2013年合肥一中高三冲刺高考最后一卷(数学文)扫描版

合集下载

合肥六中2013冲刺高考最后1卷

合肥六中2013冲刺高考最后1卷

合肥六中2013冲刺高考最后1卷合肥六中2013冲刺高考最后1卷城郊李卫全合肥六中2013冲刺高考最后1卷语文试题(考试时间:150分钟满分:150分)本试卷分第卷(阅读题)和第卷(表达题)两部分,全卷满分150分,考试时间150分钟。

第卷(阅读题共66分)一、(9分)阅读下面的文字,完成1~3题。

在整个中国古代文学中,无论是抒情文学还是叙事文学,中国古代的作家总是把目光对准人间,而不是天国。

他们关注的是现实世界中的悲欢离合,而不是属于彼岸的天堂地狱。

为了达到这个目的,中国古代作家总是将自身的价值取向通过诗文的形式来传达给读者,并以此教化现实世界的芸芸众生,在这个过程中也努力地践行着自己的人生理想。

于是,“文以载道”的文学教化传统也逐渐形成。

中国古代的文学家都是在以儒家思想为主的传统思想哺育下成长起来的,“治国平天下”的入世思想是大多数作家共同的人生目标,而“兼济天下”与“独善其身”互补的人生价值取向则是他们的共同心态。

在这种背景下,以诗文为教化手段的文学功用观成为古代最重要的文学观念。

早在春秋战国时期,儒家就积极提倡诗教,企图以文学作为推行教化的有力工具。

其他诸子的观点虽然势若水火,但他们著书立说的目的也都是为了宣扬自己的政治理想和社会设计,同样体现了对现实政治的强烈关注。

可以说,先秦诸子的“文”都是为其“道”服务的,“文”只是手段,“道”才是目的。

这种传统后来被他唐古文学家表述为“文以载道”或“文以贯道”,不但成为历代散文的共同准则,而且成为整个古代文学的基本精神。

“文以载道”的思想对中国古代文学有正、负两方面的深刻影响。

首先,这种思想强调了文学的教化功能,为古代文学注入了政治热情、进取精神和社会使命感,使作家重视国家、人民的群体利益,即使在纯属个人抒情的作品中也时刻不忘积极有为的人生追求。

例如在唐代诗人中,杜甫蒿目时艰,忧国忧民,对儒家仁政理想的不懈追求、对国家人民命运的深切关注成为杜诗的核心内容。

2013安徽省高考压轴卷(数学文)

2013安徽省高考压轴卷(数学文)

2013安徽省高考压轴卷数学(文)试题(满分:150分,时间:120分钟)第I 卷 选择题(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知复数(1)(2)Z i i =+-的实部是m ,虚部是n ,则m n ⋅的值是( ) A . 3 B. 3- C. 3i D.3i -2.已知集合{}2|ln (9)A Z B x y x ===-,,则A B 为( )A . {}210--,, B. {}-2-1012,,,, C. {}012,, D. {}-1012,,, 3.已知一组观测值具有线性相关关系,若对于y b x a =+,求得0.6 2.5 3.6b x y ===,,,则线性回归方程是( )A .0.6 2.1y x =- B. 2.10.6y x =+ C. 0.6 2.1y x =+ D. 2.10.6y x =-+ 4.已知平面αβ,,直线m ⊂平面α,则“平面//α平面β”是“直线//m 平面β”的( ) A .充分不必要条件 B.充要条件 C.必要不充分条件 D.既不充分也不必要条件5.实数满足不等式组2303270210x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则x y -的最小值是( )A .-1 B. -2 C. 1 D. 2 6.若1sin ()34x π+=,则sin (2)6x π+的值( )A .78B .78-C.4D.4-7.右面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( ) A .25B.710C.45D.9108.设12F F ,是双曲线2222100y x a b ab-=>>(,)是上下焦点,若在双曲线的上支上,存在点P 满足212||||P F F F =,且2F 到直线1P F 的距离等于实轴长,则该双曲线的离心率是( )A.52B.53C.54D.439.已知函数()f x 是R 上的奇函数,对于(0)x ∀∈+∞,,都有(2)()f x f x +=-,且(]01x ∈,时,()21xf x =+,则(2012)(2013)f f -+的值为( )A. 1B. 2C. 3D. 410.已知函数3|lo g |(03)()12(3)3x x f x x x <<⎧⎪=⎨-+≥⎪⎩,又三个互不相等的αβγ、、满足()()()f f f αβγ==,则αβγ的范围是()A .(06),B. (36),C. []36,D. (03),第Ⅱ卷二、填空题:(本大题共5小题,每小题5分,共25分,请把正确的答案填在横线上) 11.某几何体的三视图如图所示,根据图中的数据,可得该几何体的体积是______.12.如图在下面的框图输出的S 是363,则条件①可以填______.(答案不唯一)13.如图所示,将正整数从小到大沿三角形的边成螺旋状排列起来,2在第一个拐弯处,4在第二个拐弯处,7在第三个拐弯处,…,则在第20给个拐弯处的正整数是_______.14.已知数列{}n a 中满足1111(2)2(1)n n n n a a a a a n n n --=-=≥-,,则数列{}n a 的通项公式是________.15.给出下列五个命题中,其中所有正确命题的序号是_______. ①函数()f x =3②函数2()|4|f x x =-,若()()f m f n =,且0m n <<,则动点()P m n ,到直线512390x y ++=的最小距离是3-.③命题“函数()sin 1f x x x =+,当1212||||22x x x x ππ⎡⎤∈->⎢⎥⎣⎦,,,且时,12()()f x f x >有”是真命题. ④函数22()s sin co s 122f x a x x x a x =+-+的最小正周期是1的充要条件是1a =.⑤已知等差数列{}n a 的前n 项和为n S ,O A O B、为不共线的向量,又14026O C a O A a O B =+ ,若C A A B λ=,则40262013S =.三、解答题(本大题共有6个小题,共计75分。

(完整word版)2013年高考安徽文科数学试题及答案(word解析版),推荐文档

(完整word版)2013年高考安徽文科数学试题及答案(word解析版),推荐文档

2013年普通高等学校招生全国统一考试(安徽卷)数学(文科)第I 卷(选择题共50 分)10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.22 (A )( B )35【答案】D【解析】总的可能性有 10种,甲被录用乙没被录用的可能性(1)【2013年安徽,文 【答案】 (A) D 1, 5分】设i 是虚数单位,若复数 a 10 (a R)是纯虚数,3 i (C ) 1 则a 的值为(【解析】 10 10 3 i 3 i 3 i (B) (D)10 3 i 10 3 i a 10 ,所以a 3,故选D .【点评】考查纯虚数的概念,及复数的运算,属于简单题. (2)【2013年安徽,文2, 5分】知A x|x 1 0 ,B (A ) 2, 1 (B ) 2 【答案】A 2, 1,0,1 ,贝U (C R A) IB ()(C ) 1,0,1 (D)0,1 【解析】x 1 , C R A {X |X 1} , (C R A) I B { 1, 2},故选 A . 【点评】考查集合的交集和补集,属于简单题. (3)【2013年安徽,文3, 5分】如图所示,程序据图(算法流程图)的输出结果为( )(A ) 2 3 4 5 (B ) 1 (C ) 11 (D ) 25 4 612 24 【答案】C【解析】n 2,s 0,s c 1 1 0 ; n 1 1 1 4,s —,s 3 ;n 「 3 3 1 112 2 2 24 4 4 6 1n 8, s ,输出,故选C . 12【点评】本题考查算法框图的识别,逻辑思维,属于中等难题. (4)【2013年安徽,文4, 5分】“2x 1)X 0 ”是’X 0 ”的( ) iS —Oi.(A )充分不必要条件 (B )必要不充分条件 【答案】B (C )充分必要条件 (D )既不充分也不必要条件 1 【解析】(2X 1)X 0,X 0或 一,故选B . 2 【点评】考查充分条件和必要条件,属于简单题. (5)【2013年安徽,文5, 5分】若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的 机会均等,则甲或乙被录用的概率为( )、选择题:本大题共3种,乙被录用甲没被录用的可能性 3种,甲乙都被录用的可能性3种,所以最后的概率 p 3 3 3 1,故选D .10【点评】考查古典概型的概念,以及对一些常见问题的分析,简单题. (6)【2013年安徽,文6, 5分】直线X 2y 55 0被圆X 2 y 2 2X 4y 0截得的弦长为()(A ) 1 ( B ) 2( C ) 4( D ) 4 6【答案】C1+4_5+ 亦. -------【解析】圆心(1,2),圆心到直线的距离 d _______ =一=1,半径r 勇,所以弦长为2寸(冷)2 12 4,故选C .J 5(D )9 10【点评】考查解析几何初步知识,直线与圆的位置关系,点到直线的距离,简单题. (7)【2013年安徽, (A ) 6 A 文7, 5分】设S n 为等差数列 (B ) 4 a n 的前n 项和,S 8 4a 3,a 7 (C ) 2 2,则 a g ((D ) 2 【答案】 【解析】 S 8 4a 3 2 考查等差数列通项公式和前 (8)【2013年安徽,文 【点评】 8(a 1 a 8), ------------ 4a 3 a 3 a 6 a 3 , a s 0, d 2, a g a 7 2d 不同的数x ,x 2,L 【答案】 【解析】 (A) 2,3 B f (X 1) X f (X i ) n 项公式的应用,以及数列基本量的求解. 8, 5分】函数y f(x)的图像如图所示,在区间 a, ,X n ,使得空L X 1 X 2(B) 2,3,4f (x)的图像如图所示,在区间 a,b 上可找到n(n f(Xn),则n 的取值范围为( ) X n (C ) 3,4 (D) 3,4,5 x 1 0 0表示(x 1,f(^))到原点的斜率;f(X1) X i (X 1,f(X 1)),(X 2, f(X 2))丄“,f(X n ))与原点连线的斜率,而 上,故只需考虑经过原点的直线与曲线的交点有几个,很明显有 考查数学中的转化思想,对函数的图像认识. (9)【2013年安徽, (f(x 2) L f(Xj 表示 X 2 X n (X, f (Xj),(X 2, f (X 2)),L ,(X n , f (Xj)在曲线图像 3个,故选B . 【点评】 则角C 文9,5分】设ABC 的内角 )A, B,C 所对边的长分别为 a,b,c ,右 b c 2a,3sin A 5sin B , 【答案】(A) 3 I B2 (B) 23(C) 34 【解析】 Q 3sin A 5sin B 由正弦定理,所以 3a 5 5b,即a b ;因为b c 3 2a ,所以c a 2 b 22ab 1 -,所以C 22 3 考查正弦定理和余弦定理,属于中等难度. cosC 故选 【点评】(1 0)【20 1 3年安徽,文1 0, 5分】已知函数f (x) 于x 的方程3(f (X)) 2af(x) b 0的不同实根个数为((A )- 3 A 2 ax bx (C ) 【答案】 【解析】 【点评】 c 有两个极值点X ,X 2 , ) 若f(x) X X 2,则关 (D) 0f '(x) 3x 2 2ax b , x 1,x 2 是方程 3x 2 2ax b 则又两个f (x)使得等式成立,x 1 f (x 1) , x 2 如图则有3个交点,故选 A . 考查函数零点的概念,以及对嵌套型函数的理解. 共100分)第口卷(非选择题二、填空题:本大题共 5小题,每小题5分,共 (11)【2013年安徽, 11, 5分】函数y ln(1 【答案】 【解析】 0,1 1 1 0x 1 X 2【点评】 由 3(f(x))2 2af(x) 0的两根, X f(x),其函数图象如下: b25分.把答案填在答题卡的相应位置. 0或X1,求交集之后得考查函数定义域的求解,对数真数位置大于(12)【2013年安徽,文12, 5分】若非负数变量―)<1 x 2的定义域为X X 的取值范围 °」.0.0,分母不为0,偶次根式底下大于等于x,y 满足约束条件 x y1,则x y 的最大值为x 2y 4【答案】 【解析】 4由题意约束条件的图像如下:当直线经过取得最大值. 考查线性规划求最值的问题, z 取最大. (13)【2013年安徽,文13, 5分】(4,0)时,z x y【点评】要熟练掌握约束条件的图像画法, rr a 3 ba 若非零向量a ,b 满足 【答案】【解析】 的余弦值为_ 13 等式平方得:4、jI•'J厶7 ■i 卫 1T以及判断何时 2b ,则a,b 夹角 【点评】 r 2 9b r 24b 4a b 则 r 2 4b ir r 4|a||b|cos ,即 r 20 4 b 4 3b|2cos ,13考查向量模长,向量数量积的运算,向量最基本的化简. 得cos (14)【2013年安徽,文14,5分】定义在R 上的函数f (x )满足f (x 1) 2f (x ).若当0 x 1时.f (x ) 0 时,f (x ) .x(1 x),【答案】 则当1 xx(x 1) 【解析】 所以f (x )0 ,则 0 x x(x 1) 1 1,故 f (x 1) (x 1)(1 x 1) x(x 1),又 f (x 1) 2f (x), 2 考查抽象函数解析式的求解. 【点评】 (15)【2013年安徽,文15, 5分】如图,正方体 ABCD AB iG D ,的棱长为1 , P 为BC 的中点,Q 为线段CG 上的动点,过点 A,P,Q 的平面截该正方体所得的截面记为 S ,则下列命题正确的是 _________ (写出所有正确命题的编号) ①当0 CQ 1时,S 为四边形;②当CQ 2 1时,S 为等腰梯形; 2 ③当CQ -时,S 与C 1D 1的 4 A交点R 满足C 1R1 ;④当3 3 4 CQ 1 时, S 为六边形;⑤当 CQ 1时,S 的面积为 62 【答案】①②③⑤ 【解析】(1) CQ S 等腰梯形, ②正确,图(1)如下;(2)CQ 1, S 是菱形,面积为 226,⑤正确,图如下;(3)CQ 3,画图(3)如下: 4,③正确;是五边形,④不正确;(5) CQ 图(1) 图(5) 丄,如下图(5),是四边形,故①正确.2(4) 3 CQ 1,如图(4)40 图(4) 图(2) 【点评】考查立体几何中关于切割的问题,以及如何确定平面. 三、解答题:本大题共 6题,共75分•解答应写出文字说明,演算步骤或证明过程•解答写在答题卡上的指定 区域内. (16)【2013年安徽,文16, 12分】设函数f(x) si nx sin(x ^).解:(1 )设甲校高三年级学生总人数为 n •由题意知,30 0.05,即n 600 .样本中甲校高三年级学生数学成n绩不及格人数为5 •据此估计甲校高三年级此次联考数学成绩及格率为1 — 5 ._ _30 6 (2)设甲、乙两校样本平均数分别为 为,冷.根据样本茎叶图可知,30 xr xr30$ 30x 27 555 8 1424 12 6526 24 7922 202 49 53 77 2 92 15 .因此为沁 0.5 .故为沁的估计值为0.5分.【点评】考查随机抽样与茎叶图等统计学基本知识,考查用样本估计总体的思想性以及数据分析处理能力. (18)【2013年安徽,文18,12分】如图,四棱锥 P ABCD 的底面ABCD 是边长为2的菱形,BAD 60o .已知 PB PD 2,PA 6 . (1) 证明:PC BD ; (2)若E 为PA 的中点,求三菱锥 P BCE 的体积.] 解:(1)连接AC ,交BD 于O 点,连接PO .因为底面 ABCD 是菱形,AC BD ,BO DO .由 PB PD 知,PO BD .再由 POI AC O 知,BD 面 APC ,因此 BD PC . =1 1(2)因为 E 是 PA 的中点,所以 v P BCE V C PEBV C PAB V B APC .由 PB PD AB AD 2 22(1 )求f (x)的最小值,并求使f(x)取得最小值的x 的集合; (2)不画图,说明函数 y 解:(1) f(x)sin x sin x cos —3 J (3)2 (当)2 sin(xf (x)的图像可由y sinx 的图象经过怎样的变化得到.cosx2cosxs in — sinx 1si nx 芒cosx 3 2 2 3 . sinx 2此时x {x|x64 32k 【点评】2k , ,k Z}.—)、;3si n(x —),当 sin(x4 x2k ,(k Z),所以,31时, f (x)min : 3 ,f (x)的最小值为.3,此时x 的集合y sinx 横坐标不变,纵坐标变为原来的 3倍,得y .3sin x ;然后y3sin x 向左平移—个单位,6得 f (x)3sin(x) • 6本题主要考查三角恒等变形、三角函数的图像及性质与三角函数图像的变换.能力,中等难度. 考查逻辑推理和运算求解甲乙7 4 5 5 3 3 2 5 3 3 8 554333100 6 0 6 9 1 1 2 2 3 3 5 8 6 6 2 2 1 1 0 0 7 0022233669 7 5 4 4 2 8 115 5 8 2 0 9 0 求甲校高三年级学生总人数, 0.05, (1) 若甲校高三年级每位学生被抽取的概率为 次联考数学成绩的及格率(60分及60分以上为及格);(2) 设甲、乙两校高三年级学生这次联考数学平均成绩分别为 (17)【2013年安徽,文17, 12分】为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样, 从这两校中各抽取 30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:并估计甲校高三年级这 x ( ,X 2,估计 x x 2的值. 92知,ABD也PBD .因为BAD60,所以PO AO43,AC 2运,BO 1 .r又PA恵,PO2AO22PA,即POAC,故SAPC1-PO AC 3 .2JT ■ *>1L'v.y P 11/l- * \、由(1)知,BO 面APC,因此V p BCE1—V B APC111BO S APC一 .E Z/ A1JF■ II. \M ' .I' J-'二二 X;;沙2 2 24 A 484【点评】考查空间直线与直线,直线与平面的位置,三棱锥体积等基础知识和基本技能,考查空间观念,推理论 证能力和运算能力. (19 ) 【2013年安徽,文19, 13分】设数列a n 满足a 1 2 , a ? a 4f (x) (a n a n 1 a n 2)x a n 1 cosx a n 2 sinx 满足 f \—) 0 . (1)求数列a n 的通项公式; (2)右b n 2(a n 1),求数列b n 的前n 项和£ . 2 n)由 a 1 2, a 2 a 4 8, f (x) (a n a n 1 a n 2)x a n 1 cosx a n 2 sinx , 解:(1 8,且对任意n N* ,函数f ( X ) a n a n 1 a n 2 a n 1 si nx a n 2 cosx , a n 是等差数列.而 a i 2, a 3f '(?) a n a n a n 1 a n 2 a n 1 0 , 所以 2a n 1 a na n 2(n-1) 1 n 1. (2)b n 2(a n1 利)2 n 1) 2 土) —=1 - 2【点评】考查函数的求导法则和求导公式,等差、 运算能力. (20)【2013年安徽,文20, 13分】设函数 n 2 3n等比数列的性质和数列基本量的求解.并考查逻辑推理能力和 f (x) ax 2 2、.(1 a )x ,其中 a 0,区间 | x| f(x) 0 . (1) 求I 的长度(注:区间 (2) 给定常数k 0,1,当 (,)的长度定义为 1 k a 1 k 时,求 I 长度的最小值. 解:(1 )因为方程 ax 2 2(1 a )x 0(a 0)有两个实根 X 1 0, x 2 ,故f x 0的解集为{x|X 1 X 2},因此区间 a_1 a2 d a 单调递增;当1 (2)设 d a a区间长度为 一 1 a2鑰,令d a k 时,d a 0,得a 1.由于0 k 1,当1 k a 1 时,d 小值必定在a 1 k 或a k 处取得.而 因此当a 1 k 时,d a 单调递减.因此当1 k 1 k1 1 k 21 k 1 1 k2 1a 1 k 时,d a 的最 2 k k 2 k 2 k 3<1,故 d(1 k) d(1 k). 【点评】考查二次不等式的求解, 能力.在区间[1 k,1 k ]上取得最小值 2 2k k 并考查分类讨论思想和综合运用数学知识解决问题的 以及导数的计算和应用, 2 (21)【2013年安徽,文21, 13分】已知椭圆c :笃 a 2 yb 2 1(a b 0)的焦距为4,且过点P( 2, 3). (1) 求椭圆C 的方程;(2) 设Q(X o , yoX^y 。

2013年高考真题解析——安徽卷(数学文)纯word版

2013年高考真题解析——安徽卷(数学文)纯word版

2013·安徽卷(文科数学)1. 设i 是虚数单位,若复数a -103-i (a ∈R )是纯虚数,则a 的值为( )A .-3B .-1C .1D .31.D [解析] a -103-i =a -10(3+i )(3-i )(3+i )=a -(3+i)=(a -3)-i ,其为纯虚数得a=3.2. 已知A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B =( )A .{-2,-1}B .{-2}C .{-1,0,1}D .{0,1}2.A [解析] 因为A ={x |x >-1},所以∁R A ={x |x ≤-1},所以(∁R A )∩B ={-2,-1}.图1-13. 如图1-1所示,程序框图(算法流程图)的输出结果为( ) A.34 B.16 C.1112 D.25243.C [解析] 依次运算的结果是s =12,n =4;s =12+14,n =6;s =12+14+16,n =8,此时输出s ,故输出结果是12+14+16=1112.4. “(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4.B [解析] (2x -1)x =0⇒x =12或x =0;x =0⇒(2x -1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.5., 若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.9105.D [解析] 五人中选用三人,列举可得基本事件个数是10个,“甲或乙被录用”的对应事件是“甲乙都没有被录用”,即录用的是其余三人,只含有一个基本事件,故所求概率是1-110=910.6. 直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( ) A .1 B .2 C .4 D .4 66.C [解析] 圆的标准方程是(x -1)2+(y -2)2=5,圆心(1,2)到直线x +2y -5+5=0的距离d =1,所以直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0所截得的弦长l =2r 2-d 2=4.7. 设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2 D .27.A [解析] 设公差为d ,则8a 1+28d =4a 1+8d ,即a 1=-5d ,a 7=a 1+6d =-5d +6d =d =-2,所以a 9=a 7+2d =-6.图1-28. 函数y =f (x )的图像如图1-2所示,在区间[a ,b ]上可找到n (n ≥2)个不同的数x 1,x 2,…,x n ,使得f (x 1)x 1=f (x 2)x 2=…=f (x n )x n,则n 的取值范围为( )A .{2,3}B .{2,3,4}C .{3,4}D .{3,4,5}8.B [解析] 问题等价于求直线y =kx 与函数y =f (x )图像的交点个数,从图中可以看出交点个数可以为2,3,4,故n 的取值范围是{2,3,4}.9. 设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a ,3sin A =5sin B ,则角C =( )A.π3B.2π3C.3π4D.5π69.B [解析] 根据正弦定理,3sin A =5sin B 可化为3a =5b ,又b +c =2a ,解得b =3a 5,c =7a5.令a =5t (t >0),则b =3t ,c =7t ,在△ABC 中,由余弦定理得cos C =a 2+b 2-c 22ab =25t 2+9t 2-49t 22×5t ×3t=-12,所以C =2π3.10., 已知函数f (x )=x 3+ax 2+bx +c 有两个极值点x 1,x 2.若f (x 1)=x 1<x 2,则关于x 的方程3(f (x ))2+2af (x )+b =0的不同实根个数为( )A .3B .4C .5D .6 10.A [解析] f ′(x )=3x 2+2ax +b ,根据已知,得3x 2+2ax +b =0有两个不同的实根x 1,x 2,且x 1<x 2,根据三次函数的性质可得x 1是函数f (x )的极大值点,方程3(f (x ))2+2af (x )+b =0必然有f (x )=x 1或f (x )=x 2.由于f (x 1)=x 1且x 1<x 2,如图,可知方程f (x )=x 1有两个实根,f (x )=x 2有一个实根,故方程3(f (x ))2+2af (x )+b =0共有3个不同实根.11., 函数y =ln1+1x+1-x 2的定义域为________.11.(0,1] [解析] 实数x 满足1+1x >0且1-x 2≥0.不等式1+1x >0,即x +1x >0,解得x >0或x <-1;不等式1-x 2≥0的解为-1≤x ≤1.故所求函数的定义域是(0,1].12. 若非负变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +2y ≤4,则x +y 的最大值为________.12.4 [解析] 已知不等式组表示的平面区域如图中的阴影部分,设z =x +y ,则z 的几何意义是直线y =-x +z 在y 轴上的截距,结合图形,可知当直线y =-x +z 通过点A (4,0)时z 最大,此时z =4.13. 若非零向量,满足==+,则与夹角的余弦值为________.13.-13 [解析] 设||=1,则||=3,|+|=3,两端平方得+4+4=9,即9+12cos 〈,〉+4=9,解得cos 〈,〉=-13.14., 定义在上的函数f (x )满足f (x +1)=2f (x ),若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.14.-x (x +1)2 [解析] 当-1≤x ≤0时,0≤x +1≤1,由f (x +1)=2f (x )可得f (x )=12f (x+1)=-12x (x +1).图1-315. 如图1-3,正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是________(写出所有正确命题的编号).①当0<CQ <12时,S 为四边形;②当CQ =12时,S 为等腰梯形;③当CQ =34时,S 与C 1D 1的交点R 满足C 1R =13;④当34<CQ <1时,S 为六边形;⑤当CQ =1时,S 的面积为62. 15.①②③⑤ [解析] 对于①②,如图(1)所示,因为正方体ABCD -A 1B 1C 1D 1的棱长为1,当CQ =12时,PQ =22,这时过A ,P ,Q 三点的截面与DD 1交于D 1,AP =D 1Q =52,且PQ ∥AD 1,截面S 为等腰梯形. 当CQ <12时,过A ,P ,Q 三点的截面与直线DD 1的交点在棱DD 1上,截面S 为四边形,故①②正确.对于③④⑤,如图(2)所示,联结QR 并延长交DD 1的延长线于N 点,联结AN 交A 1D 1于M ,取AD 中点G ,作GH ∥PQ 交DD 1于H 点,可得GH ∥AN ,且GH =12AN .设CQ =t (0≤t ≤1),则DN =2t ,ND 1=2t -1,ND 1C 1Q =D 1R RC 1=2t -11-t, 当t =34时,D 1R C 1R =21,可得C 1R =13,故③正确;当34<t <1时,S 为五边形,故④错误; 当t =1时,Q 与C 1重合,M 为A 1D 1的中点, S 为菱形PC 1MA ,AM =AP =PC 1=C 1M =52,MP =2,AC 1=3,S 的面积等于12×2×3=62,故⑤正确.16. 设函数f (x )=sin x +sin ⎝⎛⎭⎫x +π3. (1)求f (x )的最小值,并求使f (x )取最小值的x 的集合;(2)不画图,说明函数y =f (x )的图像可由y =sin x 的图像经过怎样的变化得到. 16.解:(1)因为f (x )=sin x +12sin x +32cos x =32sin x +32cos x =3sin x +π6,所以当x +π6=2k π-π2(k ∈),即x =2k π-2π3(k ∈)时,f (x )取得最小值- 3.此时x 的取值集合为(2)先将y =sin x 的图像上所有点的纵坐标伸长到原来的3倍(横坐标不变),得y =3sin x 的图像;再将y =3sin x 的图像上所有的点向左平移π6个单位,得y =f (x )的图像.17., 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下: 甲 乙 7 4 5 5 3 3 2 5 3 3 8 5 5 4 3 3 3 1 0 0 6 0 0 0 1 1 2 2 3 3 5 8 6 6 2 2 1 1 0 0 7 0 0 2 2 2 3 3 6 6 9 7 5 4 4 2 8 1 1 5 5 8 2 09图1-4(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1,x 2,估计x 1-x 2的值.17.解:(1)设甲校高三年级学生总人数为n ,由题意知,30n =0.05,即n =600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=56.(2)设甲、乙两校样本平均数分别为x 1′,x 2′,根据样本茎叶图可知, 30(x 1′-x 2′)=30x 1′-30x 2′=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92 =2+49-53-77+2+92 =15.因此x 1′-x 2′=0.5,故x 1-x 2的估计值为0.5分.图1-518. 如图1-5,四棱锥P -ABCD 的底面ABCD 是边长为2的菱形,∠BAD =60°,已知PB =PD =2,P A = 6. (1)证明:PC ⊥BD ;(2)若E 为P A 的中点,求三棱锥P -BCE 的体积. 18.解:(1)证明:联结AC ,交BD 于O 点,联结PO . 因为底面ABCD 是菱形,所以AC ⊥BD ,BO =DO .由PB =PD 知,PO ⊥BD .再由PO ∩AC =O 知,BD ⊥面APC ,又PC ⊂平面APC ,因此BD ⊥PC .(2)因为E 是P A 的中点,所以V P -BCE =V C -PEB =12V C -P AB =12V B -APC . 由PB =PD =AB =AD =2知,△ABD ≌△PBD . 因为∠BAD =60°,所以PO =AO =3,AC =23,BO =1.又P A =6,故PO 2+AO 2=P A 2,即PO ⊥AC . 故S △APC =12PO ·AC =3.由(1)知,BO ⊥面APC ,因此V P -BCE =12V B -APC =13·12·S △APC ·BO =12.19., 设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈*,函数f (x )=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足f ′⎝⎛⎭⎫π2=0.(1)求数列{a n }的通项公式;(2)若b n =2⎝⎛⎭⎫a n +12a n,求数列{b n }的前n 项和S n . 19.解:(1)由题设可得,f ′(x )=a n -a n +1+a n +2-a n +1sin x -a n +2cos x .对任意n ∈*,f ′π2=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列.由a 1=2,a 2+a 4=8,解得{a n }的公差d =1, 所以a n =2+1·(n -1)=n +1.(2)由b n =2a n +12a n =2⎝⎛⎭⎫n +1+12n +1=2n +12n +2知,S n =b 1+b 2+…+b n =2n +2·n (n +1)2+121-12n1-12=n 2+3n +1-12n .20., 设函数f (x )=ax -(1+a 2)x 2,其中a >0,区间I ={x |f (x )>0}. (1)求I 的长度(注:区间(α,β)的长度定义为β-α);(2)给定常数k ∈(0,1),当1-k ≤a ≤1+k 时,求I 长度的最小值. 20.解:(1)因为方程ax -(1+a 2)x 2=0(a >0)有两个实根x 1=0,x 2=a1+a 2,故f (x )>0的解集为{x |x 1<x <x 2},因此区间I =0,a 1+a 2,区间长度为a1+a 2. (2)设d (a )=a 1+a 2,则d ′(a )=1-a 2(1+a 2)2,令d ′(a )=0,得a =1,由于0<k <1,故当1-k ≤a <1时,d ′(a )>0,d (a )单调递增;当1<a ≤1+k 时,d ′(a )<0,d (a )单调递减;因此当1-k ≤a ≤1+k 时,d (a )的最小值必定在a =1-k 或a =1+k 处取得. 而d (1-k )d (1+k )= 1-k 1+(1-k )2 1+k 1+(1+k )2=2-k 2-k 32-k 2+k 3<1,故d (1-k )<d (1+k ). 因此当a =1-k 时,d (a )在区间[1-k ,1+k ]上取得最小值1-k2-2k +k 2.21., 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为4,且过点P (2,3).(1)求椭圆C 的方程;(2)设Q (x 0,y 0)(x 0y 0≠0)为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E ,取点A (0,22),联结AE ,过点A 作AE 的垂线交x 轴于点D ,点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.21.解:(1)因为焦距为4,所以a 2-b 2=4.又因为椭圆C 过点P (2,3),所以2a 2+3b 2=1,故a 2=8,b 2=4,从而椭圆C 的方程为x 28+y 24=1.(2)由题意,E 点坐标为(x 0,0),设D (x D ,0),则AE →=(x 0,-22),AD →=(x D ,-22). 再由AD ⊥AE 知,AE →·AD →=0,即x 0x D +8=0.由于x 0y 0≠0,故x D =-8x 0.因为点G 是点D 关于y 轴的对称点,所以G 8x 0,0,故直线QG 的斜率k QG =y 0x 0-8x 0=x 0y 0x 20-8.又因Q (x 0,y 0)在椭圆C 上,所以x 20+2y 20=8.①从而k QG =-x 02y 0.故直线QG的方程为将②代入椭圆C方程,得(x20+2y20)x2-16x0x+64-16y20=0.③再将①代入③,化简得x2-2x0x+x20=0,解得x=x0,y=y0,即直线QG与椭圆C一定有唯一的公共点.。

2013年安徽高考数学试题及答案(文科)

2013年安徽高考数学试题及答案(文科)

2013年安徽高考数学试卷及答案 (文科)一、选择题1. 设i 是虚数单位,若复数a -103-i (a ∈R )是纯虚数,则a 的值为( )A .-3B .-1C .1D .31.D [解析] a -103-i =a -10(3+i )(3-i )(3+i )=a -(3+i)=(a -3)-i ,其为纯虚数得a=3.2. 已知A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B =( )A .{-2,-1}B .{-2}C .{-1,0,1}D .{0,1}2.A [解析] 因为A ={x |x >-1},所以∁R A ={x |x ≤-1},所以(∁R A )∩B ={-2,-1}.图1-13. 如图1-1所示,程序框图(算法流程图)的输出结果为( ) A.34 B.16 C.1112 D.25243.C [解析] 依次运算的结果是s =12,n =4;s =12+14,n =6;s =12+14+16,n =8,此时输出s ,故输出结果是12+14+16=1112.4. “(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4.B [解析] (2x -1)x =0⇒x =12或x =0;x =0⇒(2x -1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.5., 若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.9105.D [解析] 五人中选用三人,列举可得基本事件个数是10个,“甲或乙被录用”的对应事件是“甲乙都没有被录用”,即录用的是其余三人,只含有一个基本事件,故所求概率是1-110=910.6. 直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( ) A .1 B .2 C .4 D .4 66.C [解析] 圆的标准方程是(x -1)2+(y -2)2=5,圆心(1,2)到直线x +2y -5+5=0的距离d =1,所以直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0所截得的弦长l =2r 2-d 2=4.7. 设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2 D .27.A [解析] 设公差为d ,则8a 1+28d =4a 1+8d ,即a 1=-5d ,a 7=a 1+6d =-5d +6d =d =-2,所以a 9=a 7+2d =-6.图1-28. 函数y =f (x )的图像如图1-2所示,在区间[a ,b ]上可找到n (n ≥2)个不同的数x 1,x 2,…,x n ,使得f (x 1)x 1=f (x 2)x 2=…=f (x n )x n,则n 的取值范围为( )A .{2,3}B .{2,3,4}C .{3,4}D .{3,4,5}8.B [解析] 问题等价于求直线y =kx 与函数y =f (x )图像的交点个数,从图中可以看出交点个数可以为2,3,4,故n 的取值范围是{2,3,4}.9. 设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a ,3sin A =5sin B ,则角C =( )A.π3B.2π3C.3π4D.5π69.B [解析] 根据正弦定理,3sin A =5sin B 可化为3a =5b ,又b +c =2a ,解得b =3a 5,c =7a5.令a =5t (t >0),则b =3t ,c =7t ,在△ABC 中,由余弦定理得cos C =a 2+b 2-c 22ab =25t 2+9t 2-49t 22×5t ×3t=-12,所以C =2π3.10., 已知函数f (x )=x 3+ax 2+bx +c 有两个极值点x 1,x 2.若f (x 1)=x 1<x 2,则关于x 的方程3(f (x ))2+2af (x )+b =0的不同实根个数为( )A .3B .4C .5D .6 10.A [解析] f ′(x )=3x 2+2ax +b ,根据已知,得3x 2+2ax +b =0有两个不同的实根x 1,x 2,且x 1<x 2,根据三次函数的性质可得x 1是函数f (x )的极大值点,方程3(f (x ))2+2af (x )+b =0必然有f (x )=x 1或f (x )=x 2.由于f (x 1)=x 1且x 1<x 2,如图,可知方程f (x )=x 1有两个实根,f (x )=x 2有一个实根,故方程3(f (x ))2+2af (x )+b =0共有3个不同实根.11., 函数y =ln1+1x+1-x 2的定义域为________.11.(0,1] [解析] 实数x 满足1+1x >0且1-x 2≥0.不等式1+1x >0,即x +1x >0,解得x >0或x <-1;不等式1-x 2≥0的解为-1≤x ≤1.故所求函数的定义域是(0,1].12. 若非负变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +2y ≤4,则x +y 的最大值为________.12.4 [解析] 已知不等式组表示的平面区域如图中的阴影部分,设z =x +y ,则z 的几何意义是直线y =-x +z 在y 轴上的截距,结合图形,可知当直线y =-x +z 通过点A (4,0)时z 最大,此时z =4.13. 若非零向量,满足==+,则与夹角的余弦值为________.13.-13 [解析] 设||=1,则||=3,|+|=3,两端平方得+4+4=9,即9+12cos 〈,〉+4=9,解得cos 〈,〉=-13.14., 定义在上的函数f (x )满足f (x +1)=2f (x ),若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.14.-x (x +1)2 [解析] 当-1≤x ≤0时,0≤x +1≤1,由f (x +1)=2f (x )可得f (x )=12f (x+1)=-12x (x +1).图1-315. 如图1-3,正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是________(写出所有正确命题的编号).①当0<CQ <12时,S 为四边形;②当CQ =12时,S 为等腰梯形;③当CQ =34时,S 与C 1D 1的交点R 满足C 1R =13;④当34<CQ <1时,S 为六边形;⑤当CQ =1时,S 的面积为62. 15.①②③⑤ [解析] 对于①②,如图(1)所示,因为正方体ABCD -A 1B 1C 1D 1的棱长为1,当CQ =12时,PQ =22,这时过A ,P ,Q 三点的截面与DD 1交于D 1,AP =D 1Q =52,且PQ ∥AD 1,截面S 为等腰梯形. 当CQ <12时,过A ,P ,Q 三点的截面与直线DD 1的交点在棱DD 1上,截面S 为四边形,故①②正确.对于③④⑤,如图(2)所示,联结QR 并延长交DD 1的延长线于N 点,联结AN 交A 1D 1于M ,取AD 中点G ,作GH ∥PQ 交DD 1于H 点,可得GH ∥AN ,且GH =12AN .设CQ =t (0≤t ≤1),则DN =2t ,ND 1=2t -1,ND 1C 1Q =D 1R RC 1=2t -11-t, 当t =34时,D 1R C 1R =21,可得C 1R =13,故③正确;当34<t <1时,S 为五边形,故④错误; 当t =1时,Q 与C 1重合,M 为A 1D 1的中点, S 为菱形PC 1MA ,AM =AP =PC 1=C 1M =52,MP =2,AC 1=3,S 的面积等于12×2×3=62,故⑤正确.16. 设函数f (x )=sin x +sin ⎝⎛⎭⎫x +π3. (1)求f (x )的最小值,并求使f (x )取最小值的x 的集合;(2)不画图,说明函数y =f (x )的图像可由y =sin x 的图像经过怎样的变化得到. 16.解:(1)因为f (x )=sin x +12sin x +32cos x =32sin x +32cos x =3sin x +π6,所以当x +π6=2k π-π2(k ∈),即x =2k π-2π3(k ∈)时,f (x )取得最小值- 3.此时x 的取值集合为(2)先将y =sin x 的图像上所有点的纵坐标伸长到原来的3倍(横坐标不变),得y =3sin x 的图像;再将y =3sin x 的图像上所有的点向左平移π6个单位,得y =f (x )的图像.17., 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下: 甲 乙 7 4 5 5 3 3 2 5 3 3 8 5 5 4 3 3 3 1 0 0 6 0 0 0 1 1 2 2 3 3 5 8 6 6 2 2 1 1 0 0 7 0 0 2 2 2 3 3 6 6 9 7 5 4 4 2 8 1 1 5 5 8 2 09图1-4(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1,x 2,估计x 1-x 2的值.17.解:(1)设甲校高三年级学生总人数为n ,由题意知,30n =0.05,即n =600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=56.(2)设甲、乙两校样本平均数分别为x 1′,x 2′,根据样本茎叶图可知, 30(x 1′-x 2′)=30x 1′-30x 2′=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92 =2+49-53-77+2+92 =15.因此x 1′-x 2′=0.5,故x 1-x 2的估计值为0.5分.图1-518. 如图1-5,四棱锥P -ABCD 的底面ABCD 是边长为2的菱形,∠BAD =60°,已知PB =PD =2,P A = 6. (1)证明:PC ⊥BD ;(2)若E 为P A 的中点,求三棱锥P -BCE 的体积. 18.解:(1)证明:联结AC ,交BD 于O 点,联结PO . 因为底面ABCD 是菱形,所以AC ⊥BD ,BO =DO .由PB =PD 知,PO ⊥BD .再由PO ∩AC =O 知,BD ⊥面APC ,又PC ⊂平面APC ,因此BD ⊥PC .(2)因为E 是P A 的中点,所以V P -BCE =V C -PEB =12V C -P AB =12V B -APC . 由PB =PD =AB =AD =2知,△ABD ≌△PBD . 因为∠BAD =60°,所以PO =AO =3,AC =23,BO =1.又P A =6,故PO 2+AO 2=P A 2,即PO ⊥AC . 故S △APC =12PO ·AC =3.由(1)知,BO ⊥面APC ,因此V P -BCE =12V B -APC =13·12·S △APC ·BO =12.19., 设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈*,函数f (x )=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足f ′⎝⎛⎭⎫π2=0.(1)求数列{a n }的通项公式;(2)若b n =2⎝⎛⎭⎫a n +12a n,求数列{b n }的前n 项和S n . 19.解:(1)由题设可得,f ′(x )=a n -a n +1+a n +2-a n +1sin x -a n +2cos x .对任意n ∈*,f ′π2=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列.由a 1=2,a 2+a 4=8,解得{a n }的公差d =1, 所以a n =2+1·(n -1)=n +1.(2)由b n =2a n +12a n =2⎝⎛⎭⎫n +1+12n +1=2n +12n +2知,S n =b 1+b 2+…+b n =2n +2·n (n +1)2+121-12n1-12=n 2+3n +1-12n .20., 设函数f (x )=ax -(1+a 2)x 2,其中a >0,区间I ={x |f (x )>0}. (1)求I 的长度(注:区间(α,β)的长度定义为β-α);(2)给定常数k ∈(0,1),当1-k ≤a ≤1+k 时,求I 长度的最小值. 20.解:(1)因为方程ax -(1+a 2)x 2=0(a >0)有两个实根x 1=0,x 2=a1+a 2,故f (x )>0的解集为{x |x 1<x <x 2},因此区间I =0,a 1+a 2,区间长度为a1+a 2. (2)设d (a )=a 1+a 2,则d ′(a )=1-a 2(1+a 2)2,令d ′(a )=0,得a =1,由于0<k <1,故当1-k ≤a <1时,d ′(a )>0,d (a )单调递增;当1<a ≤1+k 时,d ′(a )<0,d (a )单调递减;因此当1-k ≤a ≤1+k 时,d (a )的最小值必定在a =1-k 或a =1+k 处取得. 而d (1-k )d (1+k )= 1-k 1+(1-k )2 1+k 1+(1+k )2=2-k 2-k 32-k 2+k 3<1,故d (1-k )<d (1+k ). 因此当a =1-k 时,d (a )在区间[1-k ,1+k ]上取得最小值1-k2-2k +k 2.21., 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为4,且过点P (2,3).(1)求椭圆C 的方程;(2)设Q (x 0,y 0)(x 0y 0≠0)为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E ,取点A (0,22),联结AE ,过点A 作AE 的垂线交x 轴于点D ,点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.21.解:(1)因为焦距为4,所以a 2-b 2=4.又因为椭圆C 过点P (2,3),所以2a 2+3b 2=1,故a 2=8,b 2=4,从而椭圆C 的方程为x 28+y 24=1.(2)由题意,E 点坐标为(x 0,0),设D (x D ,0),则AE →=(x 0,-22),AD →=(x D ,-22). 再由AD ⊥AE 知,AE →·AD →=0,即x 0x D +8=0.由于x 0y 0≠0,故x D =-8x 0.因为点G 是点D 关于y 轴的对称点,所以G 8x 0,0,故直线QG 的斜率k QG =y 0x 0-8x 0=x 0y 0x 20-8.又因Q (x 0,y 0)在椭圆C 上,所以x 20+2y 20=8.①从而k QG =-x 02y 0.故直线QG的方程为将②代入椭圆C方程,得(x20+2y20)x2-16x0x+64-16y20=0.③再将①代入③,化简得x2-2x0x+x20=0,解得x=x0,y=y0,即直线QG与椭圆C一定有唯一的公共点.。

安徽省合肥八中2013届高三高考冲刺最后一卷数学(文)试题 Word版含答案

安徽省合肥八中2013届高三高考冲刺最后一卷数学(文)试题 Word版含答案

安徽省合肥八中2013届高三高考冲刺最后一卷数学(文)试题(word版)(考试时间:120分钟满分:150分)注意事项:1.选择题用答题卡的考生,答第Ⅰ卷前,考生务必将自己的姓名、准考证号、试题科目用2B铅笔涂写在答题卡上.2.选择题用答题卡的考生,答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷和答题卷的选择题栏中;不用答题卡的考生,在答第1卷时,每小题选出答案后,填涂在答题卷相应的选择题栏上.3.答第Ⅱ卷时,考生务必将自己的学校、姓名、考点、准考证号填在答题卷相应的位置上;答题时,请用0.5毫米的黑色签字笔直接答在答题卷上,不要在试题卷上答题,第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案按要求涂写在答题卡或答题卷上.1.已知i为虚数单位,若2+1ii+=a+bi, a,b∈R,则a+b=()A.1 B.32C.2 D.-12.设集合U={0,1,2,3,4,5),A={l,2,5},B={x∈Z|x2-5x-6<0},则Uð(A B)=()A.{0,3.4,5} B.{1,2)C.{1,2,4)D.{0,3,4)3.已知命题p:存在x>0,使x2-2x>0,则命题p的否定形式为()A.任意x>0,使x2-2x≤0 B.任意x≤0,使x2-2x≤0C.存在x>0,使x2-2x≤0 D.存在x≤0,使x2-2x≤04.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则log2 a10=()A.4 B.5 C.6 D.75.如果实数x,y满足条件101010x yyx y-+≥⎧⎪+≥⎨⎪++≤⎩,那2x-y的最小值为()A.2 B.1 C.-3 D.-26.函数21,0()(),0x xf xg x a x⎧-≥=⎨+<⎩,为奇函数,若g(-2)=4,则a=()A.-3 B.4 C.-7 D.67.已知函数f (x )=sin (2x πϕ+)的部分图象如图所示,点B ,C 是该图象与z 轴的交点,过点C 的直线与该图象交于D ,E 两点,则(BD BE + )·BC的值为( )A .14B .12C .1D .28.抛物线y 2=2px (p>0)的焦点为F ,M 是抛物线上一点,其纵坐标为| MF|=4,则p 的值为( )A .2或4B .3或5C .2或6D .3或49.已知向量x n =(a n+1,2a n +4)(n ∈N *),y=(1,2),且x n ∥y ,|x 1a 8=( )A .15B .17C .3或17D .15或910.若某同学连续三次考试的名次(第一名为1,第二名为2,以此类推且没有并列名次情况)不超过3,则称该同学为班级的尖子生.根据甲、乙、丙、丁四位同学过去连续3次考试名次数据,推断一定不是尖子生的是( )A .甲同学:均值为2,中位数为2B .乙同学:均值为2,标准差小于1C .丙同学:中位数为2,众数为2D .丁同学:众数为2,标准差大于1二、填空题:本大题共5小题,每小题5分,共25分。

合肥一中2013冲刺高考最后一卷语文试题

合肥一中2013冲刺高考最后一卷语文试题

合肥一中2013冲刺高考最后一卷语文试题(考试时间:150分钟满分:150分)本试卷分第1卷(阅读题)和第Ⅱ卷(表达题)两部分,全卷满分、150分,考试时间150分钟。

第Ⅰ卷(阅读题共66分)一、(1 0分)阅读下面的文字,完成1~3题。

中国学术史可以分为“古代”和“近代”两个时期。

“古代”学术延续了几千年,形成一套中国话语体系和研究方法;“近代”学术起于西风东渐。

明清以来,中国日趋封闭,其思想与学术也日益僵化,19世纪中叶,西方用武力打开中国大门,为救亡图存,当时的知识分子开始了解西方,随后,中国人大规模引进西学,开始了中国学术的彻底转型。

这对打破中国学术封闭的状态,对改变国人观念、推动中国转型作出了贡献。

中国学术引进西学的同时,也助长了一种新的思想定见的形成,即凡是西方的都是“进步”的,凡是中国的都是“落后”的。

因袭照搬西方话语,也就成了中国学术“进步”的标志,造成20世纪以来中国学术越来越“西化”。

现在,中国学术已基本纳入西方模板,就连“国学”也差不多放到西方的框架和方法中去研究了。

这不是说,中国学者不在做中国学术,而是说,有更多的中国学术变成了西方学术的传声器:套用西方方法.论证西方结论,用西方语言说话,甚至直接重复西方话语。

无疑,我们对西方学术仍需要关注,抱虚心学习的态度,但无论是学习借鉴还是交流对话,都不能迷信盲从。

西方学术中最值得赞赏的是它的独立思考与批评精神。

西方人在不断批判自己:康德批判、黑格尔批判、“工业资本主义批判”,等等;通过批判前人,后人成就出新的理论和新的体系。

设想哪一天,中国学术界出现了例如“哈贝马斯批判”、“新自由主义批判”这样的作品,即便它显得幼稚,也是逐渐走向成熟的表现。

学术要求思考,思考是批评的第一步。

中国学术不能再人云亦云,不能再唯“外”是从了。

现在缺少的正是思考,是在思考基础上的分析与批判,这是当前中国学术最大的障碍。

现在的中国学术不是无知,而是没有自信,中国学术应当构筑自己的话语了!我们有几千年的文明积淀,也有一百多年学习西方的经验,中国文明和西方文明在许多方面可以互补,其理论和方法各有所长。

(完整word版)2013年高考安徽文科数学试题及答案(word解析版),推荐文档

(完整word版)2013年高考安徽文科数学试题及答案(word解析版),推荐文档

2013年普通高等学校招生全国统一考试(安徽卷)数学(文科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2013年安徽,文1,5分】设i 是虚数单位,若复数10()3ia a R -∈-是纯虚数,则a 的值为( )(A )3- (B )1- (C )1 (D )3 【答案】D【解析】()()()()()()()2103i 103i 103i 103i 3i 3i 3i 3i 9i 10a a a a a a +++-=-=-=-=-+=----+-,所以3a =,故选D . 【点评】考查纯虚数的概念,及复数的运算,属于简单题.(2)【2013年安徽,文2,5分】知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B =I ( )(A ){}2,1--(B ){}2-(C ){}1,0,1-(D ){}0,1【答案】A【解析】1x >-,{|1}R C A x x =≤-,(){1,2}R C A B =--I ,故选A .【点评】考查集合的交集和补集,属于简单题. (3)【2013年安徽,文3,5分】如图所示,程序据图(算法流程图)的输出结果为( )(A )34 (B )16 (C )1112 (D )2524【答案】C【解析】112,0,022n s s ===+=;11134,,2244n s s ===+=;331116,,44612n s s ===+=;118,12n s ==,输出,故选C .【点评】本题考查算法框图的识别,逻辑思维,属于中等难题. (4)【2013年安徽,文4,5分】“(21)0x x -=”是“0x =”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】B【解析】1(21)0,02x x x -==或,故选B .【点评】考查充分条件和必要条件,属于简单题. (5)【2013年安徽,文5,5分】若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )(A )23 (B )25 (C )35 (D )910【答案】D【解析】总的可能性有10种,甲被录用乙没被录用的可能性3种,乙被录用甲没被录用的可能性3种,甲乙都被录用的可能性3种,所以最后的概率333110p ++==,故选D .【点评】考查古典概型的概念,以及对一些常见问题的分析,简单题.(6)【2013年安徽,文6,5分】直线250x y +-+=被圆22240x y x y +--=截得的弦长为( )(A )1 (B )2 (C )4 (D )【答案】C【解析】圆心(1,2),圆心到直线的距离d ,半径r =,所以弦长为4=,故选C .【点评】考查解析几何初步知识,直线与圆的位置关系,点到直线的距离,简单题. (7)【2013年安徽,文7,5分】设n S 为等差数列{}n a 的前n 项和,8374,2S a a ==-,则9a =( ) (A )6- (B )4- (C )2- (D )2 【答案】A【解析】188333638()442a a S a a a a a +=⇒=⇒+=,60a ∴=,2d =-,9726a a d =+=-,故选A .【点评】考查等差数列通项公式和前n 项公式的应用,以及数列基本量的求解. (8)【2013年安徽,文8,5分】函数()y f x =的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,,,n x x x L ,使得1212()()()n nf x f x f x x x x ===L ,则n 的取值范围为( ) (A ){}2,3 (B ){}2,3,4 (C ){}3,4 (D ){}3,4,5【答案】B【解析】1111()()00f x f x x x -=-表示11(,())x f x 到原点的斜率;1212()()()n n f x f x f x x x x ===L 表示 1122(,())(,())(,())n n x f x x f x x f x L ,,,与原点连线的斜率,而1122(,())(,())(,())n n x f x x f x x f x L ,,,在曲线图像 上,故只需考虑经过原点的直线与曲线的交点有几个,很明显有3个,故选B .【点评】考查数学中的转化思想,对函数的图像认识. (9)【2013年安徽,文9,5分】设ABC ∆的内角,,A B C 所对边的长分别为,,a b c ,若2,3sin 5sin b c a A B +==,则角C =( )(A )3π (B )23π (C )34π (D )56π【答案】B【解析】3sin 5sin A B =Q 由正弦定理,所以535,3a b a b ==即;因为2b c a +=,所以73c a =,2221cos 22a b c C ab +-==-,所以23C π=,故选B . 【点评】考查正弦定理和余弦定理,属于中等难度. (10)【2013年安徽,文10,5分】已知函数32()f x x ax bx c =+++有两个极值点12,x x ,若112()f x x x =<,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数为( )(A )23π (B )3π (C )6π (D )0【答案】A【解析】2'()32f x x ax b =++,12,x x 是方程2320x ax b ++=的两根,由23(())2()0f x af x b ++=, 则又两个()f x 使得等式成立,11()x f x =,211()x x f x >=,其函数图象如下: 如图则有3个交点,故选A .【点评】考查函数零点的概念,以及对嵌套型函数的理解.第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)【2013年安徽,文11,5分】函数21ln(1)1y x x=++-的定义域为 .【答案】(]0,1【解析】2110011011x x xx x ⎧+>⇒><-⎪⎨⎪-≥⇒-≤≤⎩或,求交集之后得x 的取值范围(]0,1. 【点评】考查函数定义域的求解,对数真数位置大于0,分母不为0,偶次根式底下大于等于0.(12)【2013年安徽,文12,5分】若非负数变量,x y 满足约束条件124x y x y -≥-⎧⎨+≤⎩,则x y +的最大值为 .【答案】4【解析】由题意约束条件的图像如下:当直线经过(4,0)时,404z x y =+=+=,取得最大值.【点评】考查线性规划求最值的问题,要熟练掌握约束条件的图像画法,以及判断何时z 取最大.(13)【2013年安徽,文13,5分】若非零向量,a b r r 满足32a b a b ==+r r r r ,则,a b r r夹角的余弦值为 .【答案】13-【解析】等式平方得:2222944a b a b a b ==++⋅r r r r r r 则22244||||cos a a b a b θ=++⋅r r r u r r ,即220443||cos b b θ=+⋅r r , 得1cos 3θ=-.【点评】考查向量模长,向量数量积的运算,向量最基本的化简. (14)【2013年安徽,文14,5分】定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01x ≤≤时.()(1)f x x x =-,则当10x -≤≤时,()f x = .【答案】(1)2x x +-【解析】当10x -≤≤,则011x ≤+≤,故(1)(1)(11)(1)f x x x x x +=+--=-+,又(1)2()f x f x +=,所以(1)()2x x f x +=-.【点评】考查抽象函数解析式的求解. (15)【2013年安徽,文15,5分】如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q为线段1CC 上的动点,过点,,A P Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是_________(写出所有正确命题的编号)①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R 满足113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S 的面积为62.【答案】①②③⑤【解析】(1)12CQ =,S 等腰梯形,②正确,图(1)如下;(2)1CQ =,S 是菱形,面积为36222⋅=,⑤ 正确,图(2)如下;(3)34CQ =,画图(3)如下:113C R =,③正确;(4)314CQ <<,如图(4)是五边形,④不正确;(5)102CQ <<,如下图(5),是四边形,故①正确.图(1) 图(2) 图(3) 图(4) 图(5)【点评】考查立体几何中关于切割的问题,以及如何确定平面.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.解答写在答题卡上的指定区域内.(16)【2013年安徽,文16,12分】设函数()sin sin()3f x x x π=++.(1)求()f x 的最小值,并求使()f x 取得最小值的x 的集合;(2)不画图,说明函数()y f x =的图像可由sin y x =的图象经过怎样的变化得到. 解:(1)()sin sin coscos sin33f x x x x ππ=++1333sin sin cos sin cos 22x x x x x =++=+2233()()sin()3sin()2266x x ππ=++=+,当sin()16x π+=-时,min ()3f x =-,此时3262x k πππ+=+,42,()3x k k Z ππ∴=+∈,所以,()f x 的最小值为3-,此时x 的集合4{|2,}3x x k k Z ππ=+∈.(2)sin y x =横坐标不变,纵坐标变为原来的3倍,得3sin y x =; 然后3sin y x =向左平移6π个单位, 得()3sin()6f x x π=+.【点评】本题主要考查三角恒等变形、三角函数的图像及性质与三角函数图像的变换.考查逻辑推理和运算求解能力,中等难度.(17)【2013年安徽,文17,12分】为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,甲 乙 7 5 3 3 2 5 5 4 3 3 3 1 0 0 8 6 6 2 2 1 1 0 0 7 5 4 4 2 2 0 4 5 6 7 8 9 53 3 80 6 9 1 1 2 2 3 3 5 0 0 2 2 2 3 3 6 6 91 1 5 5 8(1)次联考数学成绩的及格率(60分及60分以上为及格); (2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为12,x x ,估计12x x -的值.解:(1)设甲校高三年级学生总人数为n .由题意知,300.05n=,即600n =.样本中甲校高三年级学生数学成绩不及格人数为5.据此估计甲校高三年级此次联考数学成绩及格率为551306-=.(2)设甲、乙两校样本平均数分别为1x ',2x '.根据样本茎叶图可知,()()()()()()12123030307555814241265262479222092x x x x '-'='-'=-++-+--+--+-+249537729215=+--++=.因此120.5x x '-'=.故12x x -的估计值为0.5分.【点评】考查随机抽样与茎叶图等统计学基本知识,考查用样本估计总体的思想性以及数据分析处理能力. (18)【2013年安徽,文18,12分】如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BAD ∠=o .已知2,6PB PD PA ===. (1)证明:PC BD ⊥;(2)若E 为PA 的中点,求三菱锥P BCE -的体积. 解:(1)连接AC ,交BD 于O 点,连接PO .因为底面ABCD 是菱形,AC BD ∴⊥,BO DO =.由PB PD =知,PO BD ⊥.再由PO AC O =I 知,BD ⊥面APC ,因此BD PC ⊥.(2)因为E 是PA 的中点,所以1122P BCE C PEB C PAB B APC V V V V ----===.由2PB PD AB AD ====知,ABD PBD ∆∆≌.因为60BAD ∠=︒,所以3PO AO ==, 23AC =,1BO =.又6PA =,222PO AO PA +=,即PO AC ⊥,故1·32APC S PO AC ∆==.由(1)知,BO ⊥面APC ,因此1111 (2232)P BCE B APC APC V V BO S --∆===.【点评】考查空间直线与直线,直线与平面的位置,三棱锥体积等基础知识和基本技能,考查空间观念,推理论证能力和运算能力.(19)【2013年安徽,文19,13分】设数列{}n a 满足12a =,248a a +=,且对任意*n N ∈,函数1212()()cos sin n n n n n f x a a a x a x a x ++++=-++⋅-⋅满足'()02f π=.(1)求数列{}n a 的通项公式;(2)若122nn n a b a =+(),求数列{}n b 的前n 项和n S . 解:(1)由12a =,248a a +=,1212()()cos sin n n n n n f x a a a x a x a x ++++=-++⋅-⋅,1212sin cos n n n n n f x a a a a x a x ++++'=-+-⋅-⋅(),121'()02n n n n f a a a a π+++=-+-=, 所以122n n n a a a ++=+ {}n a ∴是等差数列.而12a =,34a =,1d =,2-111n a n n ∴=+⋅=+(). (2)111122121222nn n a n n b a n n +=+=++=++()()(), 21112211122=3131122212n n n n n n S n n n n ++=+++-=++--(-)()().【点评】考查函数的求导法则和求导公式,等差、等比数列的性质和数列基本量的求解.并考查逻辑推理能力和运算能力.(20)【2013年安徽,文20,13分】设函数22()(1)f x ax a x =-+,其中0a >,区间{}|()0I x f x =>. (1)求I 的长度(注:区间(,)αβ的长度定义为βα-;(2)给定常数()0,1k ∈,当11k a k -≤≤+时,求I 长度的最小值. 解:(1)因为方程22100()()ax a x a -+=>有两个实根10x =,221ax a =+,故()0f x >的解集为12{|}x x x x <<, 因此区间20,1a a I ⎛⎫ ⎪+⎝⎭=,区间长度为21a a +. (2)设()21d a aa =+,则()22211a a a d -(+')=,令()0d a '=,得1a =.由于01k <<,当11k a -≤<时,()0d a '>,()d a 单调递增;当11a k <≤+时,()0d a '<,()d a 单调递减.因此当11k a k -≤≤+时,()d a 的最 小值必定在1a k =-或1a k =+处取得.而23223211211<111211kd k k k k k d k k k k -(-)--+(-)==+(+)-++(+),故()1)1(d k d k -<+. 因此当1a k =-时,()d a 在区间1,]1[k k -+上取得最小值2122kk k --+.【点评】考查二次不等式的求解,以及导数的计算和应用,并考查分类讨论思想和综合运用数学知识解决问题的能力.(21)【2013年安徽,文21,13分】已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点P .(1)求椭圆C 的方程;(2)设0000(,)(0)Q x y x y ≠为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E.取点A ,连接AE ,过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线 QG 是否与椭圆C 一定有唯一的公共点?并说明理由.解:(1)因为焦距为4,所以224a b -=.又因为椭圆C过点P ,所以22231a b+=,故28a =,24b =,从而椭圆C 的方程为22184x y +=.(2)由题意,E 点坐标为()00,x .设(),0D D x,则(0,AE x =-u u u r,(,D AD x =-u u u r.再由AD AE ⊥知,0AE AD ⋅=u u u r u u u r ,即080D x x +=.由于000x y ≠,故08D x x =-.因为点G 是点D 关于y 轴的对称点,所以点08,0G x ⎛⎫ ⎪⎝⎭.故直线QG 的斜率000200088QG y x y x x k x ==--. 又因00()Q x y ,在C 上,所以220028x y +=①从而002QG x k y -=.故直线QG 的方程为00082x y x y x ⎛⎫=-- ⎪⎝⎭②将②代入C 方程,得22220000216640(1)6x y x x x y +-+-=.③再将①代入③,化简得220020x x x x -+=. 解得0x x =,0y y =,即直线QG 与椭圆C 一定有唯一的公共点.【点评】考查椭圆的标准方程及其几何性质,直线和椭圆的位置关系,并考查数形结合思想,逻辑推理能力及运算能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档