空气-蒸汽给热系数测定

合集下载

实验4传热(空气—蒸汽)

实验4传热(空气—蒸汽)

实验四:传热(空气—蒸汽)实验一、实验目的1.了解间壁式换热器的结构与操作原理;2.学习测定套管换热器总传热系数的方法;3.学习测定空气侧的对流传热系数;4.了解空气流速的变化对总传热系数的影响。

二、实验原理对流传热的核心问题是求算传热膜系数α,当流体无相变时对流传热准数关联式的一般形式为:(4-1)对于强制湍流而言,Gr准数可以忽略,故(4-2)本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m、n和系数A。

用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。

本实验可简化上式,即取n=0.4(流体被加热)。

这样,上式即变为单变量方程再两边取对数,即得到直线方程:(4-3)在双对数坐标中作图,找出直线斜率,即为方程的指数m。

在直线上任取一点的函数值代入方程中,则可得到系数A,即:(4-4)用图解法,根据实验点确定直线位置有一定的人为性。

而用最小二乘法回归,可以得到最佳关联结果。

应用微机,对多变量方程进行一次回归,就能同时得到A、m、n。

对于方程的关联,首先要有Nu、Re、Pr的数据组。

其准数定义式分别为:实验中改变冷却水的流量以改变Re准数的值。

根据定性温度(冷空气进、出口温度的算术平均值)计算对应的Pr准数值。

同时,由牛顿冷却定律,求出不同流速下的传热膜系数α值。

进而算得Nu准数值。

牛顿冷却定律:(4-5)式中:α—传热膜系数,[W/m2·℃];Q—传热量,[W];A—总传热面积,[m2];△tm—管壁温度与管内流体温度的对数平均温差,[℃]。

传热量Q可由下式求得:(4-6)W—质量流量,[kg/h];Cp—流体定压比热,[J/kg·℃];t1、t2—流体进、出口温度,[℃];ρ—定性温度下流体密度,[kg/m3];V—流体体积流量,[m3/s]。

三、实验设备四、实验步骤1.启动风机:点击电源开关的绿色按钮,启动风机,风机为换热器的管程提供空气2.打开空气流量调节阀:启动风机后,调节进空气流量调节阀至微开,这时换热器的管程中就有空气流动了。

化工原理实验(四)空气-蒸汽对流给热系数测定

化工原理实验(四)空气-蒸汽对流给热系数测定

化工原理实验(四)空气-蒸汽对流给热系数测定一、实验目的1、 了解间壁式传热元件,掌握给热系数测定的实验方法。

2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。

3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。

二、基本原理在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。

如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。

达到传热稳定时,有()()()()mm W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)Tt图4-1间壁式传热过程示意图式中:Q - 传热量,J / s ;m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ∙℃); T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ; c p 2 - 冷流体的比热,J / (kg ∙℃); t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃;α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 1 - 热流体侧的对流传热面积,m 2;()m W T T -- 热流体与固体壁面的对数平均温差,℃;α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 2 - 冷流体侧的对流传热面积,m 2;()m W t t - - 固体壁面与冷流体的对数平均温差,℃;K - 以传热面积A 为基准的总给热系数,W / (m 2 ∙℃); m t ∆- 冷热流体的对数平均温差,℃;热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃;T W 2 - 热流体出口处热流体侧的壁面温度,℃。

空气—蒸汽对流给热系数测定实验报告及数据、答案

空气—蒸汽对流给热系数测定实验报告及数据、答案

空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。

并应用线性回归分析方法,确定关联式Nu=ARe m Pr0.4中常数A、m的值。

⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m中常数B、m的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。

二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。

空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。

管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。

饱和蒸汽由配套的电加热蒸汽发生器产生。

该实验流程图如图1所示,其主要参数见表1。

表1 实验装置结构参数化工原理实验对流传热实验3图1 空气-水蒸气传热综合实验装置流程图孔板流量计测量空气流量空气压力蒸汽压力空气入口温度蒸汽温度空气出口温度1— 光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵; 5—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口; 15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。

②对 α1的实验数据进行线性回归,求关联式Nu=ARe m 中常数A 、m 的值。

2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。

②对 α1的实验数据进行线性回归,求关联式Nu=BRe m 中常数B 、m 的值。

四、实验原理1.准数关联影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为: Nu=CRe m Pr n Gr l(1)式中C 、m 、n 、l 为待定参数。

空气蒸汽对流给热系数的测定

空气蒸汽对流给热系数的测定

五、实验数据记录与处理1、实验原始数据记录表,根据相关计算式进行相关数据计算。

实验原始数据记录表计算示例(以次序1数据作为计算示例): 空气进口处密度:52310 4.510 1.2916t t ρ--=-⨯+=10-5× 38.62-4.5×10-3 ×38.6+1.2916=1.1328kg/m 3;空气质量流量:m s2 =ρV=4×1.1328÷3600=0.0012kg/s ;空气流速:u=4V/(πd 2)=4×4/(3.14×0.016×0.016×3600)= 5.5290m/s ;2.给热系数K 的计算空气定性温度:t 平均=(t 1+t 2)/2=(38.6+79.6)/2=59.1℃<60℃ 则空气比热:Cp=1005 J/(kg·°C) 定性温度下的空气密度ρ:52310 4.510 1.2916t t ρ--=-⨯+ =10-5× 59.12-4.5×10-3 ×59.1+1.2916=1.0606kg/m 3;冷、热流体间的对数平均温差:()()12211221ln t T t T tT t T t m-----=∆==40.32℃ 传热面积:22A d l π==3.14×0.016×1=0.0502m 2 对流传热系数:()mp t A t t c m K ∆-=1222= = 26.46W/(m 2·℃);3.近似法求给热系数α2 则α2=K=24.43W/(m 2·℃);(103.0-79.6)-(102.5-38.6)ln [(103.0-79.6)/(102.5-38.6)]0.0502×40.32空气粘度:6235(210510 1.716910t t μ---=-⨯+⨯+⨯)=(-2×10-6×38.62+5×10-3×38.6+1.7169)×10-5=1.906×10-5P a.s 空气导热系数:8252108100.0244t t λ--=-⨯+⨯+ =-2×10-8×38.62+8×10-5×38.6+0.0244=0.0275 W/(m·K ) 雷诺数:μρdu =Re = ;普兰特数:λμ2Pr p c == =0.6966 ;努赛尔数:λαdNu ==26.46×0.016/0.0275=15.39 ; 对于流体在圆形只管内做湍流时的对流传热系数,如符合以下条件:Re=1×104—1.2×105,Pr=0.7-120,管长与管内径之比l/d≥60,则Nu=0.023Re 0.8Pr n 。

实验三对流给热系数测定实验(空气-水蒸气体系)

实验三对流给热系数测定实验(空气-水蒸气体系)

实验三 对流给热系数测定实验(空气-水蒸气体系)3.1 实验目的1) 观察水蒸气在水平管外壁上的冷凝现象;2)测定空气在圆形直管内强制对流给热系数和换热器总传热系数并随着流量的变化规律;3)掌握热电阻测温方法;4)掌握化工原理实验软件库(VB 实验数据处理软件系统)的使用。

3.2 基本原理在套管换热器中,环隙通以水蒸气,内管管内通以空气,水蒸气冷凝放热以加热空气,在传热过程达到稳定后,有如下关系式:V ρC P (t 2-t 1)=α0A 0(T -T W )m =αi A i (t w -t)m (1—15) 式中:V 被加热流体体积流量,m 3/s ; ρ 被加热流体密度,kg/m 3; C P 被加热流体平均比热,J/(kg ·℃);α0、αi 水蒸气对内管外壁的冷凝给热系数和流体对内管内壁的对流给热系数,W/(m 2·℃);t 1、t 2 被加热流体进、出口温度,℃; A 0、A i 内管的外壁、内壁的传热面积,m 2; (T -T W )m 水蒸气与外壁间的对数平均温度差,℃; 22112211ln )()()(w w w w m T T T T T T T T Tw T -----=- (1—16)(t w -t)m 内壁与流体间的对数平均温度差,℃;22112211ln )()()(t t t t t t t t t t w w w w mw -----=- (1—17) 式中:T 1、T 2 蒸汽进、出口温度,℃; T w1、T w2、t w1、t w2 外壁和内壁上进、出口温度,℃。

当内管材料导热性能很好,即λ值很大,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测得的该点的壁温。

由式(1—17)可得:m P Tw T A t t C V )()(0120--=ρα (1—18)mw P it t A t t C V )()(012--=ρα (1—19) 若能测得被加热流体的V 、t 1、t 2,内管的换热面积A 0或A i ,以及水蒸气温度T ,壁温T w1、T w2,则可通过式(1 —18)算得实测的水蒸气(平均)冷凝给热系数α0;通过 式(1 —19)算得实测的流体在管内的(平均)对流给热系数αi 。

传热系数测定的实验

传热系数测定的实验

传热系数测定的实验(水蒸气-空气体系)一.实验目的1.了解管套式换热器的结构2.观察水蒸气在水平换热管外壁上的冷凝现象,判断冷凝类型3.测定水蒸气—空气在换热器中的总传热系数K和对流给热系数a,加深对其概念和影响因素的理解。

4.学习线性回归法确定关联式Nu=ARe m pr0.4中常数A,m的值5.掌握热电偶测量温度的原理和方法二.实验原理1.总传热系数的测定在套管换热器中,环隙通以水蒸气,内管通冷空气,水蒸气冷凝放出热量加热空气。

当冷热液体在换热器内进行稳定传热时,该换热器同时满足热量衡算和传热速率方程,若忽略热损失,公式如下:Q=KAΔt m=q m c p(t2-t1)三.实验内容1.衡量水蒸气-空气通过换热器的总传热系数K对实验数据进行线性回归,求出准数方程Nu=ARe m pr0.4中的常数A,M的值2.通过计算分析影响总传热系数的因素四.实验装置来自蒸汽发生器的水蒸气进入不锈钢套管换热器,与来自风机的空气进行热交换,冷凝水通过管道排入地沟,冷空气经转自流量计进入套管换热器内管热交换后装置。

实验流程如图:五.实验步骤1.检查蒸汽发生器的仪表和水位是否正常。

2.打开换热器的总电源开关,打开仪表电源开关,观察仪器读数是否正常。

3.当蒸汽压稳定后,排除蒸汽发生器到实验装置之间管道中的冷凝水,防止夹带冷凝水的蒸汽损坏压力表及压力变送器。

4.打开换热器内的不凝性气体排除阀。

5.刚开始通入蒸汽时,要仔细调节蒸气进口阀的开度,让蒸气徐徐流入换热器中,逐渐加热,由冷态转变为热态,不得少于10MIN。

6.恒定空气流量,改变蒸气压,测量4组实验数据。

改变客气流量,恒定蒸汽压,测量4组数据7.实验完毕,清理实验场地。

传热系数测定的实验(水-热空气体系)一.实验目的1.了解列管式换热器的结构。

2.测定水-热空气在换热器中的总传热系数K和对流给热系数α加深对其概念影响因素的理解。

3.学习线性回归法确定关联式Nu=ARe m pr0.4中常数A,m的值4.掌握热电偶测量温度的原理和方法二.实验原理在列管式换热器中,壳程通冷水,管程通热空气,热空气冷却放热加热水。

实验7. 空气-蒸汽对流给热系数的测定

实验7. 空气-蒸汽对流给热系数的测定

实验7. 空气-蒸汽对流给热系数的测定一、实验目的1.熟悉传热过程及间壁式换热器的结构,掌握热电阻的测温方法;2.观察蒸汽在水平冷凝管外壁上的冷凝现象,测定对流给热系数h ;3.测定努塞尔数Nu 与雷诺数e R 之间的关系,并确定它们的关联式;4.了解强化传热的途径,分析热交换过程的影响因素。

二、基本原理工业生产中冷流体和热流体常通过固体壁面进行热量交换,此种换热方式称为间壁式传热。

间壁式传热过程是由热流体对固体壁面的对流传热、固体壁面的热传导和固体壁面对冷流体的对流传热过程组成,间壁式传热过程如图2—10所示。

当传热过程达到稳定时,它们有如下关系: 图2—10 间壁式传热过程示意图()()()()112122121122m p m p W W m M mq c t t q c T T h A t t h A T T KA t Φ=-=-=-=-=∆ (2—45) 式中:Φ—传热速率,W ;q m1、q m2 —冷、热流体的质量流量,1kg s -⋅; c p1、c p2 —冷、热流体的比热容,11kJ kg K --⋅⋅;T 1 、T 2—热流体的进出口温度,K ; t 1、t 2 —冷流体的进出口的度,K ;A 1、A 2—冷、热流体侧的对流传热面积,m 2;12,h h —冷、热流体与固体壁面的对流给热系数,21W m K --⋅⋅; ()W m t t -、()W m T T -—冷、热流体与固体壁面的对数平均温度差,K ;K —总传热系数,21W m K --⋅⋅; A —传热面积,m 2;m t ∆—对数平均温度差,K ;热流体与固体壁面的对数平均温差可由下式计算()()()22112211ln W W W W m W T T T T T T T T T T -----=- (2-46)式中:12,W W T T —热流体进出口处热流体侧壁面的温度,K 。

固体壁面与冷流体的对数平均温差可由下式求得()()()22112211ln t t t t t t t t t t W W W W m W -----=- (2-47)式中:12,W W t t —冷流体进出口处冷流体侧壁面的温度,K ; 冷热流体间的对数平均温度差可由下式计算()()12211221ln m T t T t t T t T t ---∆=-- (2—48)在套管式换热器中,由于水蒸气通过套管的环隙,冷空气或水通过内管间,测定对流给热系数时,由式(2—45)可得内管内壁面与冷空气或水的对流给热系数()()112111p W mm c t t h A t t -=- (2—49)实验中,要测定内管的壁温t w1和t w2,冷空气或水的进出口温度t 1和t 2;实验用套管的长度l ,内径d 1,换热面积11A d l π=,冷流体的质量流量及比热容,即可求得对流给热系数h 1。

冷空气——蒸汽的对流传热实验

冷空气——蒸汽的对流传热实验

∆������������
=
∆������1−∆������2 ������������∆∆������������12
=
(99.5−25.1)−(99.5−67.7) ������������9999..55−−2657..17
℃=50.12℃




Q
=
������������������������������(������2
5.稳定 10~15min,记录冷空气流量,蒸汽温度和冷空气进、出口温度。
6. 调节空气 支路调节阀( 逐渐关闭闸阀 16),改变冷空气流量,稳定 10~15min后,记录冷空气流量,进、出口温度和蒸汽温度。
7.重复操作实验步骤 6 八至十次,流量从大到小,均匀分布,完成 1#换热器 的测定。
8.全开冷空气支路调节阀(闸阀 16),选择另一个换热器 2#换热器,全开此 换热器切换阀(球阀 2),管壁已做完实验的 1#换热器的切换阀(球阀 3)。
内径:25mm
外径:30mm
定性温
度������������ (℃)
传热面 积A (m2)
平均 传热速 温差 率 Q ∆������������(℃) (W)
总传热 系数 K (W/( m2/s))
管长:1.3m
Nu
Re
1 19.8 46.4 0.123 50.1 260.44 45.63 40.4 15620.6
3 48.7 54.8 0.123 41.7 503.75 74.80 66.2 38420.3
4 45.0 53.5 0.123 43.8 489.10 74.32 65.8 35501.3
5 40.7 52.8 0.123 43.4 457.44 70.44 62.3 32109.0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江科技学院实验报告课程名称:化工原理实验名称:空气—蒸汽对流给热系数测定学院:生物与化学工程学院专业班:材料科学与工程111姓名:AAA学号:**********同组人员:AAA AAA实验时间: 2014年5月9日指导教师:一、 实验课程名称:化工原理二、实验项目名称:空气-蒸汽对流给热系数测定 三、实验目的和要求:1、 了解间壁式传热元件,掌握给热系数测定的实验方法。

2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。

3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。

四、实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。

实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。

如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。

达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (1)热流体与固体壁面的对数平均温差可由式(2)计算,()()()22112211lnW W W W m W T T T T T T T T T T -----=- (2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。

固体壁面与冷流体的对数平均温差可由式(3)计算,()()()22112211ln t t t t t t t t t t W W W W m W -----=- (3)式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。

热、冷流体间的对数平均温差可由式(4)计算,()()12211221m t T t T lnt T t T t -----=∆ (4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α (5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,Tt图4-1间壁式传热过程示意图l d A 22π=;和冷流体的质量流量,即可计算α2。

然而,直接测量固体壁面的温度,尤其管内壁的温度,实验技术难度大,而且所测得的数据准确性差,带来较大的实验误差。

因此,通过测量相对较易测定的冷热流体温度来间接推算流体与固体壁面间的对流给热系数就成为人们广泛采用的一种实验研究手段。

由式(1)得,()mp t A t t c m K ∆-=1222 (6)实验测定2m 、2121T T t t 、、、、并查取()2121t t t +=平均下冷流体对应的2p c 、换热面积A ,即可由上式计算得总给热系数K 。

1. 近似法求算对流给热系数2α以管内壁面积为基准的总给热系数与对流给热系数间的关系为,112121222211d d d d R d bd R K S m S αλα++++=(7)用本装置进行实验时,管内冷流体与管壁间的对流给热系数约为几十到几百K m W .2;而管外为蒸汽冷凝,冷凝给热系数1α可达~Km W .1024左右,因此冷凝传热热阻112d d α可忽略,同时蒸汽冷凝较为清洁,因此换热管外侧的污垢热阻121d d R S 也可忽略。

实验中的传热元件材料采用紫铜,导热系数为383.8K m W ⋅,壁厚为2.5mm ,因此换热管壁的导热热阻m d bd λ2可忽略。

若换热管内侧的污垢热阻2S R 也忽略不计,则由式(7)得, 22K ≈α (8)由此可见,被忽略的传热热阻与冷流体侧对流传热热阻相比越小,此法所得的准确性就越高。

2. 冷流体质量流量的测定用孔板流量计测冷流体的流量,则,2m V ρ= (9) 式中,V 为冷流体进口处流量计读数,ρ为冷流体进口温度下对应的密度。

3. 冷流体物性与温度的关系式在0~100℃之间,冷流体的物性与温度的关系有如下拟合公式。

(1)空气的密度与温度的关系式:52310 4.510 1.2916t t ρ--=-⨯+(2)空气的比热与温度的关系式:60℃以下p C =1005 J / (kg ∙℃), 60℃以上p C =1009 J / (kg ∙℃)。

(3)空气的导热系数与温度的关系式: 8252108100.0244t t λ--=-⨯+⨯+ (4)空气的黏度与温度的关系式:6235(210510 1.716910t t μ---=-⨯+⨯+⨯)五、主要仪器设备1.实验装置 实验装置如图1所示图1 空气-水蒸气换热流程图来自蒸汽发生器的水蒸气进入不锈钢套管换热器环隙,与来自风机的空气在套管换热器内进行热交换,冷凝水经阀排入地沟。

冷空气经孔板流量计进入套管换热器内管(紫铜管),热交换后排出装置外。

2.设备与仪表规格(1)紫铜管规格:直径φ21×2.5mm,长度L=1000mm;(2)外套不锈钢管规格:直径φ100×5mm,长度L=1000mm;(4)铂热电阻及无纸记录仪温度显示;(5)全自动蒸汽发生器及蒸汽压力表。

六、操作方法与实验步骤(一)实验步骤1、打开控制面板上的总电源开关,打开仪表电源开关,使仪表通电预热,观察仪表显示是否正常。

2、在蒸汽发生器中灌装清水至水箱的球体中部,开启发生器电源,使水处于加热状态。

到达符合条件的蒸汽压力后,系统会自动处于保温状态。

3、打开控制面板上的风机电源开关,让风机工作,同时打开冷流体进口阀,让套管换热器里充有一定量的空气。

4、打开冷凝水出口阀,排出上次实验余留的冷凝水,在整个实验过程中也保持一定开度。

注意开度适中,开度太大会使换热器中的蒸汽跑掉,开度太小会使换热不锈钢管里的蒸汽压力过大而导致不锈钢管炸裂。

5、在通水蒸汽前,也应将蒸汽发生器到实验装置之间管道中的冷凝水排除,否则夹带冷凝水的蒸汽会损坏压力表及压力变送器。

具体排除冷凝水的方法是:关闭蒸汽进口阀门,打开装置下面的排冷凝水阀门,让蒸汽压力把管道中的冷凝水带走,当听到蒸汽响时关闭冷凝水排除阀,方可进行下一步实验。

6、开始通入蒸汽时,要仔细调节蒸汽阀的开度,让蒸汽徐徐流入换热器中,逐渐充满系统中,使系统由“冷态”转变为“热态”,不得少于10分钟,防止不锈钢管换热器因突然受热、受压而爆裂。

同时,打开顶端放气阀,将设备内的空气排出,至排气管有蒸汽放出,关闭排气阀。

7、上述准备工作结束,系统也处于“热态”后,调节蒸汽进口阀,使蒸汽进口压力维持在0. 01MPa,可通过调节蒸汽发生器出口阀及蒸汽进口阀开度来实现。

8、自动调节冷空气进口流量时,可通过仪表调节风机转速频率来改变冷流体的流量到一定值,在每个流量条件下,均须待热交换过程稳定后方可记录实验数值,一般每个流量下至少应使热交换过程保持15分钟方为视为稳定;改变流量,记录不同流量下的实验数值。

9、记录6~8组实验数据,可结束实验。

先关闭蒸汽发生器,关闭蒸汽进口阀,关闭仪表电源,待系统逐渐冷却后关闭风机电源,待冷凝水流尽,关闭冷凝水出口阀,关闭总电源。

七、实验数据记录与处理实验原始数据记录表,根据相关计算式进行相关数据计算。

1、实验原始数据记录表2、给热系数K的计算:计算示例(以数据次序1作为计算示例):① 空气进口处密度:52352331110 4.510 1.29161039.1 4.51039.1 1.2916 1.1309/t t kg m ρ----=-⨯+=⨯-⨯⨯+=② 空气质量流量:220.0 1.13090.0063/3600s m V kg s ρ⨯=⨯==③ 空气流速:224420.027.6451/3600 3.140.016V u m s d π⨯===⨯⨯ ④ 空气定性温度:()1211(39.177.2)58.15C 60C 22t t t =+=+=︒<︒平均⑤ 空气比热:1005=Cp J/(kg·°C)⑥ 定性温度下的空气密度'ρ:'523523310 4.510 1.29161058.15 4.51058.15 1.2916 1.0637/t t kg m ρ----=-⨯+=⨯-⨯⨯+=平均平均⑦ 冷、热流体间的对数平均温差: ()()12211221(104.777.2)(105.299.1)43.9768104.777.2lnln 105.299.1m T t T t t T t T t ------∆===----⑧ 传热面积:2220502.01016.014.3m l d A =⨯⨯==π ⑨ 对流传热系数:()22210.00631005(77.239.1)108.88990.050243.9764s p mm c t t K A t -⨯⨯-===∆⨯w/(m 2·°C) 3、近似法求给热系数2α ()22108.8899/K w m α==⋅︒C24α、理论值的计算① 空气粘度:6235(210510 1.7169)10t t μ---=-⨯+⨯+⨯平均平均 62355(21058.1551058.15 1.7169)10 2.0008910Pa s ----=-⨯⨯+⨯⨯+⨯=⨯⋅② 空气导热系数:8258252108100.024421058.1581058.150.02440.0290t t λ----=-⨯+⨯+=-⨯⨯+⨯⨯+=平均平均③ 雷诺数:5'0.01627.6451 1.0637Re 235152.0008910du ρμ-⨯⨯===⨯ ④ 普兰特数:51005 2.0008910Pr 0.69380.029p C μλ-⨯⨯=== ⑤ 努赛尔数:2108.88990.01660.10960.0290d Nu αλ⨯===⑥ 若符合以下条件:45Re 1.010 1.210=⨯⨯,Pr 0.7120=,6060ld≥,则n Nu Pr Re 023.08.0= 本实验中,162.5600.016l d ==≥,而Re ,Pr 也基本在这个范围内,n=0.4。

所以可以用上述公式计 算Nu 的理论值n Nu Pr Re 023.0'8.0==0.80.40.023235150.693862.4163⨯⨯=⑦ 理论2'α:22'62.41630.0290'113.0686/()0.016Nu W m C d λα⨯===⋅︒ ⑧ 相对误差:222'113.0686108.8899100%100% 3.70%'113.0686ααα--⨯=⨯= ⑨ 0.40.4ln(/Pr)ln(60.1096/0.6938) 4.2424Nu ==⑩ ln(Re)ln(23515)10.0654==八、实验结果与分析1、冷流体给热系数的实验计算值与理论值(按800230.0.4Re .Nu/Pr =计算)列表比较,计算各点误差,并分析与讨论:从实验数据来看,结果不是很准确,误差也比较大。

相关文档
最新文档