平面及其基本性质--三个公理三个推论的应用
平面几何证明题定理推论汇总

立体几何公理、定理推论汇总 一、公理及其推论公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内符号语言:A I, B I, A : ,B 「;一 I : 作用:① 用来验证直线在平面内;② 用来说明平面是无限延展的。
公理2如果两个平面有一个公共点, 那么它们还有其他公共点,且所有这些公共点的集合是一条过这个 公共点的直线。
(那么它们有且只有一条通过这个公共点的公共直线)作用:用来证明线线平行。
符号语言: p :仆—j 且 p i 作用:① 用来证明两个平面是相交关系; ② 用来证明多点共线,多线共点。
公理3经过不在同一条直线上的三点,有且只有一个平面 符号语言:A, B,C 不共线=A,B,C 确定一个平面推论1经过一条直线和这条直线外的一点,有且只有一个平面。
符号语言: A"a= 有且只有一个平面 :•,使A a ,a :- 推论2经过两条相交直线,有且只有一个平面 符号语言: ab = P = 有且只有一个平面 〉,使a :—…,b 推论3经过两条平行直线,有且只有一个平面 符号语言:a//b=有且只有一个平面〉,使a ,b ■■ 公理3及其推论的作用:用来证明多点共面,多线共面。
公理4平行于同一条直线的两条直线平行(平行公理)a //b v符号语言:c//b * a//C» B图形语言:b平行关系公理4 ab 图形语言 1.线面平行的判定定理 图形语言线面平行的性质定理 a 图形语言 P2■面面平行的判定定理 图形语言 面面平行的判定 (5) //图形语言 oo面面平行的性质定理 (6)图形语言 (7)all图形语言 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条 面面平行的性质1 =allb a ll b =■ :- ll a 二:- 如果平面外一条直线和这个平面内的一条直线平行, 那么这条直线和这个平面平 如果一个平面内有两条相交直线都平行于另一个平面, 那么这两个平面平行.(4) 二 a ll 符号语言:b 符号语言 如果两个平面垂直于同一条直线,那么这两个平面平行。
1_平面基本性质第三课时

练习
(1)三条直线相交于一点,用其中的两条确定平面, 三条直线相交于一点,用其中的两条确定平面, 最多确定的平面数是_______; 最多确定的平面数是 3
看看答案吧
或 两个平面可以把空间分成________部分 部分, (2) 两个平面可以把空间分成 3或4 部分, , , 或 三个平面呢?_________________。 。 三个平面呢 4,6,7或8
CD上,H在AD上,且DF:FC=2:3,DH:HA=2:3, 上 在 上 : : , : : , 求证: 、 交于一点。 求证:EF、GH、BD交于一点。 、 交于一点 A G H B D F E C 证明三线共点的方法: 证明三线共点的方法: 证明两直线的交点在第三直线上, 证明两直线的交点在第三直线上,而第三直线又 往往是两平面的交线
证共面问题:可先由公理3(或推论)证某些元素确定一个平面, 证共面问题:可先由公理 (或推论)证某些元素确定一个平面, 再证其余元素都在此平面内; 再证其余元素都在此平面内 ; 或者指出给定的元素中的某些元 素在一个平面内,再证两个平面重合. 素在一个平面内,再证两个平面重合.
题目变型:求证三角形ABC的三条边在同一个平面内。 ABC的三条边在同一个平面内 题目变型:求证三角形ABC的三条边在同一个平面内。
同理b 同理b、c确定平面β ,且l ⊂β 确定平面β
而l、b ⊂α, 、b ⊂β,l∩ b = B l
∴α与β重合
∴a,b,c,l共面 a,b,c,l共面
四、证明共面问题 AB、 两两相交, 例5、直线AB、BC、CA两两相交,交点分别为A、B、C, 、直线AB BC、CA两两相交 交点分别为A 判断这三条直线是否共面,并说明理由。 如图) 判断这三条直线是否共面,并说明理由。(如图)
立体几何三大公理应用超级全面

立体几何三大公理的应用公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1: 经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4 :平行于同一条直线的两条直线互相平行。
1.如图,在正方体ABCD−A′B′C′D′中,P是B′D′的中点,对角线A′C∩平面AB′D′=Q.求证:A,Q,P三点共线.2.如图所示,在正方体ABCD−A1B1C1D1中,E为AB的中点,F为A1A的中点,求证:(1)E,F,D1,C四点共面;(2)CE,D1F,DA三线共点.3.如图,在正方体ABCD−A1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,求证:B,Q,D1三点共线.4.如图所示,在正方体ABCD−A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.5.如图,正方体ABCD−A1B1C1D1中,E,F分别为C1D1,B1C1的中点.(1)求证:E,F,B,D四点共面;(2)若AC∩BD=P,A1C1∩EF=Q,AC1与平面EFBD交于点R,求证:P,Q,R三点共线.6.在正方体AC1中,E,F分别为D1C1,B1C1的中点,AC∩BD=P,A1C1∩EF=Q,如图.(1)若A1C交平面EFBD于点R,则P,Q,R三点共线.(2)证明DE、BF、CC1三线共点.7.如图,空间四边形ABCD中,H、G分别是AD、CD的中点,E、F分别在AB、BC上,且CFFB =AEEB=13.(1)求证:E、F、G、H四点共面;(2)求证:FG、HE、BD三条直线交于一点.8.已知空间四边形ABCD中,E,H分别是AB,AD的中点,F,G分别是BC,CD上的点,且CFCB =CGCD=23.求证:(1)E,F,G,H四点共面;(2)三条直线EF,GH,AC交于一点.9.如图所示,在空间四边形ABCD中,E,F分别为AB,AD的中点,G,H分别在BC,CD上,且BG︰GC=DH︰HC=1︰2.(1)求证:E,F,G,H四点共面;(2)求证:直线EG、FH、AC交于一点.10.正三棱柱ABC−A1B1C1的棱长都为2,D、E、F分别是AB、A1C1、BC的中点,(1)证明:A1、C1、D、F四点共面;(2)求异面直线B1C与DE所成角余弦值;(3)证明:A1D、C1F、B1B三线共点.11.如图,已知平面α,β,且α∩β=l,设梯形ABCD中,AD//BC,且AB⊂α,CD⊂β,求证:AB,CD,l共点(相交于一点).12.如图所示,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC=//12AD,BE=//12FA,G,H分别为FA,FD的中点(1)证明:四边形BCHG是平行四边形(2)C,D,F,E四点是否共面?为什么?13.如图,四棱锥P−ABCD中,底面ABCD为矩形,PA⊥底面ABCD,AB=PA=1,AD=√3,E,F分别为棱PD,PA的中点.(1)求证:B、C、E、F四点共面;(2)求异面直线PB与AE所成的角.能力提升一、共线问题例1.若ΔABC所在的平面和ΔA1B1C1所在平面相交,并且直线AA1、BB1、CC1相交于一点O,求证:(1)AB和A1B1、BC和B1C1、AC和A1C1分别在同一平面内;(2)如果AB和A1B1、BC和B1C1、AC和A1C1分别相交,那么交点在同一直线上(如图).例2.点P、Q、R分别在三棱锥A-BCD的三条侧棱上,且PQ∩BC=X,QR∩CD=Z,PR∩BD=Y.求证:X、Y、Z三点共线.例3.已知△ABC三边所在直线分别与平面α交于P、Q、R三点,求证:P、Q、R三点共线。
3平面及其基本性质

平面及其基本性质教学目标:掌握平面的基本性质,主要是三个公理、三个推论及其应用.会用斜二测画法画水平放置的直观图;会证明共面、共点、共线问题;掌握反证法的应用;知道什么叫“空间四边形”.重点1.理解并会应用平面的基本性质,掌握证明关于“线共点”、“线共面”、“点共线”的方法2.公理4及等角定理.3.空间两条直线的位置关系有且只有三种,即平行、相交及异面.4.两条异面直线所成的角及距离,求作异面直线所成的角时,往往取题中的特殊点.基础扫描1.分别与两条异面直线都相交的两条直线的位置关系是 2.下列命题中真命题的序号为(1)四边形是平面图形(2)有三个公共点的两个平面重合(3)两两相交的三条直线必在同一平面内(4)三角形必是平面图形3.角α与β的两边分别平行,当α70=︒时, β=4.对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l.A 平行 .B 相交 .C 垂直 .D 互为异面直线 解题平台例1如图,空间四边形ABCD 中,E 、F 分别是AB 、AD 的中点,G 、H 分别在BC 、CD 上,且BG :GC =DH :HC =1:2 (1)求证:E 、F 、G 、H 四点共面。
(2)设EG 与HF 交于点P ,求证:P 、A 、C 三点共线。
A CD BEF GH例2若P 是两条异面直线,l m 外的任意一点,则下列正确的是.A 过点P 有且仅有一条直线与,l m 都平行 .B 过点P 有且仅有一条直线与,l m 都垂直 .C 过点P 有且仅有一条直线与,l m 都相交 .D 过点P 有且仅有一条直线与,l m 都异面例3正方体1111ABCD A B C D 中,P 、Q 、R 分别是AB 、AD 、11B C 的中点.那么,正方体的过P 、Q 、R 的截面图形是小结A BCD1A1B1C1D PQ R课后练习1.不共面的四个定点到平面α的距离都相等,这样的平面α共有 个。
2.在正方体ABCD A B C D -''''中,过对角线BD '的一个平面交AA '于E ,交CC '于F ,则① 四边形BFD E '一定是平行四边形; ② 四边形BFD E '有可能是正方形③ 四边形BFD E '在底面ABCD 内的投影一定是正方形 ④ 四边形BFD E '有可能垂直于平面BB D '以上结论正确的为 (写出所有正确结论的编号) 3.对两条不相交的空间直线a 与b,必存在平面α,使得.A αα⊂⊂b a , .B b a ,α⊂∥α .C αα⊥⊥b a ,.D αα⊥⊂b a ,4.若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的 条件5.空间四边形ABCD 中,AC 、BD 为对角线,E 、F 为AB 、BC 的中点,G 、H 分别在CD 、DA 上,且CG :GD=AH :HD=λ(λ>0) (1)求证:点E 、F 、G 、H 共面;(2)若λ=2,求证:直线FG 、EH 、BD 相交于一点6.已知△ABC 在平面α外,三边AB 、BC 、CA 分别与平面α交于P 、Q 、R ,求证:P 、Q 、R 共线.7.三个平面两两相交,得到三条交线,求证:(1)若其中两条交于一点P ,则P 也在第三条交线上; (2)若其中两条平行,则这三条交线两两平行。
1.2《点线面之间的位置关系--平面的基本性质3》教案(苏教版必修2)

第7课时平面的基本性质(三)教学目标:使学生能够进行性质与推论的简单应用、正确运用平面的基本性质及三个推论进行共面、共线、共点问题的证明;要通过知识的应用,使学生掌握方法、规律,学会正确推理,以理服人。
教学重点、难点:共面、共线、共点问题的证明。
教学过程:一、复习回顾:三个公理及推论;各个公理及推论的作用。
二、新课讨论:例1:直线AB、BC、CA两两相交,交点分别为A、B、C,证明这三条直线共面.[师]空间的几个点和几条直线,如果都在同一个平面内,那么可以简单地说它们“共面”.分析:两两相交,是说每两条直线都相交.此题是让我们证明三条直线共面,我们学过的公理和推论中都没有关于三条直线的,怎么办呢?[生丙]先由两条直线确定一个平面,再证第三条直线也在这个平面内(学生已作了预习,回答出这样的思路应该是没有问题的).[师]生丙同学的回答正确吗?若正确,怎样证明第三条直线也在这个平面内呢?[生丁]生丙的回答正确.先由两条直线确定一个平面是容易的,要证第三条直线也在这个平面内,只要证第三条直线上有两点在这个平面内就行了,如图,先由AB、AC 确定一个平面,由于B点、C点在确定的平面内,根据公理1可知,直线BC也在这个平面内.[师]生丁所述有道理吗?[生]有道理,完全正确.[师]下面我们根据生丙、生丁两位同学的思路,写出此题的证明过程.证明:∵AB、AC相交,∴AB、AC确定一个平面,设为α∵B∈AB,C∈AC∴B∈α,C∈α∴BC α因此AB、AC、BC都在平面α内.即AB、AC、BC共面.注意:确定的平面叫成什么是无所谓的.不一定非要叫α不可,叫成其他如β、γ都行.[师]谁还有其他不同于生丙同学的意见?[生戊]每两条相交直线都能确定一个平面,若能证明这些平面重合,则也能说明这三条直线共面.[师]同学们想一想,生戊同学的思路可行吗?(同学们积极思考,但无人回答,留出几分钟时间,让同学们继续思考是非常必要的)[生戊]AB、AC可确定一个平面,AB、BC也可确定一个平面,由于点A、B、C 既在第一个平面内,又在第二个平面内.根据公理3,经过A、B、C三点有且只有一个平面,所以这两个平面重合,即AB、AC、BC共面.[师]很好!下面我们根据生戊同学的思路,写出此题的另一种证明.证明:∵AB、AC相交∴AB、AC确定一个平面α∴点A、B、C∈α,且不共线∵AB、BC相交∴AB、BC确定一个平面β∴点A、B、C∈β,且不共线根据公理3,经过不共线的三点A、B、C有且只有一个平面,∴面α与面β重合∴AB、AC、BC共面.[师]从刚才我们的分析讨论中,可以知道,证明共面问题的方法至少有两种:①先由某些条件确定一个平面,然后证明其余已知的都在这个平面内.②所有已知条件确定若干个平面,然后证明这些平面重合.两种证明方法的关键都在“然后”,要注意练习掌握.这两种证明方法比较,第一种更为常用,因为证明若干个平面重合,实在不是一件容易的事情.希望大家都能像生戊同学那样.遇到问题善于思考,多动脑子去想,办法总会是有的.下面再来看一个例子.例2:如图,已知△ABC的各顶点在平面α外,直线AB、BC、AC分别交平面α于P、Q、R,求证:P、Q、R三点共线.分析:平面几何中证明三点共线是怎样证明的?[生]先由两点确定一条直线,然后证明第三点也在这条直线上.[师]这里的三点共线能用这种办法证明吗?比如说,连结点P、点Q,得直线PQ,大家能够证明点R也在直线PQ上吗?[生己]能!由已知条件可知,直线PQ实质上是面ABC与面α的交线,只要证明点R是面ABC与面α的交点,那么R必在直线PQ上.[生庚]既然这样,只要证明点P、Q、R都是面ABC与面α的交点,那么点P、Q、R就共线,它们都在面ABC与面α的交线上.[师]两位同学分析得都很好!在立体几何中,要证明三点共线,只要证明三点都是某两个平面的公共点即可.证明若干点共线的问题,思路同样也是这样的.下面大家一起来写出此题的证明:证明:∵AB∩α=P ∴P∈AB,P∈平面α又AB 平面ABC ∴P∈平面ABC∴由公理2可知,点P在平面ABC与平面α的交线上∴P、Q、R三点共线例3:三个平面两两相交于三条直线,若这三条直线不平行,求证:这三条直线交于一点. 已知:平面α、β、γ两两相交于三条直线l1、l2、l3,且l1、l2、l3不平行.求证:l1、l2、l3相交于一点证明:如图,α∩β=l1,β∩γ=l2,α∩γ=l3,∵l1⊂β,l2⊂β,且l1、l2不平行∴l1与l2必相交,设l1∩l2=P,①则P∈l1⊂α,P∈l2⊂γ∴P∈α∩γ= l3 ②∴l1、l2、l3相交于一点P.例4:已知一条直线与三条平行直线都相交,求证:这四条直线共面.已知:直线a∥b∥c,直线l∩a=A,l∩b=B,l∩c=C.求证:l与a、b、c共面.证明:∵a∥b∴a、b确定一个平面,设为α又l∩a=A,l∩b=B ∴A∈α,B∈α又A∈l,B∈l ∴AB⊂α,即l⊂α同理b、c确定一个平面β,l⊂β.∴平面α与β都过两相交直线b与l.由推论2,两条相交直线确定一个平面.∴α与β重合.故l与a、b、c共面.例5:画出四面体ABCD中过E、F、G三点的截面。
高中数学的必修二数学平面的基本性质知识点

高中数学的必修二数学平面的基本性质知识点平面的基本性质教学目标1、知识与能力:(1)巩固平面的基本性质即四条推断出公理和三条推论.(2)能使用公理和推论进行解题.2、过程与方法:(1)体验在空间确定一个平面的过程与方法;(2)掌握利用平面的基本性质证明三点共线、三线共点、多线共面的方法。
3、情感成见与价值观:培养学生认真观察的态度,慎密思考的习惯,提高学生审美能力和空间想象的能力。
教学重点平面的三条基本性质即三条推论.教学难点准确运用三条公理和推论解题.教学过程一、问题情境问题1:空间共点的三条直线二维能确定几个平面?空间互相对角线平行的三条直线呢?问题2:如何判断办公桌的四条腿内则的底端是否在一个平面内?二、温故知新公理1一处如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2如果两个平面有两个一个公共设施点,那么它们还有其它公用点,这些公共点的集合是经过这个公共给定点的一条直线.公理3经过不在同一条直线上的三点,有且只有一个平面.推论1经过一条直线和这条直线外的一点,有且只有一个平面.推论2经过两条直角直线,有且只有一个平面.推论3经过两条平行平行线,有且只有一个平面.公理4(平行公理)平行于同一条直线的两条直线互相平行.把作出以上各公理及推论进行对比:三、数学运用基础训练:(1)已知:;求证:直线AD、BD、CD共面.证明:——公理3推论1——公理1同理可证,,直线AD、BD、CD共面【解题反思1】1。
逻辑要严谨2.书写要规范3.证明共面的步骤:(1)确定平面——公理3及其3个推论(2)证线“归”面(线在面内如:)——公理1(3)作出结论。
变式1、如果直线两两交汇,那么这三条直线是否共面?(口答)变式2、已知空间不共面的二点,过其中任意三点可以三维空间确定一个平面,由这四个一两个点能确知几个平面?变式3、四条线段顺次首尾连接,所得的图形一定是平面曲面图形吗?(口答)(2)已知直线满足:;求证:直线证明:——公理3推论3——公理1直线共面提高训练:已知,求证:四条直线在同一平面内.思路分析:考虑由直线a,b确定一个平面,再证明直线c,l在此平面上,但十分困难。
立体几何题型与解题方法

1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 , 推出点在面内), 这样可根据公理 2 证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的 公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证 明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没 有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点 和直线等)
组成一个直角三角形.
c.特殊棱锥的顶点在底面的射影位置:
①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.
②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.
③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.
④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.
分线上。
4. 平面平行与平面垂直.
(1). 空间两个平面的位置关系:相交、平行.
(2). 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.
(“线面平行 面面平行”)
推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.
[注]:一平面内的任一直线平行于另一平面.
平面的基本性质:三个公理,三个推论.

资源信息表14.1 (2)平面及其基本性质——三个公理三个推论一、教学内容分析本节的重点和难点是三个公理三个推论.三个公理和三个推论是立体几何的基础,公理1确定直线在平面上;公理2明确两平面相交于一直线;公理3及三个推论给出了确定平面的条件.这些是后面学习空间直线与平面位置关系的基础.所以让学生透彻理解这些公理和性质,把现实中的具体空间问题抽象出来,初步认识直线与平面、平面与平面之间的关系并体会立体几何的基本思想,从而培养学生的空间想象能力,有利于学生更快更好的学习立体几何.二、教学目标设计理解平面的基本性质,能用三个公理三个推论解决简单的空间线面问题;了解一些简单的证明.培养空间想象能力,提高学习数学的自觉性和兴趣.三、教学重点及难点三个公理,三个推论.四、教学过程设计一、讲授新课(一)公理1如果直线l上有两个点在平面α上,那么直线l在平面α上.(直线在平面上)用集合语言表述:,,,A l B l A B l ααα⊂∈∈∈∈⇒≠ (二)公理2如果不同的两个平面α、β有一个公共点A ,那么α、β的交集是过点A 的直线l .(平面与平面相交)用集合语言表述:l A l A ∈=⋂⇒⋂∈且βαβα (三)公理3和三个推论公理3:不在同一直线上的三点确定一个平面.(确定平面)这里“确定”的含义是“有且仅有”用集合语言表述:A ,B ,C 不共线=>A ,B ,C 确定一个平面 推论1:一条直线和直线外的一点确定一个平面. 证明:设A 是直线l 外的一点,在直线l 上任取两点B 和C ,由公理3可知A ,B 和C 三点能确定平面α.又因为点,B C α∈,所以由公理1可知B ,C 所在直线l α⊂≠,即平面α是由直线l 和点 A 确定的平面.用集合语言表述:,A l A l α∉⇒确定平面 推论2:两条相交的直线确定一个平面. 用集合语言表述:,a b A a b α⋂=⇒确定平面 推论3:两条平行的直线确定一个平面. 用集合语言表述://,a b a b α⇒确定平面 (四)例题解析例1如图,正方体1111ABCD A BC D -中,E ,F 分别是111,B C BB 的中点,问:直线EF 和BC 是否相交?如果相交,交点在那个平面内?解:111111E B C E B C EF B C F B B F B C ∈⇒∈⎫⇒⊂⎬∈⇒∈⎭≠平面平面平面 又1BC B C ⊂≠平面,则直线EF 和BC 共面; 1111//EF BC BC B C EF BC EF B C E ⎫⎪⇒⎬⎪⋂=⎭与共面与相交 设直线EF 和BC 相交于点p ,则p 在直线BC 上,即点P 在平面ABCD 上.1D 1C 1B 1A DCBA FE[说明]利用公理1确定直线在平面内.例2 如图,若,,,a b c a b P αβαχβχ⋂=⋂=⋂=⋂=,求证:直线C 必过点P.解:a P b P P c P c c αββαχβχχβχβχ⋂=⎫⎫∈⎧⎪⎪⋂=⇒⇒∈⋂⎬⎨⎪⇒∈∈⎬⎩⎪⋂=⎭⎪⎪⋂=⎭[结论]三个平面两两相交得到三条交线,若其中两条交于一点,另一条必过此公共点.例3 空间三个点能确定几个平面?空间四个点能确定几个平面?解:三点共线有无数多个平面;三点不共线可以确定一个平面.所以三点可以确定一个或无数个平面.四点共线有无数个平面;有三点共线可确定一个平面;任意三点不共线能确定1个或3个平面.所以四点可以确定1个或3个或无数个平面.[说明]公理3的简单应用.例4空间三条直线相交于一点,可以确定几个平面?空间四条直线相交于一点,可以确定几个平面? 解:三条直线相交于一点可以确定1个或3个平面; 四条直线相交于一点可以确定1个、4个或6个平面. [说明]推论2的简单应用.例5 如图,AB//CD ,,AB E CD F αα⋂=⋂=,求作BC 与平面α的交点.解:连接EF 和BC ,交点即为所求BC 与平面 的交点.(公理3和公理2)[说明]推论3的简单应用.三、课堂小结1.公理1:确定直线在平面内;2.公理2:平面与平面相交于一直线;3.公理3和三个推论确定平面的条件;四、课后作业练习14.1(1)2 练习14.1(2)1,2,3五、教学设计说明本章呈现了几何研究的范围从平面扩展到空间时的基本方法.把几何研究的范围从平面扩展到空间后,增加了新的对象——平面.空间几何学是平面几何学的推广,平面几何中研究点与点、点与直线、直线与直线三种位置关系;空间几何中则增加了点与平面、直线与平面、平面与平面三中位置关系.本节的主要内容是让学生理解三个公理和三个推论,运用这些公理和推论进行一些简单的证明.αFBCDEA公理是人们在长期的生活实践的观察和检验中发现的.可以联系生活中的情景来学习三个公理,从而帮助学生学习,加深他们对公理的理解.三个公理和三个推论是空间几何学习的基础,有了这个基础,才能进一步研究空间中点与面、线与面、面与面的位置关系和度量问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资源信息表
(3)平面及其基本性质
——三个公理三个推论的应用
上海市南洋中学马亚萍一、教学内容分析
本节课的重点是三个公理三个推论的应用.在上一节概念课
的基础上,让学生充分理解三个公理三个推论,能灵活运用三个
公理三个推论进行证明.
公理2说明了如果两个平面相交,那么它们就交于一条直线.
它的作用是:①确定两个平面的交线,即先找两个平面的两个公
共点,再作连线.②判定两个平面相交,即两平面只要有一个公
共点即可.③判定点在直线上,即点是某两平面的公共点,线是
这两平面的公共直线,则这个点在这条直线上.
公理3及其三个推论是空间里确定平面的依据,它提供了把
空间问题转化为平面问题的条件.
二、教学目标设计
理解三个公理三个推论,利用三个公理三个推论来解决共面、共点、共线问题,培养严密的逻辑推理能力. 三、教学重点及难点
利用三个公理三个推论解决共面、共点、共线问题
四、教学流程设计
五、教学过程设计
(一)复习上节课的概念,三个公理三个推论 1)若B ,AB A C αα∈∈∈平面,平面直线,则( A ) A 、C α∈ B 、C α∉ C 、AB α⊄ D 、AB C α⋂= 2)判断
①若直线a 与平面α有公共点,则称a α⊄. (×)
②两个平面可能只有一个公共点. (×) ③四条边都相等的四边形是菱形. (×) ④若A 、B 、C α∈,A 、B 、C β∈,则,αβ重合. (×) ⑤若4点不共面,则它们任意三点都不共线. (√) ⑥两两相交的三条直线必定共面. (×) 3)下列命题正确的是( D )
A 、两组对边分别相等的四边形是平行四边形.
B 、四条线段顺次首尾连接所构成的图形一定是平面图形.
C 、三条互相平行的直线一定共面.
D 、梯形是平面图形.
4)不在同一直线上的5点,最多能确定平面( C ) A 、8个 B 、9个 C 、10个 D 、12个 5)两个平面可把空间分成 3或4 部分 ; 三个平面可把空间分成 4、6、7或8 部分.
(二)证明 1、共面问题
例1 已知直线123,,l l l 两两相交,且三线不共点. 求证:直线123,l l l 和在同一平面上.
证明:设13231213,,,,l l A l l B l l C l l A ⋂=⋂=⋂=⋂=
l 3
l 2
B C l 1
A
1312131232,1,,,l l C C l l C l B BC l l l l ααααα⎫⇒⎫
⇒∈⎬⎪
=⋂⇒∈⎬
⎭⎪
∈⎭⇒⊂∈⇒(推论)可确定平面平面同理平面(公理)平面即平面直线在同一平面上
【说明】证明共面问题的基本方法是归一法和同一法. 归一法:先根据公理3或其推论确定一个平面,然后再利用公理1证明其他的点或直线在这个平面内. 练习:
l 4D F
E l 3
l 2B C
l 1
A
12341234123123424121212123343442,,,,,,,,,,,l l l l l l l l l l A l l B l l C l l D l l E l l C l l l l A AB B l l A l l B l l l D DE l l l E α
α
α
ααααα⋂=⋂=⋂=⋂=⋂=⋂=⇒⇒⊂∈⎫⎧⇒⇒⊂⎬⎨
∈⋂=⋂=⎩⎭⇒⊂⎫
⎪
⋂=⇒⊂⇒⊂⎬⎪⋂=⎭⇒33已知:两两相交且无三线共点。
求证:在同一平面上
证:设与确定平面平面又,平面四线共面
例2 已知直线l 与三条平行直线a,b,c 都相交,求证:l 与a 、b 、c
共面. 解题策略:同一法
证明:如图设,,a d A b d B c d C ⋂=⋂=⋂=
||,a b a b ∴、可确定一个平面α A ,,A ,,||,.
a B
b B AB b
c b c b a b c
d αα
αα
β
βαβαβ∈∈∴∈∈∴⊂⊂∴⊂∴即d 、可确定一个平面同理可证d 、均过相交直线、d 、重合,、、、共面
【说明】
同一法:可先由已知条件分别确定平面, 然后再证它们是重合的
2、三点共线
图(例3)
B C
A
a
b
c
d α
1111113,,,O ABCD A B C D P R AB BB CC DP QR O B C -例在正方体中、Q 、分别在棱上,且相交于。
求证:、、三点共线
1111,BB C ABCD BB C BC O BC
O B C DP QR O O DP O ABCD
DP ABCD O QR QR BB C C O C
C ⋂=⇒∈⎫
⇒∈⎬⊂⎭
∈⊂⇒∈⎫⎬
⋂=⎭⇒∈⇒11证:直线平面又平面又直线平面平面又
平面平面、、三点共线
【说明】要证明空间三点共线的方法:将线看做两平面的交线,只需证明这三点都是两个平面的公共点,则公共点必定在两平面的交线上,因此三点共线.
例4 已知ABC ∆在平面α外,,,AB P AC Q BC R ααα⋂=⋂=⋂=. 求证:P 、Q 、R 三点共线
证:AB AC A
AB AC AB P PQ AC Q βααβα⋂=⇒⎫
⎪⋂=⇒⋂=⎬⎪⋂=⎭
直线直线直线、确定平面 B AB
BC B R C AC C BC R R BC AB AC ββββαββ∈⎫
⊂∈∈⎫⎧⎫⎪∈⇒⇒⇒⎬⎨⎬⎬∈⋂=∈⎩⎭⎭⎪⊂⊂⎭
直线直线直线, α
β
A
B
C
R
P
Q
R R PQ P Q R PQ αβαβ∈⋂⎫⇒⇒∈⇒⎬⋂=⎭
、、三点共线 3、三线共点
ABCD 例5空间四边形中,E 、F 、G 、H 分别是AB,BC,CD,DA 上的点,已知EF 与HG 相交于Q 点.求证:EF 、HG 、AC 三点共线
EF ABC E AB Q ABC Q ABC ACD HG ACD F BC Q ACD ABC ACD AC EF HG Q Q AC EF HG AC ⇒⊂⎫
∈∈∈⋂⎧⎫⎫⎪⊂⇒⇒⎬⎬⎨⎬∈∈⋂=⎭⎩⎭⎪⋂=⎭⇒∈平面平面平面平面证:同理平面平面平面平面即、、三线共点
【说明】先确定2条直线的交点,再证另一直线也过该交点 (三)布置作业 书上第4页1、2、3 六、教学设计说明
本节课从复习三个公理三个推论的概念导入,通过对例题的剖析讲解,开展研究和证明.
例题设计主要围绕解决三个问题:
(1)证明共面问题,可以采用归一法和同一法这两种证明方法. (2)证明三点共线问题,熟练掌握公理2. (3)证明三线共点问题
A
B
C
D
E
F
G
H Q。