b B c C C cB b 00090,30,,60,==∴<∴=>B C C B CB cb 为锐角, 222=+=∴c b a 例2.2 CB b a A c ABC ,,2,45,60和求中,===∆解:23245sin 6sin sin ,sin sin 0=⨯==∴=aA c C C c A a 0012060,sin 或=∴<<C c a A c ,1360sin 75sin 6sin sin ,75600+=====∴C B c b B C 时,当1360sin 15sin 6sin sin ,1512000-=====∴C B c b B C 时,当或0060,75,13==+=∴C B b 00120,15,13==-=C B b 注意:三角形的情况:时解和中,已知在A b a ABC ,∆(1)当A 为锐角(2)当A 为直角或钝角练习:1. ABC △的内角A 、B 、C 的对边分别为a 、b 、c ,若120c b B === ,则a 等于( )A B .2C D 2、已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若a c ==且75A ∠=o ,则b = ( )A.2 B .4+.4—3、在ABC △中,若1tan 3A =,150C =,1BC =,则AB = . 4、已知△ABC 中,045,a b B ===解三角形例3:在△ABC 中,分别根据下列条件指出解的个数(1)、a=4,b=5,A=300; (2)、a=5,b=4,A=600;(3)、; (3)、0120a b B ===060.a b A ===练习:1.符合下列条件的三角形有且只有一个的是( ) A .a=1,b=2 ,c=3 B .a=1,b= ,∠A=30°2 C .a=1,b=2,∠A=100° D .b=c=1, ∠B=45°1、在△ABC 中,a=5,b=3,C=1200,则sinA:sinB=2、在△ABC 中,acosB=bcosA,则⊿ABC 为( )A 、直角三角形B 、等腰三角形C 、等腰直角三角形D 、钝角三角形3、在△ABC 中,若b=2asinB,则A=4、在△ABC 中,若sin cos ,A BB a b=则的值为5、在△ABC 中,a:b:c=1:3:5,2sin sin sin A BC-则的值为6、在△ABC 中,已知sinA:sinB:sinC=4:5:6,且a+b+c=30,则a=7、若三角形的三个内角之比为1:2:3,则该三角形的三边之比为 8、在△ABC 中,0a b c60,sin sin sin A a A B C++=++则等于9.的三内角的对边边长分别为,若,则( )ABC ∆,,A B C ,,a bc ,2a A B ==cos B =10、在△ABC 中,若sinA>sinB,则有( )a<b B a b C a>b D a bA ≥、、、、、的大小关系无法确定。

正弦定理基础知识及常见题型汇总

正弦定理基础知识及常见题型汇总

正弦定理一、考点、热点回顾(一)正弦定理及其变形1. 正弦定理:________=________=________=2R ,其中R 是三角形外接圆的半径. 2. 正弦定理的常用变形(1)a ∶b ∶c =________________;(2)a =__________,b =__________,c =__________; (3)sin A =________,sin B =__________,sin C =________;3. 三角形中边角的不等关系在三角形中,A >B >C ⇔ a >b >c ⇔ sinA >sinB >sinC 。

(二)正弦定理的应用:解三角形 1、 解三角形的概念2、 利用正弦定理解三角形利用正弦定理可解决两类解三角形问题: (1)已知两角及一边解三角形基本思路: 1)由三角形的内角和定理求出第三个角.2)由正弦定理公式的变形,求另外的两条边.(2)已知两边及其中一边的对角解三角形基本思路:1)由正弦定理求出另一已知边所对的角.2)由三角形的内角和定理求出第三个角. 3)由正弦定理公式的变形,求第三条边.(3)解三角形的解的情况在△ABC 中,已知a ,b 和A ,以点C 为圆心,以边长a 为半径画弧,此弧与射线AB 的公共点(除去顶点A )A 为锐角 A 为钝角或直角 图形关系式 a <b sin A a =b sin A b sin A <a <ba ≥b a >b a ≤b 解的个数无解一解两解一解一解无解(三)三角形的面积公式S △ABC =12ah =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·()()()p p a p b p c ---二、典型例题考点一、正弦定理概念及变形例1、已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a =________.变式训练1、(1)在△ ABC 中,若b =1,c =3,C =2π3,则a = .(2)在△ABC 中,若A =60°,a =3,则a +b +csin A +sin B +sin C=________.考点二、已知两角及一边解三角形例2、在△ABC中,已知a=8,B=60°,C=75°,求A,b,c.变式训练2、(1)在△ABC中,若A=60°,B=45°,BC=32,则AC=() A.43B.2 3C. 3D.3 2(2)在△ABC中,A=45°,B=75°,c=2,则此三角形的最短边的长度是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正弦定理
教学重点:正弦定理
教学难点:正弦定理的正确理解和熟练运用,边角转化。

多解问题
1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即
A a sin =
B b sin =C
c
sin 2. 三角形面积公式
在任意斜△ABC 当中S △ABC =A bc B ac C ab sin 2
1sin 2
1sin 2
1== 3.正弦定理的推论:
A a sin =
B b sin =C
c
sin =2R (R 为△ABC 外接圆半径) 4.正弦定理解三角形
1)已知两角和任意一边,求其它两边和一角;
2)已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角。

3)已知a, b 和A, 用正弦定理求B 时的各种情况:(多解情况)

1若A 为锐角时: ⎪⎪⎩
⎪⎪

⎧≥<<=<)( b a ) ,( b a bsinA )
( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a b
a
b
a
b a b
a
a 已知边a,
b 和∠A
仅有一个解有两个解
仅有一个解无解
a ≥
b CH=bsinA<a<b a=CH=bsinA a<CH=bsinA
A
C B A
C
B1A
B
A
C
B2
C
H H
H
○2若A 为直角或钝角时:⎩⎨⎧>≤)(
b a 锐角一解无解
b a
1、已知中,,,则角等于 ( D)
A .
B .
C .
D .
2、ΔABC的内角A、B、C所对的边分别为a、b、c,若sin A=,b=sin B,则a等于 ( D ) A.3B.C. D.
1. 在ABC ∆中,若sin 2sin 2A B =,则ABC ∆一定是( )
A 、等腰三角形
B 、直角三角形
C 、等腰直角三角形
D 、等腰或直角三角形
3.在Rt △ABC 中,C=
2
π
,则B A sin sin 的最大值是_______________. [解析] ∵在Rt △ABC 中,C=
2
π
,∴sin sin sin sin()2A B A A π=-sin cos A A =
1sin 22A =,∵0,2A π<<∴02,A π<<∴4A π=时,B A sin sin 取得最大值1
2。

4. 若ABC ∆中,10
10
3B cos ,21A tan =
=
,则角C 的大小是__________ 解析
13101
tan ,cos ,,sin tan 2103
A B O B B B π==<<∴=∴=
tan tan 3tan tan()tan()1,tan tan 14
A B C A B A B O C C A B π
ππ+∴=--=-+=
=-<<∴=
- 7.在△ABC 中,已知2a b c =+,2
sin sin sin A B C =,试判断△ABC 的形状。

解:由正弦定理
2sin sin sin a b c R A B C ===得:sin 2a A R =
,sin 2b
B R
=, sin 2c C R
=。

所以由2sin sin sin A B C =可得:2()222a b c R
R R
=⋅
,即:2
a bc =。

又已知2a
b
c =+,所以2
2
4()a b c =+,所以2
4()bc b c =+,即2
()0b c -=,
因而b c =。

故由2a b c =+得:22a b b b =+=,a b =。

所以a b c ==,△ABC 为等边三角形。

6.在ABC ∆中,
b
A
a B sin sin <
是B A >成立的 ( C ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件
1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则 a 等于
( )
A.6
B.2
C.3
D.2
答案 D
3.下列判断中正确的是
( )
A .△ABC 中,a =7,b =14,A =30°,有两解
B .△AB
C 中,a =30,b =25,A =150°,有一解 C .△ABC 中,a =6,b =9,A =45°,有两解
D .△ABC 中,b =9,c =10,B =60°,无解 答案 B
4. 在△ABC 中,若2cos B sin A =sin C ,则△ABC 一定是
( )
A.等腰直角三角形
B.等腰三角形
C.直角三角形
D.等边三角形 答案 B
10. 在△ABC 中,已知a =3,b =2,B =45°,求A 、C 和c . 解 ∵B =45°<90°且a sin B <b <a ,∴△ABC 有两解. 由正弦定理得sin A =
b B a sin =2
45sin 3︒ =23
, 则A 为60°或120°.
①当A =60°时,C =180°-(A +B )=75°, c =
B
C
b sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=2
2
6+.
②当A =120°时,C =180°-(A +B )=15°, c =
B
C
b sin sin =︒︒45sin 15sin 2=︒
︒-︒45sin )
3045sin(2=
2
2
6-. 故在△ABC 中,A =60°,C =75°,c =
2
2
6+或A =120°,C =15°,c =226-.
12. 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2
+b 2
)sin (A -B )=(a 2
-b 2
)sin (A +B ),判断三角形的形状.
解 方法一 已知等式可化为a 2
[sin (A -B )-sin (A +B )]=b 2
[-sin (A +B )-sin(A -B )]∴2a 2
cos A sin B =2b 2
cos B sin A
由正弦定理可知上式可化为:sin 2
A cos A sin
B =sin 2
B cos B sin A
∴sin A sin B (sin A cos A -sin B cos B )=0∴sin2A =sin2B ,由0<2A ,2B <2π 得2A =2B 或2A =π-2B ,即A =B 或A =
2
π
-B ,∴△ABC 为等腰或直角三角形. 方法二 同方法一可得2a 2
cos A sin B =2b 2
sin A cos B
由正、余弦定理,可得a 2
b b
c a c b 2222-+= b 2a ac
b c a 22
22-+ ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2
)
即(a 2-b 2)(a 2+b 2-c 2)=0∴a =b 或a 2+b 2=c 2
∴△ABC 为等腰或直角三角形.
2.在△ABC 中,已知∠B =45°,c =22,b =43
3
,则∠A 等于( ) A .15°
B .75°
C .105°
D .75°或15°
解析:根据正弦定理c sin C =b sin B ,sin C =c sin B b =22×
2
243
3=3
2.
∴C =60°或C =120°,因此A =75°或A =15°.
答案:D
例1已知a 、b 为△ABC 的边,A 、B 分别是a 、b 的对角,且32sin sin =B A ,求
a b
b
+ 的值.
解:∵23
sin sin ,sin sin ,sin sin ==∴=B A b a B A B b A a 又(这是角的关系),
∴23=b a (这是边的关系)于是,由合比定理得.2
5223=+=+b b a 例2已知△ABC 中,三边a 、b 、c 所对的角分别是A 、B 、C ,且a 、b 、c 成等差数列
求证:sin A +sin C =2sin B
证明:∵a 、b 、c 成等差数列,
∴a +c =2b (这是边的关系)①

B A
b a C
c B b A a sin sin ,sin sin sin =
∴==② B
C
b c sin sin =
③ 将②、③代入①,得b B
C
b B A b 2sin sin sin sin =+整理得sin A +sin C =2sin B (这是角的关系。

相关文档
最新文档