解三角形知识点归纳总结

合集下载

解三角形知识点

解三角形知识点

《必修五》解三角形知识点归纳一、正弦定理 正弦定理:2sin sin sin a b cR A B C=== 文字语言:在一个三角形中,各边和它所对角的正弦的比相等. 符号语言:2sin sin sin a b cR A B C=== 特点:对称美、和谐美 (一)理解定理1、正弦定理:在△ABC 中,2sin sin sin sin sin sin a b c a b cR A B C A B C++====++【在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角,从而知正弦定理的基本作用是进行三角形中的边角互化】2、正弦定理的基本作用:①已知三角形的任意两角及其一边可以求其他边,如角化边sin sin b Aa B=②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a BA b= 3、常用公式及其结论⑴正弦定理包含三个等式sin sin a b A B =,sin sin b c B C =,sin sin a c A C=每一个等式中都包含四个量,可以“知三求一” (2)三内角和为180︒即180A B C ︒++=,222A B C π+=- (3)两边之和大于第三边,两边之差小于第三边,,;,,.a b c a c b b c a a b c b c a a c b +>+>+>-<-<-< (4)面积公式:2111sin sin sin 2sin sin sin 2224abcS ab C bc A ac B R A B C R===== ⑸三角函数的恒等变形:sin()sin A B C +=,cos()cos A B C +=- ,()tan tan A B C +=-,sincos 22A B C +=,cos sin 22A B C+=,tan tan 22A B C +=,tan tan +tan tan tan tan A B C A B C +=⋅⋅ ⑹C B A c b a sin :sin :sin ::= ⑺角化边: C R c B R b A R a sin 2sin 2sin 2===⑻边化角:RcC Rb B Ra A 2sin 2sin 2sin ===⑼在△ABC 中,①若B b A a cos cos =,则△ABC 是等腰三角形或直角三角形; ②若B a A b cos cos =,则△ABC 是等腰三角形;③若222cos cos +cos 1A B C +=或cos cos cos a A b B c C +=,则△ABC 是直角三角形.⑽在△ABC 中,sin sin sin A B C a b c A B C >>⇔>>⇔>>(二)题型:使用正弦定理解三角形共有三种题型题型1: 利用正弦定理公式原型解三角形题型2: 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化.例如:222222sin 3sin 2sin 32A B C a b c +=⇒+=题型3: 三角形解的个数的讨论 方法一:画图看方法二:通过正弦定理解三角形,利用三角形内角和与三边的不等关系检验解出的结果是否符合实际意义,从而确定解的个数.(三)三角形内角平分线定理:△ABC 中,AD 是A ∠的角平分线,则DCBDAC AB = 我们知道,当一个三角形已知任意两角和一边时,根据全等三角形的判定定理可以得知这个三角形就是唯一确定的,也就是可解的.先由三角形内角和定理求出第三个角,再由正弦定理计算另两边.另外,一个三角形的三边之间必须满足:任意两边之和大于第三步且任意两边之差小于第三边.当已知一个三角形的三边时,已知的三条边必须满足上面的条件才能够作出三角形.否则作不出三角形,当然也无法解三角形.从上面的探讨可以得知,已知三角形的三边要解三角形时,必须满足三边关系,解三角形才有意义.当已知三边时,连续利用余弦定理的推论求出较小边的对角,再用三角形内角和求出第三个角. 如果已知三角形的两边及其夹角,那么根据三角形的判定定理我们知道这个三角形是唯一确定的,也就是可解的.我们可以利用余弦定理计算第三边,用余弦定理的推论或正弦定理计算其余两个角. 如果已知任意两边及其中一边的对角如何来解三角形呢?我们先看下面的例题: 例题:已知:在△ABC 中,22,25,133,a cm b cm A ︒===解三角形. 解:22,25,133a cm b cm A ︒===∴根据正弦定理,得sin 25sin133sin 0.831122b A B a ︒==≈ 0180B ︒︒<< ∴56.21B ︒≈,或123.79B ︒≈ 180A B C ︒++= ∴9.21C ︒=-或76.79C ︒=-【师】:问题出在哪里呢?【生】:分析已知条件,我们注意到,133a b A ︒<=,是一个钝角,根据三角形的性质应该有A B <,因而B 也是一个钝角.而在一个三角形中是不可能存在两个钝角的.【师】:从上面的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形.如:①已知32,2,60===O b a A ,求B (有一个解);②已知32,2,60===O a b A ,求B (有两个解)二、余弦定理(一)知识与工具:余弦定理:222222222222222222cos 22cos 2cos cos 22cos cos 2b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab ⎧+-=⎪⎧=+-⎪+-⎪⎪=+-⇒=⎨⎨=+-⎪⎪⎩+-⎪=⎪⎩(二)题型:使用余弦定理解三角形共有三种现象的题型题型1:利用余弦定理公式的原型解三角形题型2:利用余弦定理公式的变形(边角互换)解三角形:凡在同一式子中既有角又有边的题,要将所有角转化成边或所有边转化成角,在转化过程中需要构造公式形式。

高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

解三角形知识点总结

解三角形知识点总结

解三角形中的一些常用的知识点——周文强2020年2月28日14:19:071、 正弦定理【边角转换定理】:2sin sin sin a b c R A B C ===(注:R 为ABC ∆的外接圆半径) 边转角:2sin 2sin 2sin a R A b R B c R C ===、、 角转边:sin sin sin 222a b c A B C R R R ===、、 适用的的条件:①边的齐次式;②角的正弦齐次式2、 余弦定理【一角三边定理】:22222()2cos 22b c a b c bc a A bc bc+−+−−== 22222()2cos 22a c b a c ac b B ac ac+−+−−== 22222()2cos 22a b c a b ab c C ab ab+−+−−== 3、 常用面积公式汇总:面积公式一【已知底和高】:111222ABC a b c S ah bh ch Λ=== 面积公式二【已知两边夹一角】:111sin sin sin 222ABC S ab C bc A ac B Λ=== (以角为主导) 面积公式三【已知三边】:2a b c p ++=,()()()ABC S p p a p b p c Λ=−−− 面积公式四【已知三点的坐标】: 112233(,),(,),(,)A x y B x y C x y 21213131(,),(,)AB x x y y AC x x y y =−−=−−,2131312111()()()()22ABC S AB AC x x y y x x y y Λ=⨯=−−−−− 4、 面积公式+余弦定理 222tan 4b c a S A +−=, 222tan 4a cb S B +−=,222tan 4a bc S C +−= 5、 中线长定理(D 为BC 的中点)2222()a b c a m +−=,2222()b a c b m +−=,2222()c a b c m +−= 推导:2222222222()22cos cos 00a a a AD c AD b b c a BDA CDA AD m AD a AD a ⎛⎫⎛⎫+−+− ⎪ ⎪+−⎝⎭⎝⎭∠+∠=⇒+=⇒==⋅⋅ 其他两个推导方法一致,这里说明下,a m 表示边a 的中线。

解三角形知识点小结

解三角形知识点小结

解三角形知识点小结一、知识梳理1.内角和定理:在ABC ∆中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C -sin sin A B A B >⇔>,cos cos A B A B >⇔<〔cos y x =在(0,)π上单调递减〕面积公式:111sin sin sin 222ABC S ab C bc A ac B ∆===设2a b cp ++=那么()()()S p p a p b p c =---在三角形中大边对大角,反之亦然.2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等.形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具)形式二:⎪⎩⎪⎨⎧===CR c B R b A R a sin 2sin 2sin 2 (边化正弦)形式三:::sin :sin :sin a b c A B C =〔比的性质〕形式四:sin ,sin ,sin 222a b cA B C R R R ===〔正弦化边〕3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍..形式一:2222cos a b c bc A=+-2222cos b c a ca B =+- (遇见二次想余弦)2222cos c a b ab C =+-形式二:222cos 2b c a A bc +-=,222cos 2a c b B ac +-=,222cos 2a b c C ab +-=二、方法归纳(1)两角A 、B 与一边a,由A+B+C=π及sin sin sin a b cA B C ==,可求出角C ,再求b 、c.(2)两边及一角,用余弦定理。

(3)三边,用余弦定理。

(4)求角度,用余弦。

三、经典例题问题一:利用正弦定理解三角形 【例1】在ABC ∆中,假设5b =,4B π∠=,1sin 3A =,那么a = .【例2】在△ABC 中,a=3,b=2,B=45°,求A 、C 和c. 问题二:利用余弦定理解三角形【例3】设ABC ∆的内角C B A 、、所对的边分别为c b a 、、.1=a ,2=b ,41cos =C . 〔Ⅰ〕求ABC ∆的周长,〔Ⅱ〕求()C A -cos 的值.【注】常利用到的三角公式两角和与差的正弦、余弦、正切公式及倍角公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=- 【例4】〔2021重庆文数〕设ABC ∆的内角A 、B 、C 的对边长分别为a 、b 、c,且32b +32c -32a bc .(Ⅰ) 求sinA 的值;(Ⅱ)求2sin()sin()441cos 2A B C Aππ+++-的值. 假设条件改为:2223sin 3sin 3sin sin B C A B C +-=? 2 .在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且CB cos cos =-c a b +2. 〔1〕求角B 的大小;〔2〕假设b=13,a+c=4,求△ABC 的面积. 问题三:正弦定理余弦定理综合应用【例5】〔2021山东文数〕在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .cos A-2cos C 2c-a=cos B b.〔I 〕求sin sin CA的值;〔II 〕假设cosB=14,5b ABC 的周长为,求的长.【注】“边化正弦,正弦化边〞“余弦直接代入〞考虑以下式子:1cos 2a C c b+=,(2)cos cos a c B b C -=,(2)cos cos 0a c b b C -+=【例6】〔2021全国卷Ⅰ理〕在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,222a c b -=,且sin cos 3cos sin ,A C A C = 求b【注】对条件(1)222a c b -=左侧是二次的右侧是一次的,可以考虑余弦定理;而对条件(2)sin cos 3cos sin ,A C A C =化角化边都可以。

解三角形知识点归纳总结

解三角形知识点归纳总结

解三角形知识点归纳总结三角形是平面几何中重要的图形之一,研究三角形的性质可以帮助我们解决各种几何问题。

下面对常见的三角形知识点进行归纳总结。

一、三角形的定义和分类1.三角形是由三条边和三个顶点组成的图形。

2.根据边的长度,三角形可以分为等边三角形、等腰三角形和普通三角形。

3.根据角的大小,三角形可以分为锐角三角形、直角三角形和钝角三角形。

二、三角形的性质和关系1.三角形的内角和等于180度。

2.等边三角形的三个角都是60度。

3.等腰三角形的两个底角相等。

4.直角三角形的一个角是90度。

5.顶角相等的两个等腰三角形是全等的。

6.等腰三角形的底边上的高是它的中位线、垂直线和角平分线。

7.等边三角形的高、中位线、垂直线和角平分线是重合的。

8.三角形的任意两边之和大于第三边,任意两边之差小于第三边。

三、三角形的重要线段和关系1.三角形的重心:三条中线的交点,也是三条中线的重心。

2.三角形的垂心:三条高线的交点,也是三条高线的垂心。

3.三角形的外心:三个顶点关于其中一直线对称的焦点,也是三个外接圆的圆心。

4.三角形的内心:三条内角平分线的交点,也是三个内切圆的圆心。

5.等腰三角形的高、两边中线和角平分线等于底边。

6.直角三角形的斜边是其他两边的和。

四、三角形的面积计算1.根据底和高的关系,可以计算普通三角形的面积。

2.根据两边和夹角的关系,可以使用正弦定理、余弦定理和海伦公式计算三角形的面积。

五、三角形的相似与全等1.两个三角形如果对应的角相等,则它们是相似的。

2.两个三角形如果对应的边和角都相等,则它们是全等的。

3.相似三角形的边长比例相等,面积比例为边长比例的平方。

六、勾股定理1.直角三角形中,斜边的平方等于两腰的平方和。

2.勾股定理可以用于证明三角形是否为直角三角形,也可以用于计算三角形的边长。

七、三角函数1.正弦函数:在直角三角形中,其中一锐角的对边与斜边之比。

2.余弦函数:在直角三角形中,其中一锐角的临边与斜边之比。

解三角形知识点归纳总结

解三角形知识点归纳总结

第一章 解三角形一.正弦定理:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R Cc B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin CA c a = 3)化边为角:C R cB R b A R a sin 2,sin 2,sin 2===4)化角为边:;sin sin b a B A = ;sin sin c b C B =;sin sin ca C A = 5)化角为边: Rc C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin CB c b = ;sin sin CA c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。

例:已知边a,b,A,解法:由正弦定理BA b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理CA c a sin sin =求出c 边4.△ABC 中,已知锐角A ,边b ,则①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解;③b a A b <<sin 时,B 有两个解。

如:①已知32,2,60===O b a A ,求B (有一个解)②已知32,2,60===O a b A ,求B (有两个解)注意:由正弦定理求角时,注意解的个数。

解三角形知识点总结

解三角形知识点总结

解三角形知识点总结解三角形是数学中非常重要的一个知识点,涉及到计算角度和边长的方法。

在解三角形的过程中,我们需要运用多种方法和公式,通过观察和计算来确定三角形的未知量。

本文将对解三角形的一些基本概念、方法和公式进行总结和归纳。

一、三角形的基本概念三角形是由三条边和三个角所组成的一个几何图形。

根据三角形的边长和角度的不同,可以将三角形分为等边三角形、等腰三角形、直角三角形、锐角三角形和钝角三角形等不同类型。

二、解三角形的基本方法1.已知两边和夹角如果我们已知两条边和它们之间的夹角,可以根据余弦定理来计算第三边的长度。

余弦定理的表达式为:c² = a² + b² - 2ab*cosC其中,a和b分别表示已知的两条边的长度,C表示夹角的大小,c 表示未知边长。

2.已知两边和非夹角当我们已知两边和一个非夹角时,可以利用正弦定理来计算其他两个角的大小。

正弦定理的表达式如下:a/sinA = b/sinB = c/sinC其中,a、b、c分别表示三角形的边长,A、B、C表示三角形对应的角度。

3.已知边长和高当我们已知一个边和它对应的高时,可以通过面积公式来计算另外两个未知量。

三角形的面积公式为:S = 1/2 * 底 * 高其中,底表示三角形的底边长度,高表示从底边到对应顶点的垂直距离。

三、特殊的三角形1.等边三角形等边三角形是指三条边长度相等的三角形。

在等边三角形中,三个角都是60度。

2.等腰三角形等腰三角形是指两条边长度相等的三角形。

在等腰三角形中,两个底角(基角)是相等的。

3.直角三角形直角三角形是指其中一个角为90度的三角形。

在直角三角形中,可以利用勾股定理来计算未知边长。

四、解三角形的实际应用解三角形的知识在实际应用中有很多重要的用途。

在地理学中,我们可以通过测量地球上两个点的经纬度来计算它们之间的距离和方位角。

在建筑学中,解三角形的方法可以用于测量高楼大厦的高度。

解三角形的知识也广泛应用于导航、航空和测量等领域中。

解三角形知识点总结及典型例题

解三角形知识点总结及典型例题
则 = = =
因为 ,所以
[例2 ] 若 、 、 是 的三边, ,则函数 的图象与 轴( )
A、有两个交点 B、有一个交点 C、没有交点 D、至少有一个交点
【解析】由余弦定理得 ,所以 = ,因为 1,所以 0,因此 0恒成立,所以其图像与 轴没有交点。
题型2 三角形解的个数
[例3]在 中,分别根据下列条件解三角形,其中有两解的是( )
A、 , , ;B、 , , ;
C、 , , ;D、 , , 。
题型3 面积问题
[例4] 的一个内角为 ,并且三边构成公差为 的等差数列,则 的面积为
【解析】设△ABC的三边分别: ,
∠C=120°,∴由余弦定理得: ,解得: ,
∴ 三边分别为6、10、14,
.
题型4 判断三角形形状
[例5] 在 中,已知 ,判断该三角形的形状。
【解析】把已知等式都化为角的等式或都化为边的等式。
方法一:
由正弦定理,即知
由 ,得 或 ,
即 为等腰三角形或直角三角形.
方法二:同上可得
由正、余弦定理,即得:

或 ,
即 为等腰三角形或直角三角形.
【点拨】判断三角形形状问题,一是应用正弦定理、余弦定理将已知条件转化为边与边之间的关系,通过因式分解等方法化简得到边与边关系式,从而判断出三角形的形状;(角化边)
二是应用正弦定理、余弦定理将已知条件转化为角与角之间三角函数的关系,通过三角恒等变形以及三角形内角和定理得到内角之间的关系,从而判断出三角形的形状。(边化角)
题型5 正弦定理、余弦定理的综合运用
[例6]在 中, 分别为角 的对边,且 且
(1)当 时,求 的值;
(2)若角 为锐角,求 的取值范围。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形知识点归纳总

Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT
第一章 解三角形
一.正弦定理:
1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于
外接圆的直径,即 R C
c
B b A a 2sin sin sin ===(其中R 是三角形外接圆的半
径)
2.变形:1)sin sin sin sin sin sin a b c a b c
C C ++===
A +
B +A B . 2)化边为角:
C B A c b a sin :sin :sin ::=;
3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2===
4)化角为边:
;sin sin b a B A = ;sin sin c b C B =;sin sin c
a
C A = 5)化角为边: R
c
C R b B R a A 2sin ,2sin ,2sin =
== 3. 利用正弦定理可以解决下列两类三角形的问题:
4. ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a ,
解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a =
;sin sin C
B
c b = ;sin sin C
A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。

例:已知边a,b,A,
解法:由正弦定理B
A
b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用
正弦定理C
A
c a sin sin =求出c 边
4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解;
③b a A b <<sin 时,B 有两个解。

如:①已知32,2,60===O b a A ,求B ②已知32,2,60===O a b A ,求B (有两个解) 注意:由正弦定理求角时,注意解的个数。

二.三角形面积
1.B ac A bc C ab S ABC sin 21
sin 21sin 21===∆
2. r c b a S ABC )(2
1
++=∆,其中r 是三角形内切圆半径.
3. ))()((c p b p a p p S ABC ---=∆, 其中)(2
1
c b a p ++=,
4. R
abc
S ABC
4=∆,R 为外接圆半径 5.C B A R S ABC sin sin sin 22=∆,R 为外接圆半径
三.余弦定理
1.余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即
2.变形:bc
a c
b A 2cos 2
22-+=
注意整体代入,如:2
1cos 222=
⇒=-+B ac b c a 3.利用余弦定理判断三角形形状:
设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:
①若,
,所以为锐角
②若为直角A a b c ⇔=+222
③若
, 所以为钝角,则
是钝角三角形
4.利用余弦定理可以解决下列两类三角形的问题: 1)已知三边,求三个角
2)已知两边和它们的夹角,求第三边和其他两个角 四、应用题
1.已知两角和一边(如A 、B 、C ),由A +B +C = π求C ,由正弦定理求a 、b .
2.已知两边和夹角(如a 、b 、c ),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A +B +C = π,求另一角.
3.已知两边和其中一边的对角(如a 、b 、A ),应用正弦定理求B ,由A +B +C = π求C ,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况.
4.已知三边a 、b 、c ,应用余弦定理求A 、B ,再由A +B +C = π,求角C .
5.方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目
标的方向线所成的角(一般指锐角),通常表达成.正北或正南,北偏东××度, 北偏西××度,南偏东××度,南偏西××度.
6.俯角和仰角的概念:在视线与水平线所成的角中,视线在水平线上
方的角叫仰角,视线在水平线下方的角叫俯角.
五、三角形中常见的结论
1)三角形三角关系:A+B+C=180°;C=180°—(A+B); 2)三角形三边关系: 两边之和大于第三边:,,; 两边之差小于第三边:



3)在同一个三角形中大边对大角:B A b a B A sin sin >⇔>⇔> 4) 三角形内的诱导公式:
5) 两角和与差的正弦、余弦、正切公式
(1)sin(α±β)=sin αcos β±cos αsin β.
(2)cos(α±β)=cos αcos βsin αsin β.
(3)tan(α±β)=tan α±tan β1tan αtan β.
6) 二倍角的正弦、余弦、正切公式
(1)sin 2α=2sin αcos α.
(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.
(3)22cos 1cos ;22cos 1sin 22α
ααα+=
-=
(4)tan 2α=2tan α
1-tan 2α
.
7) 三角形的五心:
垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点 外心——三角形三边垂直平分线相交于一点 内心——三角形三内角的平分线相交于一点
旁心——三角形的一条内角平分线与其他两个角的外角平分线交于一点

直线
水平线
视线
视线
仰角
俯角。

相关文档
最新文档