解析几何_柱面、旋转曲面与二次曲面

合集下载

空间解析几何课程教学大纲

空间解析几何课程教学大纲

《空间解析几何》课程教学大纲一、课程基本信息
二、课程目标及对毕业要求指标点的支撑
三、教学内容及进度安排
四、课程考核
五、教材及参考资料
[1]吕林根、许子道编.解析几何(第四版).北京:高等教育出版社,2014,ISBN:
9787040193640.
[2]李养成.空间解析几何.北京:科学出版社,2013,ISBN:9787030193520.
[3]丘维声.解析几何(第二版).北京:北京大学出版社,2008,ISBN:9787301003497.
[4]纪永强.空间解析几何.北京:高等教育出版社,2014,ISBN:9787040365375.
六、教学条件
需要配置有投影屏幕的教室。

授课电脑需要安装WindowS7、OffiCe2010、Mat1ab2015>MathType6.9>几何画板、FIaSh的正版软件。

附录:各类考核评分标准表。

解析几何第四版知识题目解析第四章

解析几何第四版知识题目解析第四章

第四章 柱面、锥面、旋转曲面与二次曲面§ 4.1柱面1、已知柱面的准线为:⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。

解:(1)从方程⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(222=-+++--z y y z即:0235622=----+z y yz z y 此即为要求的柱面方程。

(2)取准线上一点),,(0000z y x M ,过0M 且平行于直线⎩⎨⎧==cz yx 的直线方程为:⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=+=+=z z t y y tx x zz t y y t x x 000000 而0M 在准线上,所以⎩⎨⎧=+--+=-++-+--02225)2()3()1(222t z y x z t y t x 上式中消去t 后得到:02688823222=--+--++z y x xy z y x此即为要求的柱面方程。

2而0M 在准线上,所以:⎩⎨⎧+=-++=-)2(2)2(22t z t x t z y t x消去t ,得到:010*******22=--+++z x xz z y x此即为所求的方程。

3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过又过准线上一点),,(1111z y x M ,且方向为{}1,1,1的直线方程为: ⎪⎩⎪⎨⎧-=-=-=⇒⎪⎩⎪⎨⎧+=+=+=t z z t y y tx x tz z t y y tx x 111111 将此式代入准线方程,并消去t 得到:013112)(5222=-++---++z y x zx yz xy z y x此即为所求的圆柱面的方程。

空间解析几何-第3章-常见的曲面2

空间解析几何-第3章-常见的曲面2
②当 时
截线为双曲线
y = h
y
x
z
o
③当 时
截线为直线
用平行于坐标面的平面截割
(2)用y = h 截曲面
(0 , b , 0)
用平行于坐标面的平面截割
(2)用y = h 截曲面
③当 时
截线为直线
②当 时
①当 时
(1)单叶双曲面与x,y轴分别交于(±a,0,0), (0,±b,0)而与z轴无实交点. 上述四点称为单叶双曲面的实顶点, 而与z轴的交点(0,0,±ci) 称为它的两个虚交点. (2)截距:分别用y=0,z=0和x=0,z=0, 代入得x,y轴上的截距为: , ; 在z轴上没有截距.
*
空间解析几何
第3章 常见的曲面2
本章主要内容
柱面 2 锥面 3 旋转曲面 4 曲线与曲面的参数方程 5 椭球面 6 双曲面(单叶双曲面,双叶双曲面) 7 抛物面(椭圆抛物面,双曲抛物面) 8 二次直纹面 9 作图
五种典型的 二次曲面
§3.5 五种典型的二次曲面
x
y
z
o
2°用y = 0 截曲面
3°用x = 0 截曲面
1°用z = 0 截曲面
x
z
y
O
4.主截线
Cx=0
Cy=0
两条主抛物线具有相同的顶点,对称轴和开口方向
————其为点(0,0,0)
————xoz 面上的抛物线
主抛物线
———— yoz 面上的抛物线
有相同的定点(0,0,0) 相同的对称轴z轴,开口均向z轴正方向
单叶双曲面 双叶双曲面
x
y
o
z
x
y
o
z
单叶双曲面

2024注册道路工程师考试大纲

2024注册道路工程师考试大纲

2024年注册道路工程师考试大纲通常包括以下几个主要部分:
一.高等数学:
1.空间解析几何:向量代数、直线、平面、柱面、旋转曲面、二次曲面、
空间曲线。

2.微分学:极限、连续、导数、微分、偏导数、全微分、导数与微分的应
用。

3.积分学:不定积分、定积分、广义积分、二重积分、三重积分、平面曲
线积分、积分应用。

4.无穷级数:数项级数、幂级数、泰勒级数等。

二.普通物理:涉及力学、光学、电磁学、热学等基本概念和原理。

三.道路工程专业知识:包括道路工程材料、道路勘测设计、路基路面工程、桥梁工程、隧道工程、交通工程等。

四.相关法律法规与标准:涉及道路交通安全法、建设工程质量管理条例、公路工程技术标准等。

五.工程经济与管理:包括工程概预算、工程项目管理、工程招投标、工程造价等内容。

以上仅为参考大纲,具体考试大纲可能会根据年份和地区有所不同。

建议您参考官方发布的考试大纲以获取最准确的信息。

《解析几何》课程简介

《解析几何》课程简介

《空间解析几何》课程简介
《空间解析几何》
Spatial Analytic Geometry
课程简介:
《空间解析几何》是高等学校本科数学与应用数学专业的一门专业基础基础课,是初等数学通向高等数学的桥梁,乃数学专业课的基石.空间解析几何是用坐标法,把数学的基本对象与数量关系密切联系起来,它对整个数学的发展起了很大作用.
本课程主要内容为向量与坐标,轨迹与方程,平面与空间直线,柱面、锥面、旋转曲面与二次曲面,二次曲线与二次曲面的一般理论.
通过本课程的学习,使学生能理解和掌握《空间解析几何》的基本知识,基本理论,基本方法;培养学生的空间想象能力,娴熟的向量代数的计算能力和逻辑思维能力,以及解决问题的能力,并为后继课程的学习和进一步深造打下良好的基础.
教材:
《解析几何》第四版,吕林根许子道等编,高等教育出版社,2006年6月.
主要参考书:
1.《解析几何》丘维生编,北京大学出版社,1996年.
2.《空间解析几何》,王敬庚傅若男编,北京师范大学出版社,2004年;
3.《解析几何学习辅导书》,吕林根编,高等教育出版社,2006年5月第一版;
4.《解析几何》[苏]A.B波格列诺夫著,姚志亭译,吴祖基校,人民教育出版社,1982年3月.。

解析几何习题-柱面、锥面、旋转曲面与二次曲面(可编辑)

解析几何习题-柱面、锥面、旋转曲面与二次曲面(可编辑)

解析几何习题-柱面、锥面、旋转曲面与二次曲面第4章柱面、锥面、旋转曲面与二次曲面§4.1柱面 1、已知柱面的准线为:且(1)母线平行于轴;(2)母线平行于直线,试求这些柱面的方程。

解:(1)从方程中消去,得到:即:此即为要求的柱面方程。

(2)取准线上一点,过且平行于直线的直线方程为:而在准线上,所以上式中消去后得到:此即为要求的柱面方程。

2、设柱面的准线为,母线垂直于准线所在的平面,求这柱面的方程。

解:由题意知:母线平行于矢量任取准线上一点,过的母线方程为:而在准线上,所以:消去,得到:此即为所求的方程。

3、求过三条平行直线的圆柱面方程。

解:过原点且垂直于已知三直线的平面为:它与已知直线的交点为,这三点所定的在平面上的圆的圆心为,圆的方程为:此即为欲求的圆柱面的准线。

又过准线上一点,且方向为的直线方程为:将此式代入准线方程,并消去得到:此即为所求的圆柱面的方程。

4、已知柱面的准线为,母线的方向平行于矢量,试证明柱面的矢量式参数方程与坐标式参数方程分别为:与式中的为参数。

证明:对柱面上任一点,过的母线与准线交于点,则,即亦即,此即为柱面的矢量式参数方程。

又若将上述方程用分量表达,即:此即为柱面的坐标式参数方程。

§ 4.2锥面 1、求顶点在原点,准线为的锥面方程。

解:设为锥面上任一点,过与的直线为:设其与准线交于,即存在,使,将它们代入准线方程,并消去参数,得:即:此为所要求的锥面方程。

2、已知锥面的顶点为,准线为,试求它的方程。

解:设为要求的锥面上任一点,它与顶点的连线为:令它与准线交于,即存在,使将它们代入准线方程,并消去得:此为要求的锥面方程。

3、求以三坐标轴为母线的圆锥面的方程。

解:(这里仅求Ⅰ、Ⅶ卦限内的圆锥面,其余类推)圆锥的轴与等角,故的方向数为与垂直的平面之一令为平面在所求的锥面的交线为一圆,该圆上已知三点,该圆的圆心为,故该圆的方程为:它即为要求圆锥面的准线。

特殊曲面及其方程--柱面、锥面、旋转面知识讲解

特殊曲面及其方程--柱面、锥面、旋转面知识讲解

特殊曲面及其方程--柱面、锥面、旋转面引言空间解析几何所研究的曲面主要是二次曲面。

但是也可以研究一些非二次特殊曲面。

本论文中将利用直线或曲线适合某几何特征来建立一些曲面的方程。

主要讨论由直线产生的柱面和锥面,曲线产生的旋转曲面这三大类。

1.柱面定义1:一直线平行于一个定方向且与一条定曲线Γ相交而移动时所产生的曲面叫做柱面(图1),曲线Γ作叫做准线。

构成柱面的每一条直线叫做母线。

显然,柱面的准线不是唯一的,任何一条与柱面所有母线都相交的曲线都可以取做柱面的准线,通常取一条平面曲线作为准线。

特别地,若取准线Γ为一条直线,则柱面为一平面,可见平面是柱面的特例。

下面分几种情形讨论柱面的方程。

1.1 母线平行于坐标轴的柱面方程选取合适的坐标系,研究对象的方程可以大为化简。

设柱面的母线平行于z 轴,准线为Oxy 面上的一条曲线,其方程为:(),00f x y z =⎧⎪⎨=⎪⎩图1u v又设(),,P x y z 为柱面上一动点(图2),则过点P 与z 轴平行的直线是柱面的一条母线,该母线与准线Γ的交点记为(),,0M x y ,因点M 在准线上,故其坐标应满足准线方程,这表明柱面上任一点(),,P x y z 的坐标满足方程(),0f x y =反过来,若一点(),,P x y z 的坐标满足方程(),0f x y =,过P 作z 轴的平行线交Oxy 面于点M ,则点M 的坐标(),,0x y 满足准线Γ的方程(),0,0f x y z ==,这表明点M 在准线Γ上,因此直线MP 是柱面的母线 (因为直线MP 的方向向量为{}{}0,0,||0,0,1z ),所以点P 在柱面上。

综上所述,我们有如下结论:母线平行上于z 轴,且与Oxy 面的交线为(),0,0f x y z ==的柱面方程为:(),0f x y = (1)它表示一个无限柱面。

若加上限制条件a z b ≤≤,变得它的一平截段面。

同理,母线平行于x 轴,且与Oyz 面的交线为(),0,0g y z x ==的柱面方程为(),0g y z =;母线平行于y 轴,且与Ozx 面的交线为(),0,0h x z y ==的柱面方程为(),0h x z =。

《解析几何》课程教学大纲

《解析几何》课程教学大纲

《解析几何》课程教学大纲一、课程的性质、目的与任务通过本课程的教学,使学生掌握平面曲线、空间直线、平面、柱面、锥面、旋转曲面、二次曲面等的基本性质。

提高用代数方法解决几何问题的能力,为今后学习其它课程打下必要的基础,并能在较高理论水平的基础上处理中学数学的有关教学内容,以及生产、生活中的有关实际问题。

本课程是大学专科小学教育专业数学类必修的一门重要的专业课课程,通过本课程的教学,使学生系统掌握空间解析几何的基本知识和基本理论,正确地理解和使用向量;在掌握几何图形性质的同时,提高运用代数方法解决几何问题的能力和空间想象能力,能在较高理论水平的基础上处理中小学教学的有关问题。

二、课程教学内容和基础要求要求学生重点掌握空间解析几何的基本思想和基本方法;培养空间想象能力,逻辑思维能力以及运用现代各种数学方法处理几何问题的能力,运用几何结构,深入理解现行中学数学教材中的有关问题,并且具有应用几何知识解决实际问题的能力。

通过本课程的学习,为学好后续专业课程打下良好的基础。

第一章矢量与坐标教学目的:通过本章的教学,使学生掌握矢量的概念,矢量运算的定义、规律及几何意义,利用矢量的运算作为工具研究平面与空间的几何图形教学要求:理解矢量及与之有关诸概念,并能在具体问题中区分那些是矢量,那些是数量,掌握矢量的运算(矢量加(减)法)数与矢量乘法,两矢量的数性积,矢性积,混合积,二重矢性积等的定义与性质,注意与数的运算规律的异同之处,理解坐标系的建立,区分仿射坐标系与空间直角坐标系的区别,掌握在直角坐标系下,用坐标进行矢量的运算方法,会用矢量法进行有关的几何证明问题。

教学内容:§1.1矢量的概念§1.2矢量的加法§1.3数量乘矢量§1.4矢量的线性关系与矢量的分解§1.5标架与坐标§1.6矢量在轴上的射影§1.7两矢量的数性积§1.8两失量的矢性积§1.9三矢量的混合积§1.10三矢量的双重矢性积教学提示:由浅入深,采用启发式教学,并通过对比加深学生印象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z 轴的柱
面,其准线为xoy 面上曲线C . (其他类推)
实 例
y z 2 1 2 b c x2 y2 2 1 2 a b 2 x 2 pz
2
2
椭圆柱面 母线// x 轴 双曲柱面母线// z 轴 抛物柱面母线// y 轴
1. 椭圆柱面
x y 2 1 2 a b
z
2 2
2. 双曲柱面
柱面
定义4.1.1 平行于定直线并沿定曲线移动 的直线所形成的曲面称为柱面. 这条定曲线叫 柱面的准线, 动直线叫柱面 的母线. 观察柱面的形 成过程:
母线
准 线
柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线 C 叫柱面的准线,动直线 L 叫 柱面的母线. F1 ( x, y, z ) 0 设柱面的准线为 F ( x, y, z ) 0 (1) 2 母线的方向数为X,Y,Z。如果M1(x1,y1,z1)为准线 上一点,则过点M1的母线方程为 x x1 y y1 z z1 (2) X Y Z
母线L与x 轴平行.
例如抛物柱面
y - x2 = 0 0
x
z
C: xOy 平面上的抛物线
yz
x2 =
o
y
L:平行于z 轴
o
y x
圆柱面 x2 +z2= 1 C: xOz 平面上的圆 x2 +z2= 1
L:平行于y 轴
空间曲线在坐标面上的投影
1、概念
C:空间曲线 投影柱面S:以C为准线, 母线平行于坐标轴的柱面。
x z C S o y
C
投影C’:投影柱面与投影坐标面的交线。
2、求解步骤
空间曲线C的一般方程
(1) 投影柱面方程
F x, y , z 0 G x, y, z 0
H x, y 0 或 R ( y , z ) 0 或 T ( x, z ) 0
(2) 投影曲线方程
解 消去变量z,得投影柱面方程
x 2y 2y 0
2 2
于是投影方程为 x 2 y 2 y 0
2 2

z0
例 设一个立体由上半球面 与锥面 z 3( x y ) 面上的投影.
2 2
z 4 x y
2
2
所围成,求它在xOy
解 半球面与锥面的交线 C:
2 2 z 4 x y 2 2 z 3( x yபைடு நூலகம்)
H x, y 0 R y, z 0 T x, z 0 或 或 z0 x0 y0
例 已知两球面的方程为
x y z 1 及 x y 1 z 1 1
2 2 2 2 2 2
求它们的交线C在xOy面上的投影方程.
所以过M1的纬圆的方程为:
(3) X ( x x0 ) Y ( y y0 ) Z ( z z0 ) 0 2 2 2 2 2 2 ( x x0 ) ( y y0 ) ( z z0 ) ( x1 x0 ) ( y1 y0 ) ( z1 z0 ) 当点M1跑遍整个母线C时,就得到所有的纬圆, 这些纬圆就生成旋转曲面。 又由于M1在母线上,所以又有: F1 ( x1 , y1 , z1 ) 0 C: (4) F2 ( x1 , y1 , z1 ) 0 从(3)(4)的四个等式中消去参数x1,y1,z1,得到一 个三元方程: F(x,y,z)=0
x2 y2 2 2 1 a b
z
o
O
y
y
x
x
例1、柱面的准线方程为
2 2 2 x y z 1 2 2 2 2 x 2 y z 2
而母线的方向数为-1,0,1,求这柱面的方程。 例2、已知圆柱面的轴为
x y 1 z 1 1 2 2
点(1,-2,1)在此圆柱面上,求这个柱面的方程。
消去变量,得投影柱面方程
x y 1
2 2
x y 1 投影曲线方程 z 0
2 2
所求立体在xOy面上的投影就是该圆在xOy 面上
2 2 所围成的区域 x y 1 z0
旋转曲面
一、. 旋转曲面 1、 定义: 以一条平面曲线C绕其平面上的一 条直线旋转一周所成的曲面叫做旋 转曲面 , 这条定直线叫旋转曲面的 轴.
(2)母线平行于坐标轴的柱面方程 І、 F(x , y ) = 0
准线C: xOy 平面上的曲线F(x, y) = 0
母线L与z 轴平行;
Ⅱ、G(x , z) = 0
准线C: xOz 平面上的曲线G(x, z) = 0
母线L与y 轴平行;
Ⅲ、H( y , z) = 0
准线C: yOz 平面上的曲线H(y, z) = 0
这就是以C为母线,L为旋转轴的旋转曲面的方程。
例1、求直线 x y z 1
2 1 0
绕直线x=y=z旋转所得旋转曲面的方程。 解:设M1(x1,y1,z1)是母线上的任意点,因为旋转轴 通过原点,所以过M1的纬圆方程是:
且有
F1(x1,y1,z1)=0,F2(x1,y1,z1)=0
从(2)(3)中消去x1,y1,z1得 F(x,y,z)=0
(3)
这就是以(1)为准线,母线的方向数为X,Y,Z的 柱面的方程。
柱面举例
z
z
y 2x
2
平面
o
y
o
y
x
抛物柱面
x
y x
从柱面方程看柱面的特征:
只含 x , y 而缺 z 的方程 F ( x , y ) 0 ,在 空间直角坐标系中表示母线平行于
曲线C称为放置曲面的母线
C
o
纬线
经线
二、旋转曲面的方程 在空间坐标系中,设旋转曲面的母线为:
F1 ( x, y, z ) 0 C : (1) F2 ( x, y, z ) 0 旋转直线为: x x0 y y0 z z0 L: (2) X Y Z 其中P0(x0,y0,z0)为轴L上一定点,X,Y,Z为旋转轴 L的方向数。 设M1(x1,y1,z1)为母线C上的任意点,则M1的纬圆总 可以看成是过M1且垂直于旋转轴L的平面与以P0为中 心,|P0M1|为半径的球面的交线。
相关文档
最新文档