解三角形知识点归纳
解三角形知识点

《必修五》解三角形知识点归纳一、正弦定理 正弦定理:2sin sin sin a b cR A B C=== 文字语言:在一个三角形中,各边和它所对角的正弦的比相等. 符号语言:2sin sin sin a b cR A B C=== 特点:对称美、和谐美 (一)理解定理1、正弦定理:在△ABC 中,2sin sin sin sin sin sin a b c a b cR A B C A B C++====++【在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角,从而知正弦定理的基本作用是进行三角形中的边角互化】2、正弦定理的基本作用:①已知三角形的任意两角及其一边可以求其他边,如角化边sin sin b Aa B=②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a BA b= 3、常用公式及其结论⑴正弦定理包含三个等式sin sin a b A B =,sin sin b c B C =,sin sin a c A C=每一个等式中都包含四个量,可以“知三求一” (2)三内角和为180︒即180A B C ︒++=,222A B C π+=- (3)两边之和大于第三边,两边之差小于第三边,,;,,.a b c a c b b c a a b c b c a a c b +>+>+>-<-<-< (4)面积公式:2111sin sin sin 2sin sin sin 2224abcS ab C bc A ac B R A B C R===== ⑸三角函数的恒等变形:sin()sin A B C +=,cos()cos A B C +=- ,()tan tan A B C +=-,sincos 22A B C +=,cos sin 22A B C+=,tan tan 22A B C +=,tan tan +tan tan tan tan A B C A B C +=⋅⋅ ⑹C B A c b a sin :sin :sin ::= ⑺角化边: C R c B R b A R a sin 2sin 2sin 2===⑻边化角:RcC Rb B Ra A 2sin 2sin 2sin ===⑼在△ABC 中,①若B b A a cos cos =,则△ABC 是等腰三角形或直角三角形; ②若B a A b cos cos =,则△ABC 是等腰三角形;③若222cos cos +cos 1A B C +=或cos cos cos a A b B c C +=,则△ABC 是直角三角形.⑽在△ABC 中,sin sin sin A B C a b c A B C >>⇔>>⇔>>(二)题型:使用正弦定理解三角形共有三种题型题型1: 利用正弦定理公式原型解三角形题型2: 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化.例如:222222sin 3sin 2sin 32A B C a b c +=⇒+=题型3: 三角形解的个数的讨论 方法一:画图看方法二:通过正弦定理解三角形,利用三角形内角和与三边的不等关系检验解出的结果是否符合实际意义,从而确定解的个数.(三)三角形内角平分线定理:△ABC 中,AD 是A ∠的角平分线,则DCBDAC AB = 我们知道,当一个三角形已知任意两角和一边时,根据全等三角形的判定定理可以得知这个三角形就是唯一确定的,也就是可解的.先由三角形内角和定理求出第三个角,再由正弦定理计算另两边.另外,一个三角形的三边之间必须满足:任意两边之和大于第三步且任意两边之差小于第三边.当已知一个三角形的三边时,已知的三条边必须满足上面的条件才能够作出三角形.否则作不出三角形,当然也无法解三角形.从上面的探讨可以得知,已知三角形的三边要解三角形时,必须满足三边关系,解三角形才有意义.当已知三边时,连续利用余弦定理的推论求出较小边的对角,再用三角形内角和求出第三个角. 如果已知三角形的两边及其夹角,那么根据三角形的判定定理我们知道这个三角形是唯一确定的,也就是可解的.我们可以利用余弦定理计算第三边,用余弦定理的推论或正弦定理计算其余两个角. 如果已知任意两边及其中一边的对角如何来解三角形呢?我们先看下面的例题: 例题:已知:在△ABC 中,22,25,133,a cm b cm A ︒===解三角形. 解:22,25,133a cm b cm A ︒===∴根据正弦定理,得sin 25sin133sin 0.831122b A B a ︒==≈ 0180B ︒︒<< ∴56.21B ︒≈,或123.79B ︒≈ 180A B C ︒++= ∴9.21C ︒=-或76.79C ︒=-【师】:问题出在哪里呢?【生】:分析已知条件,我们注意到,133a b A ︒<=,是一个钝角,根据三角形的性质应该有A B <,因而B 也是一个钝角.而在一个三角形中是不可能存在两个钝角的.【师】:从上面的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形.如:①已知32,2,60===O b a A ,求B (有一个解);②已知32,2,60===O a b A ,求B (有两个解)二、余弦定理(一)知识与工具:余弦定理:222222222222222222cos 22cos 2cos cos 22cos cos 2b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab ⎧+-=⎪⎧=+-⎪+-⎪⎪=+-⇒=⎨⎨=+-⎪⎪⎩+-⎪=⎪⎩(二)题型:使用余弦定理解三角形共有三种现象的题型题型1:利用余弦定理公式的原型解三角形题型2:利用余弦定理公式的变形(边角互换)解三角形:凡在同一式子中既有角又有边的题,要将所有角转化成边或所有边转化成角,在转化过程中需要构造公式形式。
高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳一、知识点归纳(★☆注重细节,熟记考点☆★)1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径)变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R===()(角化边公式) 3::sin :sin :sin a b c A B C =()sin sin sin (4),,sin sin sin a A a A b B b B c C c C=== 2.正弦定理适用情况:(1)已知两角及任一边;(2)已知两边和一边的对角(需要判断三角形解的情况).3.余弦定理及其推论2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab+-=+-=+-= 4.余弦定理适用情况:(1)已知两边及夹角; (2)已知三边.注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式.5.常用的三角形面积公式(1)高底⨯⨯=∆21ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R===∆为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边)(2)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边)(3)在ABC ∆中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 7.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。
解三角形知识点总结

解三角形中的一些常用的知识点——周文强2020年2月28日14:19:071、 正弦定理【边角转换定理】:2sin sin sin a b c R A B C ===(注:R 为ABC ∆的外接圆半径) 边转角:2sin 2sin 2sin a R A b R B c R C ===、、 角转边:sin sin sin 222a b c A B C R R R ===、、 适用的的条件:①边的齐次式;②角的正弦齐次式2、 余弦定理【一角三边定理】:22222()2cos 22b c a b c bc a A bc bc+−+−−== 22222()2cos 22a c b a c ac b B ac ac+−+−−== 22222()2cos 22a b c a b ab c C ab ab+−+−−== 3、 常用面积公式汇总:面积公式一【已知底和高】:111222ABC a b c S ah bh ch Λ=== 面积公式二【已知两边夹一角】:111sin sin sin 222ABC S ab C bc A ac B Λ=== (以角为主导) 面积公式三【已知三边】:2a b c p ++=,()()()ABC S p p a p b p c Λ=−−− 面积公式四【已知三点的坐标】: 112233(,),(,),(,)A x y B x y C x y 21213131(,),(,)AB x x y y AC x x y y =−−=−−,2131312111()()()()22ABC S AB AC x x y y x x y y Λ=⨯=−−−−− 4、 面积公式+余弦定理 222tan 4b c a S A +−=, 222tan 4a cb S B +−=,222tan 4a bc S C +−= 5、 中线长定理(D 为BC 的中点)2222()a b c a m +−=,2222()b a c b m +−=,2222()c a b c m +−= 推导:2222222222()22cos cos 00a a a AD c AD b b c a BDA CDA AD m AD a AD a ⎛⎫⎛⎫+−+− ⎪ ⎪+−⎝⎭⎝⎭∠+∠=⇒+=⇒==⋅⋅ 其他两个推导方法一致,这里说明下,a m 表示边a 的中线。
解三角形知识点小结

解三角形知识点小结一、知识梳理1.内角和定理:在ABC ∆中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C -sin sin A B A B >⇔>,cos cos A B A B >⇔<〔cos y x =在(0,)π上单调递减〕面积公式:111sin sin sin 222ABC S ab C bc A ac B ∆===设2a b cp ++=那么()()()S p p a p b p c =---在三角形中大边对大角,反之亦然.2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等.形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具)形式二:⎪⎩⎪⎨⎧===CR c B R b A R a sin 2sin 2sin 2 (边化正弦)形式三:::sin :sin :sin a b c A B C =〔比的性质〕形式四:sin ,sin ,sin 222a b cA B C R R R ===〔正弦化边〕3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍..形式一:2222cos a b c bc A=+-2222cos b c a ca B =+- (遇见二次想余弦)2222cos c a b ab C =+-形式二:222cos 2b c a A bc +-=,222cos 2a c b B ac +-=,222cos 2a b c C ab +-=二、方法归纳(1)两角A 、B 与一边a,由A+B+C=π及sin sin sin a b cA B C ==,可求出角C ,再求b 、c.(2)两边及一角,用余弦定理。
(3)三边,用余弦定理。
(4)求角度,用余弦。
三、经典例题问题一:利用正弦定理解三角形 【例1】在ABC ∆中,假设5b =,4B π∠=,1sin 3A =,那么a = .【例2】在△ABC 中,a=3,b=2,B=45°,求A 、C 和c. 问题二:利用余弦定理解三角形【例3】设ABC ∆的内角C B A 、、所对的边分别为c b a 、、.1=a ,2=b ,41cos =C . 〔Ⅰ〕求ABC ∆的周长,〔Ⅱ〕求()C A -cos 的值.【注】常利用到的三角公式两角和与差的正弦、余弦、正切公式及倍角公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=- 【例4】〔2021重庆文数〕设ABC ∆的内角A 、B 、C 的对边长分别为a 、b 、c,且32b +32c -32a bc .(Ⅰ) 求sinA 的值;(Ⅱ)求2sin()sin()441cos 2A B C Aππ+++-的值. 假设条件改为:2223sin 3sin 3sin sin B C A B C +-=? 2 .在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且CB cos cos =-c a b +2. 〔1〕求角B 的大小;〔2〕假设b=13,a+c=4,求△ABC 的面积. 问题三:正弦定理余弦定理综合应用【例5】〔2021山东文数〕在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .cos A-2cos C 2c-a=cos B b.〔I 〕求sin sin CA的值;〔II 〕假设cosB=14,5b ABC 的周长为,求的长.【注】“边化正弦,正弦化边〞“余弦直接代入〞考虑以下式子:1cos 2a C c b+=,(2)cos cos a c B b C -=,(2)cos cos 0a c b b C -+=【例6】〔2021全国卷Ⅰ理〕在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,222a c b -=,且sin cos 3cos sin ,A C A C = 求b【注】对条件(1)222a c b -=左侧是二次的右侧是一次的,可以考虑余弦定理;而对条件(2)sin cos 3cos sin ,A C A C =化角化边都可以。
解三角形知识点归纳总结

解三角形知识点归纳总结三角形是平面几何中的重要概念,是由三条线段相连构成的多边形。
本文将对三角形的基本性质、分类、面积和周长计算以及相关定理进行归纳总结。
一、基本性质:1. 三角形的边是线段,由三个顶点连接而成。
2. 任意两边之和大于第三边。
3. 三角形的角是由两条相邻边所夹的部分。
二、分类:根据三角形的边长和角度可以将其分为以下几类:1. 根据边长:a. 等边三角形:三条边相等。
b. 等腰三角形:两条边相等。
c. 普通三角形:三条边都不相等。
2. 根据角度:a. 直角三角形:一个角为90度。
b. 钝角三角形:一个角大于90度。
c. 锐角三角形:三个角都小于90度。
三、面积和周长计算:1. 面积:a. 根据三边求面积:可以使用海伦公式计算,即面积=√[s(s-a)(s-b)(s-c)],其中s为半周长,s=(a+b+c)/2,a、b、c分别为三边的长度。
b. 根据底边和高求面积:面积=底边长度×高/2。
2. 周长:周长=边1长度+边2长度+边3长度。
四、相关定理:1. 三角形内角和定理:三角形的内角和等于180度。
2. 三角形外角定理:三角形的外角等于与其不相邻的两个内角之和。
3. 三角形高线定理:三条高线所构成的三个小三角形的面积之和等于原三角形的面积。
4. 三角形中线定理:三条中线所构成的三个小三角形的面积之和等于原三角形的面积的三分之一。
5. 正弦定理:在任意三角形ABC中,设边a对应角A,边b 对应角B,边c对应角C,则有a/sinA = b/sinB = c/sinC。
6. 余弦定理:在任意三角形ABC中,设边a对应角A,边b 对应角B,边c对应角C,则有c²=a²+b²-2abcosC。
7. 正切定理:在任意三角形ABC中,设边a对应角A,边b 对应角B,边c对应角C,则有tanA = (b/a) × (sinC/cosC)。
综上所述,三角形的知识点主要包括基本性质、分类、面积和周长计算以及相关定理。
解三角形知识点归纳总结

第一章 解三角形一.正弦定理:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R Cc B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin CA c a = 3)化边为角:C R cB R b A R a sin 2,sin 2,sin 2===4)化角为边:;sin sin b a B A = ;sin sin c b C B =;sin sin ca C A = 5)化角为边: Rc C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin CB c b = ;sin sin CA c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。
例:已知边a,b,A,解法:由正弦定理BA b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理CA c a sin sin =求出c 边4.△ABC 中,已知锐角A ,边b ,则①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解;③b a A b <<sin 时,B 有两个解。
如:①已知32,2,60===O b a A ,求B (有一个解)②已知32,2,60===O a b A ,求B (有两个解)注意:由正弦定理求角时,注意解的个数。
解三角形知识点归纳

解三角形知识点归纳三角形是平面几何中的重要概念,其研究涉及到多个知识点。
解三角形是指通过给定的条件,确定三角形的边长和角度。
本文将对解三角形所需的知识点进行详细归纳和讨论。
1. 三角形的分类在解三角形之前,我们首先需要了解三角形的分类。
根据边长及角度的不同,三角形可以分为以下几种:等边三角形、等腰三角形、直角三角形、锐角三角形和钝角三角形。
对于不同类型的三角形,解题方法也有所不同。
2. 角的性质解三角形的过程中,我们需要利用角的性质来推导和计算。
其中一些常见的角的性质包括:- 余角:两个角互为余角当且仅当它们的和为90度。
在解三角形时,有时会用到两个角的互余性质来计算未知角的值。
- 对顶角:对顶角指在两条交叉直线上的两个角,它们互为对顶角。
- 外角:对于三角形ABC,如果在BC上延长一条线段BD,使得∠ABC和∠CBD相邻,那么∠ABC和∠CBD的外角就是∠ABD。
外角等于两个内角的和。
3. 三角形的边的关系在解三角形时,我们常常需要利用三角形边的关系来进行计算和推导。
- 三边关系:根据三角形的三边关系,任意两边之和大于第三边。
利用这个关系,我们可以判断给定的三条边能否构成一个三角形。
- 三角形的中线:三角形的三条中线交于一点,这个点叫做重心。
重心将中线分成2:1的比例,可以利用中线的性质计算三角形的面积和边长。
4. 三角形的角的关系除了边的关系外,三角形的角的关系也是解题过程中的重要内容。
- 三角形内角和:三角形的内角和等于180度。
利用这个关系,我们可以通过已知角的数值来计算未知角的数值。
- 相似三角形角的对应性质:如果两个三角形的对应角相等,那么它们是相似三角形。
相似三角形的边长比例和角的对应性质是解三角形问题中经常使用的重要性质。
5. 解三角形的方法在解三角形时,我们可以应用多种方法,具体方法取决于给定的条件和所求的未知量。
以下是一些常见的解三角形方法:- 余弦定理:当已知三角形的两边和夹角时,可以利用余弦定理计算第三边的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形知识点归纳
1、三角形三角关系:A+B+C=180°;C=180°—(A+B);
2、三角形三边关系:a+b>c; a-b<c
3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sin
cos ,cos sin ,tan cot 222222
A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C ===A B . 5、正弦定理的变形公式:
①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R
=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.
②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))
7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =
A ==
B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---
8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,
2222cos c a b ab C =+-.
9、余弦定理的推论:222cos 2b c a bc +-A =,222
cos 2a c b ac
+-B =,222cos 2a b c C ab +-=. 10、余弦定理主要解决的问题:
①已知两边和夹角,求其余的量。
②已知三边求角)
11、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式
设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:
①若222a b c +=,则90C =o ;
②若222a b c +>,则90C <o ;
③若222a b c +<,则90C >o .
12、三角形的五心:
垂心——三角形的三边上的高相交于一点
重心——三角形三条中线的相交于一点
外心——三角形三边垂直平分线相交于一点
内心——三角形三内角的平分线相交于一点
旁心——三角形的一条内角平分线与其他两个角的外角平分线交于一点
【三角形中的常见结论】
(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-
2cos 2sin C B A =+,2
sin 2cos C B A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >>
若C B A sin sin sin >>⇒c b a >>⇒C B A >>
(大边对大角,小边对小角)
(4)三角形中两边之和大于第三边,两边之差小于第三边
(5)三角形中最大角大于等于ο60,最小角小于等于ο60
(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.
钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是ο60=B .
(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列.
二、题型汇总
题型1【判定三角形形状】
判断三角形的类型
(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.
(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形
∆
(注意:是锐角A ⇔ABC 是锐角三角形∆)
(3) 若B A 2sin 2sin =,则A=B 或2π
=+B A .
例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状
. 1.已知△ABC 中,30A =
o ,105C =o ,8
b =,则等于 ( )
A 4
B 2. △AB
C 中,45B =o ,60C =o ,1c =,则最短边的边长等于 ( )
A 3
B 2
C 12
D 2
3.长为5、7、8的三角形的最大角与最小角之和为 ( )
A 90°
B 120°
C 135°
D 150°
4. △ABC 中,cos cos cos a b
c
A B C ==,则△ABC 一定是 ( )
A 直角三角形
B 钝角三角形
C 等腰三角形
D 等边三角形
5. △ABC 中,60B =o ,2b ac =,则△ABC 一定是 ( )
A 锐角三角形
B 钝角三角形
C 等腰三角形
D 等边三角形
6.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( )
A 有 一个解
B 有两个解
C 无解
D 不能确定
7. △ABC 中,8b =
,c =
ABC S =V A ∠等于 ( )
A 30o
B 60o
C 30o 或150o
D 60o 或120o
8.△ABC 中,若60A =o
,a =sin sin sin a b c
A B C +-+-等于 ( ) A 2 B 12
2
9. △ABC 中,:1:2A B =,C 的平分线CD 把三角形面积分成3:2两部分,则cos A =( ) A 1
3 B 12 C 3
4 D 0
10.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( )
A 锐角三角形
B 直角三角形
C 钝角三角形
D 由增加的长度决定
11.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cos C 等于 。
12.在△ABC
中,已知b =150c =,30B =o ,则边长a = 。
13.在钝角△ABC 中,已知1a =,2b =,则最大边c 的取值范围是 。
14.三角形的一边长为14,这条边所对的角为60o ,另两边之比为8:5,则这个三角形的 面积为 。
15在△ABC 中,已知边c=10, 又知cos 4
cos 3A
b
B a ==,求边a 、b 的长。