空气_蒸汽给热系数测定实验指导书
实验五 空气_蒸汽对流给热系数

76.3
76.4
76.7
76.9
77.2
75.9
78.9
78.8
43.2
23.9
75.8
75.6
76.2
76.4
76.5
76.7
76.8
75.6
78.8
78.9
43.5
24.2
75.8
75.5
76.2
76.4
76.5
76.7
76.8
75.6
78.8
78.9
43.6
24.4
75.8
75.6
76.2
102.5
103.1
15
51.8
83.1
102.3
103
10
49.9
82.9
102.4
103.1
7.5
47.6
82.5
102.4
103.2
5
表2冷流体特性参数
空气流速u(m/s)
对数平均温度差Δt
冷流体平均温度
空气密度ρ(Kg/m3)
空气质量流量qm(Kg/h)
空气黏度μ(Pa/s)×10-5
空气的导热系数λ(W•m﹣¹•K﹣¹)
cPF=1.01+(3.1949× ×lg37.7-5.5099×37.7-3.0506× )×10﹣³
=0.84kcal/Kg=161.7KJ/(Kmol•℃)
q= 1+161.7×(83.4-41.82)/90883.7=1.0740
故加料线方程y= X- =14.5X-2.58
= =0.246
即61.26/0.6950.4=A•25008m
50.90/0.6950.4=A•20388.1m
空气-水蒸气对流给热系数测定实验报告

一.实验课程名称 化工原理二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求1、了解间壁式传热元件,掌握给热系数测定的实验方法。
2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四.实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M Wp p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211ln t t tt t t t t t t W W W W m W-----=- (4-3)式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T ln t T t T t -----=∆ (4-4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α (4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。
实验7 空气蒸汽对流给热系数测定

实验7. 空气-蒸汽对流给热系数的测定一、实验目的1.熟悉传热过程及间壁式换热器的结构,掌握热电阻的测温方法;2.观察蒸汽在水平冷凝管外壁上的冷凝现象,测定对流给热系数h ;3.测定努塞尔数Nu 与雷诺数e R 之间的关系,并确定它们的关联式;4.了解强化传热的途径,分析热交换过程的影响因素。
二、基本原理工业生产中冷流体和热流体常通过固体壁面进行热量交换,此种换热方式称为间壁式传热。
间壁式传热过程是由热流体对固体壁面的对流传热、固体壁面的热传导和固体壁面对冷流体的对流传热过程组成,间壁式传热过程如图2—10所示。
当传热过程达到稳定时,它们有如下关系: 图2—10 间壁式传热过程示意图()()()()112122121122m p m p W W m M mq c t t q c T T h A t t h A T T KA t Φ=-=-=-=-=∆ (2—45) 式中:Φ—传热速率,W ;q m1、q m2 —冷、热流体的质量流量,1kg s -⋅; c p1、c p2 —冷、热流体的比热容,11kJ kg K --⋅⋅;T 1 、T 2—热流体的进出口温度,K ; t 1、t 2 —冷流体的进出口的度,K ;A 1、A 2—冷、热流体侧的对流传热面积,m 2;12,h h —冷、热流体与固体壁面的对流给热系数,21W m K --⋅⋅; ()W m t t -、()W m T T -—冷、热流体与固体壁面的对数平均温度差,K ;K —总传热系数,21W m K --⋅⋅; A —传热面积,m 2;m t ∆—对数平均温度差,K ;热流体与固体壁面的对数平均温差可由下式计算()()()22112211ln W W W W m W T T T T T T T T T T -----=- (2-46)式中:12,W W T T —热流体进出口处热流体侧壁面的温度,K 。
固体壁面与冷流体的对数平均温差可由下式求得()()()22112211ln t t t t t t t t t t W W W W m W -----=- (2-47)式中:12,W W t t —冷流体进出口处冷流体侧壁面的温度,K ; 冷热流体间的对数平均温度差可由下式计算()()12211221ln m T t T t t T t T t ---∆=-- (2—48)在套管式换热器中,由于水蒸气通过套管的环隙,冷空气或水通过内管间,测定对流给热系数时,由式(2—45)可得内管内壁面与冷空气或水的对流给热系数()()112111p W mm c t t h A t t -=- (2—49)实验中,要测定内管的壁温t w1和t w2,冷空气或水的进出口温度t 1和t 2;实验用套管的长度l ,内径d 1,换热面积11A d l π=,冷流体的质量流量及比热容,即可求得对流给热系数h 1。
实验7 空气蒸汽对流给热系数测定

实验7. 空气-蒸汽对流给热系数的测定一、实验目的1.熟悉传热过程及间壁式换热器的结构,掌握热电阻的测温方法;2.观察蒸汽在水平冷凝管外壁上的冷凝现象,测定对流给热系数h ;3.测定努塞尔数Nu 与雷诺数e R 之间的关系,并确定它们的关联式;4.了解强化传热的途径,分析热交换过程的影响因素。
二、基本原理工业生产中冷流体和热流体常通过固体壁面进行热量交换,此种换热方式称为间壁式传热。
间壁式传热过程是由热流体对固体壁面的对流传热、固体壁面的热传导和固体壁面对冷流体的对流传热过程组成,间壁式传热过程如图2—10所示。
当传热过程达到稳定时,它们有如下关系: 图2—10 间壁式传热过程示意图()()()()112122121122m p m p W W m M mq c t t q c T T h A t t h A T T KA t Φ=-=-=-=-=∆ (2—45) 式中:Φ—传热速率,W ;q m1、q m2 —冷、热流体的质量流量,1kg s -⋅; c p1、c p2 —冷、热流体的比热容,11kJ kg K --⋅⋅;T 1 、T 2—热流体的进出口温度,K ; t 1、t 2 —冷流体的进出口的度,K ;A 1、A 2—冷、热流体侧的对流传热面积,m 2;12,h h —冷、热流体与固体壁面的对流给热系数,21W m K --⋅⋅; ()W m t t -、()W m T T -—冷、热流体与固体壁面的对数平均温度差,K ;K —总传热系数,21W m K --⋅⋅; A —传热面积,m 2;m t ∆—对数平均温度差,K ;热流体与固体壁面的对数平均温差可由下式计算()()()22112211ln W W W W m W T T T T T T T T T T -----=- (2-46)式中:12,W W T T —热流体进出口处热流体侧壁面的温度,K 。
固体壁面与冷流体的对数平均温差可由下式求得()()()22112211ln t t t t t t t t t t W W W W m W -----=- (2-47)式中:12,W W t t —冷流体进出口处冷流体侧壁面的温度,K ; 冷热流体间的对数平均温度差可由下式计算()()12211221ln m T t T t t T t T t ---∆=-- (2—48)在套管式换热器中,由于水蒸气通过套管的环隙,冷空气或水通过内管间,测定对流给热系数时,由式(2—45)可得内管内壁面与冷空气或水的对流给热系数()()112111p W mm c t t h A t t -=- (2—49)实验中,要测定内管的壁温t w1和t w2,冷空气或水的进出口温度t 1和t 2;实验用套管的长度l ,内径d 1,换热面积11A d l π=,冷流体的质量流量及比热容,即可求得对流给热系数h 1。
空气-水蒸气对流给热系数测定实验报告

一.实验课程名称 化工原理二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求1、了解间壁式传热元件,掌握给热系数测定的实验方法。
2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四.实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211ln t t tt t t t t t t W W W W m W-----=- (4-3)Tt图4-1间壁式传热过程示意图式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T ln t T t T t -----=∆ (4-4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α (4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。
空气-水蒸气对流给热系数测定实验报告

一.实验课程名称 化工原理二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求1、了解间壁式传热元件,掌握给热系数测定的实验方法。
2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四.实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211ln t t tt t t t t t t W W W W m W-----=- (4-3)δ TT W t Wt图4-1间壁式传热过程示意图式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T lnt T t T t -----=∆ (4-4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α (4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。
空气-水蒸气对流给热系数测定实验报告

空气-水蒸气对流给热系数测定实验报告
实验目的:测定空气-水蒸气对流给热系数。
实验原理:空气-水蒸气对流给热系数是指在给定条件下,单位时间内单位面积的对流热流量。
在实际应用中,了解对流给热系数的大小对于设计和优化热传递设备非常重要。
实验装置:实验装置包括一个加热管、一个水槽以及一个温度计。
通过控制加热管的电压和水槽的温度,可以得到不同的条件下空气-水蒸气对流的热传递情况。
实验步骤:
1. 将实验装置准备好,确保加热管和温度计的位置正确。
2. 首先将加热管的电压调整到一个固定值,记录加热管上的电压和电流。
3. 启动水槽并将水温调整到一个适当的温度。
4. 将温度计放置在实验装置中,记录下来水的初始温度。
5. 开始记录时间和温度,每隔一段时间记录一次温度值。
6. 进行多组实验,每组实验可以改变加热管的电压或者水槽的温度,以得到不同的实验数据。
实验数据处理:
1. 将实验数据整理成表格。
2. 根据实验数据绘制温度-时间曲线。
3. 计算出空气-水蒸气对流的热传递系数。
4. 对不同实验条件下得到的热传递系数进行比较和分析。
实验结果:
根据实验数据计算得出的空气-水蒸气对流给热系数为X(单位)。
实验讨论:
根据实验结果可以得出结论:在给定的实验条件下,空气-水
蒸气对流给热系数为X,说明X。
实验结论:
通过本实验测定得到空气-水蒸气对流给热系数为X(单位),实验结果具有一定的参考价值,并为相关热传递设备的设计和优化提供了理论依据。
空气-蒸汽给热系数测定实验指导书

空气-蒸汽给热系数测定装置实验指导书空气-蒸汽对流给热系数测定一、实验目的1、 了解间壁式传热元件,掌握给热系数测定的实验方法。
2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
二、基本原理在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交 换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()mm W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1) 式中:Q - 传热量,J / s ;m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ∙℃); T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ;Tt图4-1间壁式传热过程示意图c p 2 - 冷流体的比热,J / (kg ∙℃); t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃;α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 1 - 热流体侧的对流传热面积,m 2;()m W T T -- 热流体与固体壁面的对数平均温差,℃;α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 2 - 冷流体侧的对流传热面积,m 2;()m W t t - - 固体壁面与冷流体的对数平均温差,℃;K - 以传热面积A 为基准的总给热系数,W / (m 2 ∙℃); m t ∆- 冷热流体的对数平均温差,℃;热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃;T W 2 - 热流体出口处热流体侧的壁面温度,℃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空气-蒸汽给热系数测定装置实验指导书空气-蒸汽对流给热系数测定一、实验目的1、 了解间壁式传热元件,掌握给热系数测定的实验方法。
2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
二、基本原理在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交 换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()mm W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1) 式中:Q - 传热量,J / s ;m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ∙℃); T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ; c p 2 - 冷流体的比热,J / (kg ∙℃);Tt图4-1间壁式传热过程示意图t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃;α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 1 - 热流体侧的对流传热面积,m 2;()m W T T -- 热流体与固体壁面的对数平均温差,℃;α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 2 - 冷流体侧的对流传热面积,m 2;()m W t t - - 固体壁面与冷流体的对数平均温差,℃;K - 以传热面积A 为基准的总给热系数,W / (m 2 ∙℃); m t ∆- 冷热流体的对数平均温差,℃;热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃;T W 2 - 热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211ln t t t t t t t t t t W W W W m W -----=- (4-3)式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T ln t T t T t -----=∆ (4-4)当在套管式间壁换热器中,环隙通以水蒸气,管管通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得管壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α (4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。
然而,直接测量固体壁面的温度,尤其管壁的温度,实验技术难度大,而且所测得的数据准确性差,带来较大的实验误差。
因此,通过测量相对较易测定的冷热流体温度来间接推算流体与固体壁面间的对流给热系数就成为人们广泛采用的一种实验研究手段。
由式(4-1)得,()mp t A t t c m K ∆-=1222 (4-6)实验测定2m 、2121T T t t 、、、、并查取()2121t t t +=平均下冷流体对应的2p c 、换热面积A ,即可由上式计算得总给热系数K 。
下面通过两种方法来求对流给热系数。
1. 近似法求算对流给热系数2α以管壁面积为基准的总给热系数与对流给热系数间的关系为,11212122211d d d d R d bd R K S m S αλα++++= (4-7) 式中:d 1 - 换热管外径,m ;d 2 - 换热管径,m ;d m - 换热管的对数平均直径,m ; b - 换热管的壁厚,m ;λ - 换热管材料的导热系数,W / (m ∙ ℃);1S R - 换热管外侧的污垢热阻,W K m ⋅2; 2S R - 换热管侧的污垢热阻,W K m ⋅2。
用本装置进行实验时,管冷流体与管壁间的对流给热系数约为几十到几百K m W .2;而管外为蒸汽冷凝,冷凝给热系数1α可达~K m W .1024左右,因此冷凝传热热阻112d d α可忽略,同时蒸汽冷凝较为清洁,因此换热管外侧的污垢热阻121d d R S 也可忽略。
实验中的传热元件材料采用紫铜,导热系数为383.8K m W ⋅,壁厚为2.5mm ,因此换热管壁的导热热阻md bd λ2可忽略。
若换热管侧的污垢热阻2S R 也忽略不计,则由式(4-7)得,K ≈2α (4-8)由此可见,被忽略的传热热阻与冷流体侧对流传热热阻相比越小,此法所得的准确性就越高。
2. 传热准数式求算对流给热系数2α对于流体在圆形直管作强制湍流对流传热时,若符合如下围:Re=1.0×104~1.2×105,Pr =0.7~120,管长与管径之比l/d ≥60,则传热准数经验式为,n 8.0Pr Re 023.0Nu = (4-9) 式中:Nu -努塞尔数,λα=dNu ,无因次; Re -雷诺数,μρ=du Re ,无因次; Pr -普兰特数,λμ=p c Pr ,无因次;当流体被加热时n =0.4,流体被冷却时n =0.3;α - 流体与固体壁面的对流传热系数,W / (m 2 ∙℃);d - 换热管径,m ;λ - 流体的导热系数,W / (m ∙ ℃); u - 流体在管流动的平均速度,m / s ; ρ - 流体的密度,kg / m 3; μ - 流体的粘度,Pa ∙ s ; c p - 流体的比热,J / (kg ∙℃)。
对于水或空气在管强制对流被加热时,可将式(4-9)改写为,8.0224.0228.128.02Pr 14023.011⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⎪⎭⎫ ⎝⎛⨯=m d μλπα (4-10)令, 81280402301..d .m ⨯⎪⎭⎫⎝⎛⨯=π (4-11)802240221..m Pr X ⎪⎪⎭⎫ ⎝⎛⨯=μλ (4-12) KY 1=(4-13) 11212122d dd d R d bd R C S m S αλ+++= (4-14) 则式(4-7)可写为,C mX Y += (4-15)当测定管不同流量下的对流给热系数时,由式(4-14)计算所得的C 值为一常数。
管径d 2一定时,m 也为常数。
因此,实验时测定不同流量所对应的2121T T t t 、、、,由式(4-4)、(4-6)、(4-12)、(4-13)求取一系列X 、Y 值,再在X ~Y 图上作图或将所得的X 、Y 值回归成一直线,该直线的斜率即为m 。
任一冷流体流量下的给热系数α2可用下式求得,8.0224.0222Pr ⎪⎪⎭⎫ ⎝⎛⨯=μλαm m(4-16)3. 冷流体质量流量的测定(1)若用转子流量计测定冷空气的流量,还须用下式换算得到实际的流量,()()ρρρρρρ-''-='f f V V (4-17)式中: V ' — 实际被测流体的体积流量,m 3 / s ;ρ' — 实际被测流体的密度,kg / m 3;均可取()2121t t t +=平均下对应水或空气的密度,见冷流体物性与温度的关系式;V — 标定用流体的体积流量,m 3 / s ;ρ — 标定用流体的密度,kg / m 3;对水ρ = 1000 kg / m 3;对空气ρ = 1.205 kg / m 3; ρf — 转子材料密度,kg / m 3。
于是 ρ''=V m 2 (4-18)(2)若用孔板流量计测冷流体的流量,则,2m V ρ= (4-19)式中,V 为冷流体进口处流量计读数,ρ为冷流体进口温度下对应的密度。
4. 冷流体物性与温度的关系式在0~100℃之间,冷流体的物性与温度的关系有如下拟合公式。
(1)空气的密度与温度的关系式:52310 4.510 1.2916t t ρ--=-⨯+ (2)空气的比热与温度的关系式:60℃以下p C =1005 J / (kg ∙℃),70℃以上p C =1009 J / (kg ∙℃)。
(3)空气的导热系数与温度的关系式:8252108100.0244t t λ--=-⨯+⨯+(4)空气的黏度与温度的关系式:6235(210510 1.716910t t μ---=-⨯+⨯+⨯)三、实验装置与流程1.实验装置1—风机; 2—冷流体管路; 3-冷流体进口调节阀; 4—转子流量计; 5—冷流体进口温度; 6—不凝性气体排空阀; 7—蒸汽温度; 8—视镜; 9—冷流体出口温度; 10—压力表; 11—水汽排空阀;12—蒸汽进口阀;13—冷凝水排空阀;14—蒸汽进口管路;15—冷流体出口管路;图4-1 空气-水蒸气换热流程图来自蒸汽发生器的水蒸汽进入不锈钢套管换热器环隙,与来自风机的空气在套管换热器进行热交换,冷凝水经阀门排入地沟。
冷空气经孔板流量计或转子流量计进入套管换热器管(紫铜管),热交换后排出装置外。
2.设备与仪表规格(1)紫铜管规格:直径φ21×2.5mm,长度L=1000mm(2)外套不锈钢管规格:直径φ100×5mm,长度L=1000mm(4)铂热电阻及无纸记录仪温度显示(5)全自动蒸汽发生器及蒸汽压力表四、实验步骤与注意事项1.实验步骤(1)打开控制面板上的总电源开关,打开仪表电源开关,使仪表通电预热,观察仪表显示是否正常。
(2)在蒸汽发生器中灌装清水,开启发生器电源,水泵会自动将水送入锅炉,灌满后会转入加热状态。
到达符合条件的蒸汽压力后,系统会自动处于保温状态。
(3)打开控制面板上的风机电源开关,让风机工作,同时打开冷流体进口阀,让套管换热器里充有一定量的空气。
(4)打开冷凝水出口阀,排出上次实验余留的冷凝水,在整个实验过程中也保持一定开度。
注意开度适中,开度太大会使换热器中的蒸汽跑掉,开度太小会使换热不锈钢管里的蒸汽压力过大而导致不锈钢管炸裂。
(5)在通水蒸汽前,也应将蒸汽发生器到实验装置之间管道中的冷凝水排除,否则夹带冷凝水的蒸汽会损坏压力表及压力变送器。
具体排除冷凝水的方法是:关闭蒸汽进口阀门,打开装置下面的排冷凝水阀门,让蒸汽压力把管道中的冷凝水带走,当听到蒸汽响时关闭冷凝水排除阀,方可进行下一步实验。