电路分析基础第4章
《电路分析基础》习题参考答案

《电路分析基础》各章习题参考答案第1章习题参考答案1-1 (1) SOW; (2) 300 V、25V,200V、75V; (3) R=12.50, R3=1000, R4=37.5021-2 V =8.S V, V =8.S V, V =0.S V, V =-12V, V =-19V, V =21.S V U =8V, U =12.5,A mB D 'AB B CU =-27.S VDA1-3 Li=204 V, E=205 V1-4 (1) V A=lOO V ,V=99V ,V c=97V ,V0=7V ,V E=S V ,V F=l V ,U A F=99V ,U c E=92V ,U8E=94V,8U BF=98V, u cA=-3 V; (2) V c=90V, V B=92V, V A=93V, V E=-2V, V F=-6V, V G=-7V, U A F=99V, u c E=92V, U B E=94V, U BF=98V, U C A =-3 V1-5 R=806.70, 1=0.27A1-6 1=4A ,11 =llA ,l2=19A1-7 (a) U=6V, (b) U=24 V, (c) R=SO, (d) 1=23.SA1-8 (1) i6=-1A; (2) u4=10V ,u6=3 V; (3) Pl =-2W发出,P2=6W吸收,P3=16W吸收,P4=-lOW发出,PS=-7W发出,PG=-3W发出1-9 l=lA, U5=134V, R=7.801-10 S断开:UAB=-4.SV, UA0=-12V, UB0=-7.2V; S闭合:12 V, 12 V, 0 V1-12 UAB=llV / 12=0.SA / 13=4.SA / R3=2.401-13 R1 =19.88k0, R2=20 kO1-14 RPl=11.110, RP2=1000第2章习题参考答案2-1 2.40, SA2-2 (1) 4V ,2V ,1 V; (2) 40mA ,20mA ,lOmA 2-3 1.50 ,2A ,1/3A2-4 60 I 3602-5 2A, lA2-6 lA2-7 2A2-8 lOA2-9 l1=1.4A, l2=1.6A, l3=0.2A2-10 11=OA I l2=-3A I p l =OW I P2=-l8W2-11 11 =-lA, l2=-2A I E3=10V2-12 11=6A, l2=-3A I l3=3A2-13 11 =2A, l2=1A ,l3=1A ,14 =2A, l5=1A2-14 URL =30V I 11=2.SA I l2=-35A I I L =7.SA2-15 U ab=6V, 11=1.SA, 12=-lA, 13=0.SA2-16 11 =6A, l2=-3A I l3=3A2-17 1=4/SA, l2=-3/4A ,l3=2A ,14=31/20A ,l5=-11/4A12-18 1=0.SA I l2=-0.25A12-19 l=1A32-20 1=-lA52-21 (1) l=0A, U ab=O V; (2) l5=1A, U ab=llV。
电路分析基础第四、第五章测验测试题

第四章测试一、填空题(共6 题,75.0分)1.只要求出__________、__________和__________这三个量,就能立即写出换路后的电压或电流________________的表达式。
2.具有一个独立初始条件的动态电路叫( )电路。
3.换路后的一瞬间,电容的端_________和电感中的___________都保持换路前一瞬间的数值,这叫做___________。
4.R、C串联电路过渡过程的时间常数τ=( ),而R、L串联电路过渡过程的时间常数τ=( )5.线性动态电路的全响应,根据叠加定理可表示为( )响应与( )响应之和。
6.换路后的一瞬间,电容的端________和电感的_________都保持前一瞬间的数值,这叫_________。
二.判断题(共2 题,25.0分)1.一阶动态电路三要素法的通式为f(t)=f(∞)+[f(0+)-f(∞)]·e-t/τ答案:对2.RC一阶电路中,电容电压UC的零输入响应是按指数规律增长。
答案:对第五章测试一、单选题(共8 题,20.0分)1.标有额定值220V 60W的灯泡,将它接在电源上,它消耗的功率()。
A.小于60WB.等于60WC.大于60WD.无法确定答案:B2.在电阻和电容串联电路中,阻抗1Z1=( )A.A+XCB.sqrt(R*R±Xc*Xc)C.uc/icD.Ucm/Ic答案:B3.启辉器中装有一只电容器,其作用是( )A.启辉器中装有一只电容器,其作用是B.保护启辉器的动静触片C.通交流隔直流答案:A4.在纯电容电路中,电压有效值不变,频率增大时,电路中的电流将( )A.增大B.减小C.不变D.无法确定答案:A5.若频率为f时电路的感抗等于容抗,当频率为2f时,该感抗为容抗的( )。
A.2倍B.0.25倍C.相等D.4倍答案:D6.两个同频率正弦交流电流i1、i2的有效值各为40A和30A, 当i1+i2的有效值为70A时,i1与i2的相位差是( )。
《电路分析基础》第一章~第四章练习题

1、电路;2、理想器件;3、电路模型;4、电路模型;5、集总参数元件;6、几何尺寸;7、用来描述电路性能;8、i u q ψ;9、正电荷;10、参考方向;11、电位差;12、电流参考方向与电压降的选择一致;13、P(t)=dW(t)/ dt;14、吸收功率产生功率;15、能量传输;16、任意选取;17、任意选取;18、一条支路;19、支路电压;20、支路电流;21、节点;22、回路;23、网孔;24、网络;25、拓扑约束;26、元件约束;27、拓扑约束元件约束;28代数和;29、支路电流;30、电压降;31、路径;32、线性;33、原点;34、电导;35、线性电阻非线性电阻;36、P=UI;37电源;38、外电路;39、外电路;40、串联;41、并联;42、分压;43、分流;44、控制受控;45、控制量;46、n-1 b-n+1;47、线性电路;48、线性含源;49、完备性独立性;50、假设;51、网孔分析法;52、KVL;53、独立节点;54、单口网络;55、端口电压与电流的伏安关系等效电路;56、外接电压源外接电流源;57、外接电路;58、非线性电路;59、伏安特性曲线;60、网络内部;61、理想电压源;62、理想电流源;63、一个理想电压源uS;64、一个理想电流源iS;65、大小相等且极性一致;66、大小相等且方向一致;67、线性含源单口网络;68、uOC/iSC;69、外加电源法开路短路法;70、负载RL应与戴维南等效
三、计算分析题
1、电路如图1所示,已知us 12V,试求u2和等效电阻Rin。
2、电路如图2所示,试求电流i和电压u。
3、电路如图3所示,试用叠加定理求电压U和电流I。
4、电路如图4所示,试用叠加定理求电压U。
5、电路如图5所示,试用叠加定理求电压U和电流I。
电路分析基础第五版第4章

中产生的电流;
产生的电流。
即:由两个激励产生的响应可表示为每一个激 励单独作用时产生的响应之和。这就是电路理 论中的“叠加性”。
叠加定理:在线性电路中,求某支路(元件)的电压 或电流(响应)等于每个独立源(激励)分别单独作用 时,在该支路产生电压或电流的代数和。
适用范围:多电源激励线性电路。
分析方法: (1)设电压、电流的参考方向。 (2)画子图:每个独立源单独作用时的电路图。 电压源不作用视为短路,电流源不作用视为开路, 其它线性元件照搬。
6
先求出ab支路( 电流ix 所流经的支路)以外电
a ix
b
18V 20
路其余部分就端口ab而
6
3
言的戴维宁等效电路。
c
o (a)
3
6
+
a + uoc - b
18V
6
3
(1)求开路电压uoc, 即断开ab支路后,求 ab之间的电压,如图 (b)所示。
o (b)
uoc = uab=uao- ubo
设想音频放大器(功放)提供恒定功率,
思考
若同时外接多个扬声器,那么以不同的方
式连接,会有什么样的音响效果?
另外,当人们在收听音乐时,偶尔会发生
生失真现象.这又是什么引起的,该如何遭
免呢?
§4-1 叠加定理
线性电路— 由线性元件和独立源构成的电路。
1、线性电路的齐次性 齐次定理:线性电路中所有激励(独立源) 都增大或缩小K倍(K为实常数),响应也将 同样增大或缩小K倍。
利用叠加定理分别求出 1
电压源和电流源单独作
用时的短路电流 isc和isc
如图(b)、(c)所示。
a
电路分析基础(第二版) 曾令琴 人民邮电出版社 课后答案 指导与解答4 课后答案【khdaw_lxywyl】

1、学习指导 (1)复功率
上等于电路中的有功功率 P,复功率的虚部在数值等于电路的无功功率 Q,复功率的模值等于 正弦交流电路中的视在功率 S。要注意的是,电路中各个元件上的有功功率可以相加,无功功 率可以相加减,但电路各部分的视在功率一般不能直接相加减,其中原因由读者自己考虑。 (2)功率因数的提高 由对功率的讨论我们引入了提高功率因数的问题。提高功率因数是指提高线路总电压与
初相, 任何一个正弦量都可以对应这样的一个复数, 而我们就把这个与正弦量相对应的复数称 为正弦量的相量,简称相量。换句话说,正弦量的相量就是特指用复数来表示的、与正弦量具 有一一对应关系的复数。 为区别与一般复数的不同, 相量头顶要带上标记 “· ” 。 值得注意的是, 一个相量可以充分表达正弦量的三要素, 只是由于电路中各量频率相同而省掉了频率而已 (如 上面 1.所述) 。相量仅为正弦量的一种表示方法,相量并不等于正弦量。 (3)复阻抗 复数形式的电阻和电抗称为复阻抗。相量分析法中的复阻抗的模对应正弦交流电路中的 电阻和电抗,例如单一电阻元件电路的复阻抗为R,是一个只有实部没有虚部的复数;单一电 感元件电路的复阻抗是jX L ,是没有实部,只有正值虚部的复数;单一电容元件电路的复阻抗
51
aw
案
(2)式中解析式不等于相量式,应改为
网
u 220 2 sin(t
)
U m 220 2e j 45 V
.c o
m
作好相量图是分析解决问题的关键环节, 也是一种基本的技能训练。 在正弦稳态电路的分析中, 利用相量图的帮助来分析和解决实际问题的例子很多, 相量图不仅能形象地表征出电路中各量 间的数量和相位关系, 有时通过对相量图能把隐含的问题浅显化, 藉助相量图往往可以方便地 定性分析电路中的某些特性, 使复杂问题从相量图的分析中显示的一目了然, 甚至能够起着四 两拨千斤的效果。 (2)RLC 串联电路的相量模型分析 相量分析法中,借助相量图分析电路很关键。相量图的画法,可根据具体问题的不同, 选择合适的一个电路变量作为参考相量, 串联电路的参考相量一般选用电流相量, 再根据各元 元件电压之间的相位关系和数量关系、 各电压与电流之间的相位关系一目了然。 注意相量图分 析中只有电压三角形是相量图,阻抗三角形不是相量图,它只反映了各元件参数的数量关系。 正弦并联电路采用相量分析法解题时,一般选取电压为电路的参考相量。然后根据 R、L、 后运用矢量图遵循的平行四边形法则或多角形法则, 定性地画出电路的相量图, 根据相量图分 2、学习检验结果解析 (1)一个 110V、60W 的白炽灯接到 50Hz、220V 正弦电源上,可以用一个电阻、或一个 电感、或一个电容和它串联。试分别求所需的 R、L、C 的值。如果换接到 220V 直流电源上, 这三种情况的后果分别如何? (3)RLC 并联电路的相量模型分析 件上电压与电流的相位关系定性地画出各电压, 各电压比例尺应相同, 由这样的相量图可把各
电路分析基础第4章 相量法(2h)

Im
U 2
U
U 1
41.9
60 30
Re
U
Im
U 2
首
U 1
60 尾
41.9
相 接
30
Re
/38 章目录 上一页 下一页 返回 退出
第4章 正弦稳态电路分析
4.3 基尔霍夫定律的相量形式和基本
元件伏安关系的相量形式
一. 电阻 i(t)
+
uR(t) R -
•
I
+
•
UR
R
-
相量模型
已知 i(t) 2I cos(wt y i )
设 i(t)=Imcos(w t+ )
I
1 T
T 0
I
2 m
cos2
(
wt
Ψ
) dt
def
I
1 T i 2 (t )dt
T0
cos2 ( wt Ψ ) 1 cos2(wt Ψ )
2
I 0.707Im Im 2I
i(t) Im cos(wt Ψ ) 2I cos(wt Ψ )
10/38 章目录 上一页 下一页 返回 退出
u2 (t) 4 2cos(314t 60o ) V
U1 630o V U 2 460o V
U U1 U 2 630 460 5.19 j3 2 j3.46
7.19 j6.46 9.6441.9o V
u(t) u1(t) u2 (t) 9.64 2cos(314 t 41.9o ) V
dt
C 相量形式:
•
U Uy u
•
IC
wCUy u
π 2
1 相量关系:
电路分析基础第5版第4章 分解方法及单、双口网络

9V
4Ω 3
I1
应用举例
例1:求图示电路中各支路电流。
解: 将3Ω电阻用电流源置换
I3 = 2.7
I1
9 4
1 2
0.9
2.7
A
I2
9 4
1 2
0.9
1.8
A
I4
I5
1 2
I3
0.45
A
I1
2
+
9V
I3 3
2
2
I2
I4
4- 3
2 I5
I1
0.9A I3
2
+
9V
2
I2
2 2
I4
I5
结论:置换后对其他支路没有任何影响。
电压u =α和端口电流i =β,则N2 (或N1)可用一个电压为 α 的电
压源或用一个电流为 β 的电流源置换 ,置换后对 N1 (或N2 ) 内各支路电压、电流没有影响。
i=β
N1
+
u=α
N2
i=β
+
N1
α
N1
+ u=α
β
置换定理适用于线性和非线性电路。
二. 置换的实质
置换:如果一个网络N由两个单口网络组成,且已
联立(1)、(2),解得 u=12V, i=-1A
用12V电压源置换N1,可求得 i1
用-1A电流源置换N2,可求得 u2=12V
[例]求上一例题中N1和N2的等效电路
0.5i1
6Ω
i
5Ω i1
+
+ 10Ω 1A
12V u
- -2
+
《电路分析基础》_第4章

RO
+
– B
40 RO 8 // 10 4.44 9
A
10 280 uoc 10 ( 20 10) 15.6V 10 8 18
此例从一个侧面证明了戴维南定 理的正确性。也反映了其简便性。
RO
4.44
15.6V B
uoc
+
–
戴维南定理也可以在单口外加电流源i ,用叠加定理计算端 口电压表达式的方法证明。
—
i NS
+ –
a
+
RO
u
b 含源单口网络的VCR表达式:
uoc
–
b
u =K1+K2i = uoc+ Roi
其中:
uoc等于该网络NS的端口开路电压;
a + u
—
i RO
+ –
i
NS
a
+
端口开路时: i =0 u = uoc
u
uoc
–
b
b
RO等于该网络中所有独立源置零时所得网络NR 的等效电阻Rab。 独立源置零
I
+ +
I
º +
5V _
5V _
º
5V _
与电压源并联的元件称为多余元件,多余元件的存在与否并 不影响端口电压的大小,端口电压总等于电压源电压。
us
is
提示:多余元件的存在会使电压源的电流有所改变,但电压源 的电流可为任意值。
总结:一个理想电压源与任何一条支路并联后,对外 等效为理想电压源。 i
(3)外加电压源,求入端电流:
网孔法列方程
( R1+R2 )I + R1IS = - US - U
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i1 i2 60 (135 ) 195
考虑到相位差的取值范围,有
195
2
11
165
12 两正弦量的波形为
i1
20
cos(314 t
)A 3
20 cos(314 t 60)A
i2
10sin(314t
4
)
10cos(314t 3 )A
3
4
2
4
45
i1 i2 150 (45) 195 165
两正弦量的波形为 60
i1
3
2
5
6
150
i2
3
4
2
4
45
150 (45)
195 165
)A 4
试求(1)画出波形图、求相位差;(2)若以 t 0.005s
为计时起点,求两正弦量的初相位和相位差,画出波形图。
,
【解】i2
10sin(314t
4
)
10cos(314t
4
2
)
10cos(314t 3 )A 10cos(314t 135)A
4
(1)两正弦量的相位差为
得
I 1 T i2dt
T0
此值也称为方均根值。
代入 i I m cos(t i )
得
I
1 2
Im
0.707
Im
3.相位和初相位
正弦量随时间变化的角度 t i 称为正弦量的相位。 t 0 时的相位称为正弦量的初相位(或称初相角)
初相位与计时零点的选择有关,如图所示为不同计时零点 下的初相位。
的倒数,即
f 1 T
正弦量一个周期内角度变化了2 弧度,即 T 2
称为正弦量的角频率。角频率、周期、频率三者的关系
为
2 2f
T
单位:弧度/秒(rad/s)
我国电网供电的电压频率为50Hz,该频率称为工频。
2.幅值(或称振幅)和有效值
I m 为电流的幅值(或称振幅),它表示正弦电流在整个变
两个同频率的正弦量之间的相位差等于它们的初相位 之差,即是与频率无关的固定值。
两正弦量之间的相位关系有同相、超前和滞后三种情况。
【例4.1】 已知某电压正弦量为 u 100cos(314t )V 。 6
试求该电压的有效值、频率、初始值,并画出其波形图。
【解】 U 1 100 70.7V 314rad/s
化过程中能到达的最大值
在电路中,一般用正弦量的有效 值来表示一个正弦量在电路中的 实际效果。
图中,i 为正弦量,I 为直流量。
iR
I
R
两者消耗的电能分别为
W~
T Ri 2dt
0
W_ RI 2T
如果这两个热功相等,即
T Ri 2dt RI 2T 0
就称此直流电流 I 为交流电流 i 的有效值。
2
f 314 50Hz u(0) 100cos 100cos30 86.6V
2
6
该正弦电压的波形如图所示。 若
u 100 cos(314 t 30)V
波形如何?
【例4.2】已知同频率正弦电t
)A 3
i2
10sin(314t
60 (135)
195 165
135
结论:计时零点不同,初相位角不同,相位差不变。
4.2 正弦量的相量表示法
相量法是分析正弦稳态电路的一种简单易行的方法, 它是在数学理论和电路理论的基础上建立起来的。
4.2.1 正弦量的相量表示
由数学上的欧拉公式
e j cos jsin
4
=10cos(314t 135)A
(2)若以 t 0.005s 为计时起点,求两正弦量的初相
位和相位差,画出波形图。
由于T 0.02s , t 0.005s T 相当于正弦量的初相 4
位均在原来的基础上增加了 90 ,故有
2
i1
3
2
5
6
150
i2
正弦电流 i I m cos(t i ) 的波形如图所示。
4.1.1 正弦量的三要素
1.频率、周期和角频率
要完全描述一个正弦量,必须知道正弦量的 I m、 、i
这三个物理量称为正弦量的三要素。
正弦量变化一周所需要的时间称为周期T。正弦量每秒变 化的次数称为频率 f ,其单位为赫兹(Hz)。频率是周期
cos
1 2
e j
e j
sin正 弦12量e可j 分e解j 成 一
对共轭复指数函数
正弦量可以表示为
i Im cos(t i )
I e e m j(ti )
- j(t i )
2
Re[Ime j(ti ) ]
~ 220V
镇流器
启辉器
灯管
a)
b)
当外加正弦交流电压220V时,测得灯管两端电压为 110V,镇流器两端电压为176V,它们相加不等于220V, 这是什么原因呢?它们三者之间满足什么样的关系?如何 计算正弦交流电路中的电压和电流?镇流器起什么作用? 它消耗电能吗?
4.1 正弦量
大小和方向都按正弦规律变化的电压和电流称为 正弦电压或正弦电流,常称为正弦量。其相应的波形 称为正弦波。
初相位的取值范围为 i 180
4.相位差 相位差是描述两个同频率正弦量之间的相位关系。假 设两个正弦电流分别为
i1 2I1 cos(t 1 ) i2 2I 2 cos(t 2 )
它们的相位差为
(t 1) (t 2 ) 1 2
4.1 正弦量 4.2 正弦量的相量表示法 4.3 电路元件的相量模型 4.4 正弦稳态电路的阻抗与导纳 4.5 正弦稳态电路的分析 4.6 正弦稳态电路的功率 4.7 功率因数的提高 4.8 最大功率的传输
【引例】 照明用的荧光灯是由灯管、镇流器及辉光启动器组
成,其电路示意图如图a所示。将灯管等效为电阻,镇流 器等效为电感,其电路图如图b所示。
表示取实部
上式可更进一步表示为
i Re[ I me j(ti ) ] Re[ I me ji e jt ] Re[ Ime jt ]