有序介孔材料的合成及应用

合集下载

有序介孔材料的发展和面临的挑战

有序介孔材料的发展和面临的挑战

有序介孔材料的发展和面临的挑战霍启升吉林大学无机合成与制备化学国家重点实验室,中国吉林长春,邮编:130012E-mail: huoqisheng@摘要简要介绍有序介孔材料的发现和发展历史,讨论合成、结构、应用等方面所面临的挑战。

有序介孔材料有序介孔材料是指孔道规则且有序排列的介孔材料,早在1971年介孔材料的合成工作就已开始,日本的科学家们在1990年之前也已通过层状硅酸盐在表面活性剂存在下转化开始介孔材料合成,1992年Mobil的报导才引起人们的广泛注意,并被认为是介孔材料合成的真正开始。

Mobil 使用表面活性剂作为模板剂,合成了M41S 系列介孔材料,包括MCM-41(六方相)、MCM-48(立方相)和MCM-50(层状结构)。

经过近二十年的全球性科学家的团结努力和辛苦工作,介孔材料的研究工作发展极快,并且成效显著,涉及到合成、结构、性质、应用等各个方面,参与研究的科学家专业分布极其广泛,介孔材料研究是近年来少有的受人瞩目且快速发展的研究领域。

有序介孔材料的优势有序介孔材料的优势在于材料的独特的介孔结构(均一孔道尺寸及形状、高比表面、大孔体积)和合成过程简单,合成可重复,原料价格低廉,容易直接合成各类等级的可控结构,如薄膜、粉末、块体、微球、纤维、纳米级材料、各种微观形貌。

介孔材料的组成容易多样化,易掺杂。

尤其是二氧化硅基材料,表面羟基反应活性高,容易用各种有机基团修饰。

合成化学与结构及性质的研究起初介孔材料的合成化学的研究以介孔二氧化硅材料为主,后来被开展到其它组成。

合成机理的研究也是以二氧化硅体系为主要对象,根据不同的合成条件及体系,主要生成机理包括:从层状结构的转化、无机-有机静电作用、表面活性剂分子堆积参数的主导作用的协同自组装、真正液晶模板。

在上述机理的指导下,介孔材料合成工作迅速展开。

材料组成从硅酸盐系列扩展到非硅酸盐无机系列,后来又到有机-无机杂化材料、有机材料、碳材料。

有序介孔材料在分离科学中的应用

有序介孔材料在分离科学中的应用

T ransition metal ox ides 氧化铌( niobium oxide) , 氧化钽( tantalum o xide)
非硅
磷酸盐: 磷酸钛( titanium ox o phophate) , 磷酸铝( aluminophophate) , Phophate磷酸锆( zirconium pho phate)
有序介孔材料由于具有大的比表面积、均一可调的介孔孔径、均一的传质、高的吸附容量等特性而 作为吸附剂和色谱填料逐渐应用于分离科学。例如, 根据蛋白质电荷和尺寸大小不同, SBA- 15( Santa Barbara No. 15) 可分离纯化蛋白质[ 3] ; 功能化的 MCM ( t he mobile com posit ion mat erial) 和 SBA( Santa Barbara) 型有序介孔材料用于环境水的净化, 能够成功的分离出重金属[ 4] 和有毒阴离子[ 5] 。
纯硅: M CM , SBA, M SU- n
S il ica
掺杂: Al, T i, V, M n, F e, B, Cu, Co, Ga, Zn, Cd
Dop ed
有机分子修饰 :
硅基 Silica based 改性
Or ganic molecular :
m od if ied
M odified
( 2) 对一给定骨架结构的材料, 优化其合成过程, 开发新的合成体系和路线。有序介孔材料的合成 是利用表面活性剂作为模板剂, 与无机源进行界面反应, 以某种协同或自组装方式形成由无机离子聚集 体包裹的规则有序的胶束组装体, 通过适当方式除去模板剂后, 保留无机骨架, 从而形成多孔的纳米结 构材料。使用不同的表面活性剂, 由于合成机理不一样, 将得到不同结构的产物[ 11~ 14] 。随着合成方法 的发展, 聚合物胶乳小球[ 15] 、细菌[ 16] 、嵌段聚合物[ 17] 、纳米微粒[ 18] 及蛋白质[ 19] 等非表面活性剂作为模 板剂也用来制备有序介孔材料。同时, 由于单一表面活性剂所表现出的结构导向功能各有优缺点, 混合 体系应用于有序介孔材料的合成也得到了重视[ 20, 21] 。

有序介孔分子筛材料

有序介孔分子筛材料

有序介孔分子筛材料
有序介孔分子筛材料是一种具有有序介孔结构的分子筛材料。

它们具有较高的比表面积和孔体积,能够提供更大的表面反应活性区域和更好的质量传递性能。

这些材料具有均匀的孔道尺寸和分布,能够控制分子的扩散和吸附行为,因此具有重要的应用潜力。

有序介孔分子筛材料通常基于柱状硅酸盐结构,通过模板剂方法制备。

在合成过程中,有机表面活性剂被用作模板剂,调控孔道的尺寸和形貌。

合成后,利用高温烧结等方式去除模板剂,得到有序介孔结构。

有序介孔分子筛材料在催化、吸附、分离等领域具有广泛应用。

例如,它们可以用于催化剂的负载,增加活性组分的分散度和接触程度,提高催化反应的效率。

此外,它们还可以用于分子吸附和分离过程中的分子筛材料,由于其较大的孔道尺寸,在分离和富集目标物质时具有较好的选择性和效率。

总之,有序介孔分子筛材料是一类重要的纳米材料,具有广泛的应用前景。

它们通过控制孔道结构和尺寸,能够优化催化、吸附和分离等过程,为相关领域的研究和应用提供了新的机会。

三维有序介孔碳

三维有序介孔碳

三维有序介孔碳1. 介绍三维有序介孔碳是一种具有高度有序的孔隙结构和大比表面积的碳材料。

它由连续的纳米尺寸的孔道和壁组成,这些孔道和壁之间形成了一个复杂且有序的网络结构。

三维有序介孔碳具有许多优异的性质,包括高度可调控的孔径和比表面积、优异的化学稳定性、良好的导电性和机械强度等。

因此,它在各种领域中得到了广泛应用,例如能源存储与转换、催化剂支持体、吸附剂等。

2. 制备方法2.1 硬模板法硬模板法是一种常用于制备三维有序介孔碳的方法。

该方法使用硬模板(如硅胶、氧化铝等)作为模板,在其表面沉积碳源(如葡萄糖、葡萄糖胶等),经过炭化和去除硬模板后得到三维有序介孔碳材料。

制备步骤: 1. 将硬模板进行预处理,如烧结、表面修饰等。

2. 在硬模板表面均匀沉积碳源。

3. 将样品进行炭化处理,通常在惰性气氛下进行高温煅烧。

4. 使用酸或其他方法去除硬模板,得到三维有序介孔碳。

2.2 软模板法软模板法是另一种常用的制备三维有序介孔碳的方法。

该方法使用软模板(如界面活性剂、聚合物等)来调控碳材料的孔隙结构和形貌。

制备步骤: 1. 将软模板溶液涂覆在基底上,并使其在表面形成一层薄膜。

2. 在软模板薄膜中加入适当的碳源。

3. 进行炭化处理,通常在高温下进行。

4. 去除软模板,得到三维有序介孔碳。

3. 特性与应用3.1 孔隙结构与比表面积三维有序介孔碳具有高度可调控的孔径和比表面积。

通过调整制备条件和选择不同的模板材料,可以得到不同尺寸和形貌的孔道。

这些孔道可以提供大量的活性表面,增加反应物与催化剂之间的接触面积,从而提高反应效率。

3.2 化学稳定性三维有序介孔碳具有优异的化学稳定性。

其碳材料具有高度有序的结构,能够抵抗各种化学物质的侵蚀和破坏。

这使得三维有序介孔碳在催化剂支持体和吸附剂等领域中得到了广泛应用。

3.3 导电性与机械强度由于三维有序介孔碳具有连续的孔道和壁结构,其导电性和机械强度较高。

这使得它在能源存储与转换领域中具有潜在的应用前景,如超级电容器、锂离子电池等。

氮掺杂有序介孔碳的合成及其对苯酚的吸附性能研究

氮掺杂有序介孔碳的合成及其对苯酚的吸附性能研究

氮掺杂有序介孔碳的合成及其对苯酚的吸附性能研究摘要在目前的水体中,最为常见的便是酚类废水,此水体还具有较高的污染性,也是美国EPA确定的首批污染物。

以下几种方式常用于对此水体加以处理,包括:吸附法、深化法等,在这之中,废水的有机与无机污染物均可以借助吸附法得以剔除,进一步确保水质的均衡与稳定。

关键词:有序介孔碳;氮掺杂;苯酚废水;吸附1 绪论如今,农作物秸秆的资源非常丰厚,具有可以被微生物降解、没有污染,短时间就可以再次生成等优点。

它本身就是一种能够被人们用作一些物质或者某些能源的生物质,成为目前环球第四大清洁能源,仅次于天然气、石油和煤炭。

目前越来越多的地区和国家,已经把如何实现农作物秸秆的可再生资源的转化与如何实现利用价值归集起来作为一个重大的战略性工程组织,它涉及了社会和经济的可持续发展。

目前中国的农作物秸秆产量非常丰厚,在工业原料,饲料,化肥,能源方面得到了良好的运用。

2酚类污染物2.1苯酚的性质人们大多使用石炭酸称呼苯酚,在酚类有机物中结构相对简易,C6H5OH为该物质的分子式,原子量与密度分别为94.11,1.071,42到43摄氏度为此物质熔点,沸点与燃点分别为182摄氏度、79摄氏度,整体以弱酸性为主,但在酸性方面不如碳酸,为透明色或白色,晶体状物质,气味相对比较独特,弱极性为常见特征。

2.2含酚废水的危害由于工业废水中的含酚类废水排放量较多、受到污染的地方较多,所以若不进行严格的污废治理则不可以直接向其他地方排放。

如果随意排放会严重影响到人类、水生物以及农作物的生长生存的环境。

因为酚类化合物是一种细胞原浆毒,高浓度的酚类及其化合物进入动物体内细胞会造成细胞的失活,如果没有被去除掉,会通过不同的途径,比如呼吸道、消化管等直接进入人体内,由于其自身具备极强的渗透力,可以使其直接沉积在人体内部的组织及神经中枢,当其含量达到了人体力学上可以承受的限制值,就会引起全身性中毒,造成皮肤病、贫血等严重的症状。

有序介孔材料的合成与应用研究进展

有序介孔材料的合成与应用研究进展

有序介孔材料的合成与应用研究进展引言有序介孔材料是一类具有高度有序孔道结构的材料,具有较大的比表面积和孔容,广泛应用于吸附、催化、分离等领域。

本文将介绍有序介孔材料的合成方法以及在不同领域的应用研究进展。

一、有序介孔材料的合成方法1. 模板法模板法是制备有序介孔材料最常用的方法之一。

通过选择不同的模板剂,可以控制材料的孔径和孔道结构。

常用的模板剂包括硬模板剂和软模板剂。

硬模板剂通常是一些具有有序孔道结构的材料,如介孔二氧化硅、氧化铝等。

而软模板剂则是一些具有高度可调性的有机分子,如阴离子表面活性剂、聚合物等。

模板法的优点是合成过程简单,但模板的去除工艺较为复杂。

2. 溶胶-凝胶法溶胶-凝胶法是一种常用的无模板法制备有序介孔材料的方法。

该方法通过溶胶的凝胶过程形成介孔结构。

溶胶通常是由一种或多种无机物和有机物组成的溶液,凝胶过程中,溶胶中的成分在凝胶剂的作用下形成固态材料。

溶胶-凝胶法的优点是制备过程简单,可以制备出各种形状的材料。

3. 硬模板转化法硬模板转化法是一种通过模板剂的转化制备有序介孔材料的方法。

首先,选择一个具有有序孔道结构的硬模板剂,然后通过模板剂的转化过程,使其转化为无机材料。

硬模板转化法的优点是可以制备出具有复杂孔道结构的材料。

二、有序介孔材料在吸附领域的应用1. 气体吸附由于有序介孔材料具有较大的比表面积和孔容,因此在气体吸附领域具有广泛应用。

例如,将有序介孔材料用作气体分离材料,可以实现对不同气体的高效分离。

此外,有序介孔材料还可以用于气体储存和传感器等领域。

2. 液体吸附有序介孔材料在液体吸附领域也有着重要的应用。

例如,将有序介孔材料用作吸附剂可以有效去除废水中的有机物和重金属离子。

此外,有序介孔材料还可以用于药物吸附和催化剂的负载等方面。

三、有序介孔材料在催化领域的应用有序介孔材料在催化领域具有广泛的应用前景。

由于其较大的比表面积和孔容,可以提供更多的活性位点,从而提高催化剂的催化性能。

有序介孔材料

有序介孔材料

有序介孔材料
有序介孔材料是一类具有有序排列的孔道结构的材料,其孔径大小在介于纳米和微米尺度之间。

这种材料具有高度有序的孔道结构,具有大孔道比表面积和高度可控的孔径大小,因此在吸附、分离、催化等领域具有广泛的应用前景。

首先,有序介孔材料具有高度有序的孔道结构,这种结构使得材料具有较大的比表面积和孔容,有利于吸附分子或离子。

这使得有序介孔材料在吸附分离领域具有潜在的应用前景,例如在环境治理中用于水处理和废气处理,以及在化工领域用于分离纯化化合物。

其次,有序介孔材料的孔径大小可控,这使得材料具有特定的选择性和催化活性。

通过调控孔径大小和表面化学性质,可以使得有序介孔材料在催化领域具有重要的应用,例如在化学反应中作为载体材料,提高反应的选择性和催化效率。

另外,有序介孔材料还具有良好的机械性能和热稳定性,这使得其在工程材料领域具有潜在的应用前景。

例如,有序介孔材料可以作为载体材料用于制备高性能的复合材料,提高材料的强度和耐磨性。

总的来说,有序介孔材料具有高度有序的孔道结构、孔径大小可控、良好的机械性能和热稳定性等特点,因此在吸附、分离、催化和工程材料等领域具有广泛的应用前景。

随着材料科学和化工领域的不断发展,有序介孔材料将会发挥更加重要的作用,为解决环境污染、提高化工生产效率和开发新型工程材料等方面做出重要贡献。

介孔碳材料的合成及应用

介孔碳材料的合成及应用

介孔碳材料是一种具有高比表面积、大孔径和有序介孔结构的新型碳材料,具有广泛的应用前景。

下面是介孔碳材料的合成及应用的一些方面:
合成方法:
1.软模板法:利用表面活性剂分子自组装形成的胶束作为模板,通
过前驱体在模板周围的聚合和碳化,形成介孔碳材料。

2.硬模板法:使用具有有序介孔结构的物质(如二氧化硅、氧化铝
等)作为模板,通过前驱体在模板中的填充和碳化,得到介孔碳材料。

3.直接碳化法:将有机物前驱体直接碳化,通过控制反应条件和催
化剂的选择,可以得到具有介孔结构的碳材料。

应用领域:
1.催化剂载体:介孔碳材料具有高比表面积和有序的介孔结构,可
以作为催化剂载体,提高催化剂的活性和选择性。

2.吸附分离:介孔碳材料的大孔径和高比表面积使其在吸附分离方
面具有良好的应用前景,如气体吸附、液体吸附和膜分离等。

3.电极材料:介孔碳材料可以作为电极材料用于超级电容器、锂离
子电池等储能设备,提高其能量密度和循环寿命。

4.药物传递:介孔碳材料的有序介孔结构可以作为药物载体,实现
药物的可控释放和靶向输送。

5.环保领域:介孔碳材料可以用于水处理、空气净化和土壤修复等
环保领域,吸附有害物质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



1998年Wei等首次以非表面活性剂有机化合物(如D-葡萄糖等) 为模板剂制备出具有较大比表面积和孔体积的介孔二氧化硅

1992年Mobil公司的科学家首次报道合成了M41M系列介孔分子筛,
它们具有规整有序的孔道结构,比表面积大,孔径可以在1.5~ 10nm之间可调。这一报道立即引起国际学术界的重视,从此掀起 介孔材料研究的热潮
电荷密度匹配机理
Reaction Coordinate
Monnier A., Schü th F., Huo Q. et al., Science, 1993, 261: 1299-1303
协 同 组 装 机 理
(CFM)
Firouzi A, Kumar D, Bull L M,et al.. Science.1995,267:1138-1143
在介孔材料的骨架中引入具有氧化还原的金属元素如:Ti4+、
Zr4+、V5+、Cr3+、Mo5+、W5+、Mn2+等,即可得到相应的氧化还原催 化剂
Tanev等研究了芳香化合物(如苯和2, 6一二叔丁基苯酚)在Ti-MCM-41或Ti-HMS 上的氧化反应,结果同样表明对于有大分子参与的反应,介孔分子筛催化性能优 于微孔沸石
MCM-41 (p6mm)
MCM-48( Ia3d)
MCM-50(Lá)
Kresge C T, Leonowicz M E, Roth W J, et al. Nature, 1992, 359: 710-712. Beck J S, Vartuli J C, Roth W J, et al. J. Am. Chem. Soc., 1992, 114: 10834-10843
其他还有采用担载杂多酸,在孔道内固载大分子过渡金属络合
物等方法对介孔分子筛进行改性,以制备性能优异的催化剂
反相合成有序介孔碳
碳源如蔗糖、 糠醇等
H2SO4
NaOH/HF
SBA-15、
碳源 /SBA-15
C /SBA-15
MCM-48等
CMK-3 、CMK-1
R.Ryoo, S.H.Joo and S.Jun, J.Phys.Chem.B, 1999(103):7743-7746 M.Kruk, M.Jaroniec, T.Kim and R.Ryoo, Chem.Mater. 2003(15): 2815-2823
有 机 - 无 机 物 种 之 间 的 相 互 作 用
徐如人等, 分子筛与多孔材料化学
有序介孔材料的合成机理
--液晶模板机理(LCT)
Kresge C T, Leonowicz M E, Roth W J, et al. Nature, 1992, 359: 710-712. Beck J S, Vartuli J C, Roth W J, et al. J. Am. Chem. Soc., 1992, 114: 10834-10843
有序中孔碳
SBA-15
MCM-41
CMK-3
Carbon nanorods
必须是具有三维连通性孔道结构的中孔分子筛才能得到 有序排列的中孔碳
前景展望

探索新型结构和性能的模板剂,合成新型孔道结构如多层次有 序孔结构的介孔材料 从硅铝体系转向金属、过渡金属氧化物、硫化物等非硅基体系, 向具有有机功能基团或有机-无机杂化介孔材料发展,扩展有 序介孔材料的范围 利用计算机模拟和现代表征技术,从分子水平或微观结构上更 好地理解有机表面活性剂-无机物之间的相互作用,认识介孔 材料的合成机理

有序介孔材料在多相催化、吸附与分离、环境保护、 功能材料等领域极具应用潜力
有序介孔材料合成的历史 [1-9]

1992年Mobil公司的科学家首次报道合成了MCM( Mobil Composition of Matter)-41介孔分子筛,揭开了分子筛科学的新纪元

1994年,Huo等在酸性条件下合成出APMs介孔材料,结束MCM 系列只能在碱性条件下进行的历史,拓展了人们对模板法合成介 孔 材料的认识
Huo Q. S., David I, Margolese D. I., Ciesla U. et al., Nature, 1994, 368: 31
介孔材料的结构表征

小角X-射线衍射 介孔材料的周期性空间结构主要有: 六方结构、立方结构和层状结构等,在XRD图谱上分别 有其对应的衍射峰(2θ =1~80) ,根据衍射峰的d值,可 以计算出孔道中心之间的距离 高分辨电子显微镜 透射电镜(TEM)是观察介孔结构最 直接的手段:当电子束从某些特定的方向穿过有序介孔 材料时,由于与之作用的原子数量多少和种类的不同, 电子束的透过密度呈现周期性的变化,产生具有周期性 的图纹图像,据此可以直接测出孔道中心之间的距离



提高介孔材料的热稳定性与水热稳定性,解决酸强度低,掺杂 其他金属离子后结构不稳定性、掺杂量较低等问题
加强介孔材料在催化、有机高分子分离、环保、纳米反应器、 电子器件、传感器等方面的应用研究

参考文献
[1] Kresge C T, Leonowicz M E, Roth W J, et al. Nature, 1992, 359: 710-712. [2] Beck J S, Vartuli J C, Roth W J, et al. J. Am. Chem. Soc., 1992, 114: 10834-10843 [3] Huo Q, Margolese D I, Ciesla U, et al. Nature,1994, 368: 317-321 [4] Zhao D Y, Feng J L, Huo Q, et al. Science, 1998, 279: 548-552 [5] Yang P D, Zhao D Y, Margolese D I, et al. Nature, 1998, 396: 152-155 [6] Bagshaw S A, Prouzet E, Pinnavaia T J. Science, 1995, 269: 1242-1244 [7] S. A. Bagshaw. T J. Angew. Chem. Int. Ed.,1996,35(10)1102-1105 [8] Wei Y, Jin D L, Ding T Z, et al. Adv. Mater., 1998,10(4): 313-316. [9] Wei Xu J, Dong H, et al. Chem. Mater., 1999, 11(8): 2023-2029
在介孔材料的骨架中引入三价的金属元素如:Al3+、B3+、Ga3+
、 Fe3+等,由于同晶取代的作用,使得骨架上带有负电荷,形成具 有弱或中强酸催化活性位
Corma将担载有NiO和M2O3的Al-MCM-41分子筛用于真空汽油的加氢裂化,发现该 体系的脱硫、脱氮活性高于以无定形硅铝酸盐为载体的催化剂体系; Roos等以十 六烷烃的催化裂化为探针反应,在微反应装置上将Al-MCM-41分子筛与普通FCC工 业催化剂进行比较,发现前者在相同的转化率下能产生更多的汽油成分和烯烃
[14] Huo Q. S., Margolese D. I., Ciesla U. et al., Nature [J], 1994, 368(6469): 317
[15] Monnier A., Schü th F., Huo Q. et al., Science [J], 1993, 261(5126): 1299

介孔材料合成的突破性进展是在酸性合成体系中使用三嵌段共 聚物(非离子表面活性剂)为模板剂,得到孔径大、有序程度非 常高的六方相介孔材料SBA-15
highly ordered thick silica wall, microporous walls thermally and hydrothermally stable large pore size (4.6 ~ 40 nm) high surface areas ( ~ 1000 m2/g) pore volume (1.0—2.5 cm3/g)
SBA-15
D. Zhao, Feng J L, Huo Q, et al. Science, 1998, 279, 548-552 Yang P D, Zhao D Y, Margolese D I, et al. Nature, 1998, 396: 152-155
有序介孔材料的分类
分类依据 组成 类 硅基介孔材料 别 非硅基介孔材料
pH, media
以表面活性剂分子聚集体为模板,通过表面活性剂分子聚集体和无 机物种之间的界面组装实现对介观图式结构的剪裁。其中涉及超分 子化学、Sol-gel化学、主客体模板化学
表面活性剂的超分子组装
Temperature℃
CTAB
CTAB Concentration( Wt% )
C. J. Brinker, Y. Lu, A. Sellinger,H. Fan, Adv. Mater., 1999,11, 579
低温N2吸附-脱附 可以测定介孔材料的比表面积、孔 容、孔径及孔径分布,还可以根据吸附-脱附曲线中滞 后环的形状来推测孔道的形状


介孔材料的应用

催化剂或催化剂载体
吸附与分离方面的应用
Feng等用含硫醇末端基的试剂将介孔硅酸盐的表面功能 化,这种吸附剂能优先吸附污水中的汞、银和铅离子, 其吸附能力比通常的吸附剂高出一个多数量级,并且再 生性好
[16] Firouzi A, Kumar D,Bull L M,et al. Science.1995,267:1138-1143 [17] X. Feng, G. E. Fryxell, et al., Science, 1997, 276, 923 [18] J. Liu, X. Feng, G. E. Fryxell, L. Q. ,et al, Adv. Mater.1998,10, 161 [19] A. Corma, A. Martinez, V Martine-Soria, et al., J. Catal. 1995,153, 25 [20] K. Roos, A. Liepold, W. Roschetilowski, et al., Stud. Surf. Sci. Catal, 1994, 84,389 [21] P. T. Tanev, M. Chibwe, T. J. Pinnavaia, Nature, 1994, 368, 321 [22] R.Ryoo, S.H.Joo and S.Jun, J.Phys.Chem.B, 1999(103):7743-7746 [23] M.Kruk, M.Jaroniec, T.Kim and R.Ryoo, Chem.Mater. 2003(15): 2815-2823
相关文档
最新文档