实验设计与数据处理论文2
心理实验设计与数据处理

心理实验设计与数据处理心理实验设计的基本原则包括科学性、控制性、操作性和可重复性。
科学性要求实验设计符合科学研究的基本原则,能够产生可靠的实验结果。
控制性要求控制非实验变量,仅关注实验变量的影响,并通过随机分组等方式保证实验组和对照组之间的等效性。
操作性要求心理实验的设计能够准确、精确地操作独立变量和依赖变量,使其之间具有因果关系。
可重复性要求实验设计应具有可重复性,即不同研究者在相同条件下能够得到相似的结果。
心理实验设计可以采用不同的研究设计,包括相关设计、实验设计和纵向设计等。
相关设计用于研究变量之间的相关关系,其中包括相关系数和回归分析等统计方法。
实验设计用于研究因果关系,其中包括独立样本设计和重复测量设计等。
在实验设计中,可以使用随机分组、匹配分组和重复测量等方法来控制非实验变量的影响。
纵向设计用于研究变量随时间变化的过程,其中包括成络设计和工具设计等。
心理实验数据的处理可以通过描述统计、推论统计和效应量等统计方法来进行。
描述统计用于对数据进行描述和总结,其中包括频数分布、均值、方差等统计指标。
推论统计用于对总体参数进行估计和推测,其中包括t检验、方差分析和相关分析等统计方法。
效应量用于评估实验结果的实际意义,其中包括Cohen's d和Eta-squared等效应量指标。
心理实验数据的处理还可以通过SPSS等统计软件来进行。
SPSS可以帮助研究者进行数据输入、数据清洗和数据分析等过程。
在数据分析中,可以通过SPSS的数据分析工具箱来选择合适的统计方法进行分析。
同时,SPSS还可以生成图表和报告,帮助研究者对实验结果进行可视化和解释。
总之,心理实验设计与数据处理是心理学研究中不可或缺的环节,它们可以帮助研究者获得可靠的实验结果,并为心理问题的解决提供有效的参考。
通过科学的实验设计和合理的数据处理,心理学研究可以更好地了解人类心理活动的本质,从而为个体和社会的心理健康提供保障。
实验设计及数据处理论文

统计学原理在实验设计与数据分析中的应用摘要:本文围绕实验的设计和数据的分析这一主旨,《太湖水体中胶体相痕量金属的季节变化》[1]论文进行了详细的评析,并加入自己对所选文章中研究和分析方法的评析。
关键词:试验设计与数据分析;统计学原理;试验论文一、概述数理统计学是研究有效地运用数据收集与数据处理、多种模型与技术分析、社会调查与统计分析等,对科技前沿和国民经济重大问题和复杂问题,以及社会和政府中的大量问题,如何对数据进行推理,以便对问题进行推断或预测,从而对决策和行动提供依据和建议的应用广泛的基础性学科。
数理统计方法在工农业生产、自然科学和技术科学以及社会经济领域中都有广泛的应用。
①在农业中,对田间试验进行适当的设计和统计分析。
在工业生产的试制新产品和改进老产品、改革工艺流程、使用代用原材料和寻求适当的配方等问题中起着广泛的作用,统计质量管理在控制工业产品的质量中起着十分重要的作用。
③医学是较早使用数理统计方法的领域之一。
在防治一种疾病时,需要找出导致这种疾病的种种因素。
统计方法在发现和验证这些因素上,是一个重要工具。
另一方面的应用是,用统计方法确定一种药物对治疗某种疾病是否有用,用处多大,以及比较几种药物或治疗方法的效力。
报、地质资源的评介等。
等。
为了使非数学专业的科研人员对统计学原理在试验中的应用有更深入的了解,本文选取一篇典型论文进行分析,并且从统计学原理角度出发,详细评析了论文中试验设计与数据分析是如何一步一步展开;探讨三篇论文的共性及特性以及讨论各试验在分析的过程可能存在的问题。
二、研究方法本文对三篇论文的评析主要从以下几个方面展开:(1)研究围绕的主题和假设;(2)输入因子和输出因子的选择,其它影响因素的取舍选择;(3)实验的设计和开展;(4)实验数据的汇报和表达方法;(5)基于统计学原理的实验结果分析三、论文分析1.《太湖水体中胶体相痕量金属的季节变化》评析(1) 研究围绕的主题文章作者先期工作表明,春季太湖水体胶体态痕量金属浓度相对较高。
毕业论文中的实验设计与数据处理

毕业论文中的实验设计与数据处理在毕业论文中,实验设计和数据处理是其中重要的一部分。
通过恰当的实验设计和数据处理,可以提高研究的可靠性和有效性,进一步支持论文的结论。
本文将探讨毕业论文中实验设计与数据处理的重要性,并提出一些指导原则和方法。
一、实验设计的重要性实验设计是毕业论文中进行科学研究的基础。
一个好的实验设计能够使实验过程有条不紊地进行,从而获得可靠的实验结果。
以下是一些实验设计的原则:1. 确定研究目标和假设:在进行实验设计之前,需要明确研究目标和假设。
这有助于指导实验的方向和内容,从而得到准确的实验结果。
2. 控制变量:实验中存在多种因素的影响,为了得到可靠的结果,需要控制除研究变量以外的其他变量。
这可以通过控制组和实验组、随机分组等方法来实现。
3. 多次重复实验:为了增加实验结果的可靠性,需要进行多次重复实验。
这样可以减少实验过程中的误差和偶然因素的影响。
二、数据处理的重要性数据处理是对实验结果的统计和分析,是毕业论文中展示研究成果的重要环节。
以下是一些数据处理的原则:1. 数据整理与清洗:在对实验数据进行处理之前,需要进行数据整理与清洗。
这包括删除异常值、填补缺失值、转换数据格式等。
通过数据整洁与清洗,可以避免实验结果的偏差和误解。
2. 统计分析方法的选择:根据实验的设计和目的,选择适当的统计方法进行数据分析。
常用的统计方法包括描述性统计、方差分析、相关分析等。
3. 结果的解释与讨论:在对实验结果进行展示的同时,还需要对结果进行解释与讨论。
这有助于读者更好地理解实验结果,并对研究成果作出准确的评价。
三、实验设计与数据处理的指导方法为了提高实验设计和数据处理的质量,以下是一些指导原则和方法:1. 充分了解研究领域:在进行实验设计和数据处理之前,需要充分了解研究领域的背景知识和前人的研究成果。
这有助于确定研究的目标和提出合理的假设。
2. 合理使用科学工具:现代科学研究中存在许多科学工具和软件,可以用于实验设计和数据处理。
实验设计与数据处理第二部分资料讲解

可以看出,此处有
ST= SA + Se= 184.90 + 1109.20 =1294.10
即总的偏差平方和可以分解为组间偏差平方和与组内偏差平
方和。
有了SA和Se之后,是否就能直接比较出由于因素水平的变化引 起的数据波动与实验误差引起的数据波动之间的差异呢?
例 3.1 考察生产某化工产品时反应温度A(℃)对收率y(%)的影响。 为此,比较两个反应温度A1=30℃,A2=40℃。
表 3.1 某化工产品收率实验数据表
实验号 水平
1
2
3
4
5 平均值
A1(30℃) 75 78 60 61 83 71.4
A2(40℃) 89 62 93 71 85 80.0
条件误差:由于实验条件的不同而引起的差异叫“条件误 差”。
3.2 方差分析的概述
方 差 分 析 (Analysis of Variance) 由 英 国 统 计 学 家 R.A.Fisher 首 创 , 为 纪 念 Fisher,以F命名,故方差分 析又称 F 检验。
方差分析能把实验过程中实验条件改变所引起的数据波动 与实验误差引起的数据波动区分开,同时对影响实验结果 的各因素的重要程度给以精确的数量估计。
F多大时,可以说因素的水平改变对考察指标的影响是显著的 呢?小到多小,认为实验结果的误差主要是实验误差引起的, 这就需要有一个标准。这个标准由F表给出。
在F表上,横行n1代表F值中分子的自由度,竖行n2代表F值 中分母的自由度,相交后的数值即为F比的临界值。
本例中,因
F 18.940/11.33 110.290/8
如何进行毕业论文的实证研究的实验设计与数据处理

如何进行毕业论文的实证研究的实验设计与数据处理在进行毕业论文的实证研究时,实验设计和数据处理是非常重要的环节。
本文将介绍如何进行毕业论文的实证研究的实验设计与数据处理,希望对你有所帮助。
一、实验设计1. 研究目的和问题:首先确定研究目的和问题,明确需要解决的具体疑问。
例如,研究目的是探究某种因果关系,问题是某个变量对另一个变量的影响。
2. 变量定义和操作:明确需要考察的变量,包括自变量和因变量,并对其进行定义和操作化。
例如,自变量可以是某种教育方法,因变量可以是学生的成绩。
3. 受试者选择和分组:确定受试者的选择标准,并按照某种方式将其分为实验组和对照组。
实验组接受特定处理,对照组不接受处理。
4. 随机分配:采用随机分配的方法将受试者随机分配到实验组和对照组,以减少可能的偏差。
5. 实验过程:详细描述实验的进行过程,包括实施的步骤、时间点和条件等。
6. 控制变量:对于可能对实验结果产生干扰的变量,需要进行控制,以确保实验的准确性和可靠性。
7. 数据采集:确定需要收集的数据类型和方法,选择合适的工具和技术进行数据采集。
例如,可以使用问卷调查、实验观察或者文献研究等方法。
二、数据处理1. 数据清理:在进行数据分析之前,需要对采集到的数据进行清理,包括删除无效数据、填充缺失数据和检查异常数据等。
2. 数据编码和输入:将收集到的数据进行编码和输入,以便后续的统计分析。
编码的目的是将数据转换为计算机可以识别和处理的形式。
3. 数据分析和统计方法:根据研究目的和问题,选择合适的数据分析方法和统计工具。
常用的数据分析方法包括描述统计、相关分析、回归分析和方差分析等。
4. 结果展示和解释:将数据分析的结果进行展示和解释,可以使用图表、表格等形式进行可视化展示,同时对结果进行解读和说明。
5. 结论和讨论:根据数据分析的结果,得出结论并进行讨论。
分析数据的意义、局限性,与已有研究的关系等。
6. 结果验证:对于实证研究的结果,可以使用重复测试、交叉验证或者外部验证等方法进行结果的验证,以确保结果的稳健性和可靠性。
大学论文中的实验设计与数据处理方法

大学论文中的实验设计与数据处理方法在大学论文中,实验设计和数据处理方法是论文研究的核心内容之一。
合理的实验设计和准确的数据处理方法能够有效地支持并展示研究的科学性和可靠性。
本文将分析大学论文中常用的实验设计方法和数据处理方法,并探讨它们在研究中的作用。
一、实验设计方法1. 随机对照实验设计随机对照实验设计是一种常用的实验设计方法。
在这种设计中,研究对象被随机分成两组或多组,其中一组作为对照组,其他组作为实验组。
对照组接受常规处理或不接受任何处理,实验组接受特定处理。
通过对比两组或多组数据,可以评估特定处理的效果和影响。
2. 配对实验设计配对实验设计适用于研究中存在相互依赖或相互影响的组别。
在配对实验设计中,研究对象被按照某种特征进行配对,然后将配对的对象分为对照组和实验组。
配对实验设计可以减少个体间的差异,从而更容易观察到实验处理的真实效果。
3. 单因素实验设计单因素实验设计是通过改变一个因素来观察其对实验结果的影响。
在这种设计中,只有一个自变量,其他变量保持恒定。
通过设定不同水平的自变量,可以评估自变量对因变量的影响程度。
4. 多因素实验设计多因素实验设计考虑了多个因素对实验结果的影响。
通过同时改变多个因素,可以评估不同因素之间相互作用的效果。
在设计多因素实验时,需要注意因素之间的独立性,确保能够准确地分析各因素的影响。
二、数据处理方法1. 描述统计分析描述统计分析是对数据进行整理、概括和描述的方法,包括计算均值、中位数、标准差、方差等统计指标。
通过描述统计分析,可以对研究数据进行初步的整体了解,揭示数据的分布特征和集中趋势。
2. 探索性数据分析探索性数据分析是通过图表、图像和统计分析等方法,从数据中探索和发现隐藏的模式和关系。
通过探索性数据分析,研究者可以更深入地理解数据,发现数据背后的规律,并为后续的研究提供指导。
3. 统计假设检验统计假设检验用于判断研究中提出的假设是否成立。
通过设定显著性水平和计算统计检验值,可以对研究结果进行统计显著性检验。
论文写作中的实验设计与数据处理技巧

论文写作中的实验设计与数据处理技巧在论文写作中,实验设计和数据处理技巧是非常重要的。
一个合理的实验设计能够确保实验结果的可靠性和有效性,而正确的数据处理技巧能够准确地分析实验数据并得出科学结论。
本文将探讨论文写作中的实验设计与数据处理技巧,帮助读者更好地完成自己的研究工作。
一、实验设计技巧1. 准确定义研究目的:在进行实验设计之前,首先需要明确研究的目的和问题。
明确的研究目的有助于指导实验设计,确保实验的科学性和实用性。
2. 设定明确的研究假设:研究假设是实验设计的基础,它应该明确、具体和可验证。
合理的研究假设能够指导实验的整个过程,并为数据分析提供支持。
3. 选择适当的实验设计类型:根据研究目的和研究问题的不同,选择适合的实验设计类型。
常见的实验设计包括前后对照试验、随机对照试验、交叉试验等。
4. 确定实验因素和水平:实验因素是指在实验中需要研究和考虑的变量,而水平则是指实验因素的不同取值。
合理地选择实验因素和水平能够提高实验设计的效果和准确性。
5. 设置适当的对照组和处理组:在实验设计中,对照组往往是指没有接受实验处理的组别,而处理组是指接受了实验处理的组别。
对照组和处理组的设置应该符合实验目的和问题的要求。
二、数据处理技巧1. 数据清洗和校验:在进行数据处理之前,需要对实验数据进行清洗和校验,排除异常值和错误数据。
数据清洗和校验能够提高数据的可靠性和准确性。
2. 数据可视化:利用合适的图表和图形工具将数据可视化,有助于读者更好地理解数据和趋势。
常用的数据可视化方法包括柱状图、折线图、散点图等。
3. 统计分析:在进行数据处理时,需要运用适当的统计方法进行数据分析。
常用的统计分析方法包括描述性统计分析、假设检验、方差分析等。
4. 结果解释和讨论:在数据处理的最后阶段,需要对数据的结果进行解释和讨论。
确保结果的准确性和可靠性,并与研究问题和目的进行对应。
5. 结果呈现和说明:在论文写作中,数据处理的结果需要通过表格、图表等形式进行呈现和说明。
实验设计与数据处理对于科学实验设计和数据处理技术的介绍和分析

实验设计与数据处理对于科学实验设计和数据处理技术的介绍和分析实验设计与数据处理对于科学研究具有至关重要的作用。
合理有效的实验设计和精准可靠的数据处理能够提高实验的可信度和可重复性,从而推动科学研究的发展。
本文将对实验设计和数据处理技术进行介绍和分析。
一、实验设计1. 实验设计的概念和重要性实验设计是指根据研究目的和问题,经过合理的思考和计划,选择和安排实验条件和步骤,以达到科学研究目标的过程。
一个好的实验设计应该具备科学性、可操作性和针对性。
实验设计的好坏直接影响到实验结果的可靠性和准确性。
2. 实验设计的要素(1)研究目的和问题:明确实验的目的,确保实验设计的针对性。
(2)试验对象和样本选择:选择合适的试验对象和样本,以确保实验结果具有代表性。
(3)实验条件和步骤:合理选择和安排实验条件和步骤,以确保实验过程的可操作性和稳定性。
(4)实验组和对照组的设置:合理划分实验组和对照组,进行对比分析,确保实验结果的有效性和可靠性。
3. 常见实验设计方法(1)完全随机设计:将试验对象随机分配到不同处理组,以减小个体差异的影响。
(2)区组设计:将试验对象按照某种特征分组,再根据随机原则将不同处理组分配到不同的区组中进行处理。
(3)因子水平设计:根据研究目的,选择一些重要的因子及其水平,进行系统性的设计和分析。
二、数据处理1. 数据处理的概念和重要性数据处理是指根据实验设计和采集到的原始数据,通过一系列的方法和技术进行整理、分析和解释的过程。
良好的数据处理能够提取、总结和归纳数据的信息,揭示实验结果的规律性和内在关系。
2. 数据处理的步骤(1)数据清洗:对采集到的原始数据进行筛选、清理和校验,剔除异常值和错误数据,确保数据的准确和可靠。
(2)数据归类与整理:按照实验设计的要求,将数据进行分类和整理,以便后续的分析和处理。
(3)数据分析与统计:根据实验目的和问题,选择合适的统计方法和工具,对数据进行描述统计、推断统计和相关性分析等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
医学中的实验设计与数据处理摘要:实验是一切自然学科的基础。
实验设计与数据处理在医学中更是发挥着不可估量的作用。
正交实验设计中,对实验进行改进,采用极差分析和方差分析法,研究不同改性条件对大豆蛋白乳化性的影响,并找出主要影响因素。
通过科学合理的实验设计过程加上严谨规范的数据处理方法,可以使医学中更多的生理机制被探索发现,使更多的药物疗法被发明应用,从而更好地拯救患者,造福人类。
关键词:医学实验,实验设计,数据处理一,引言实验是自然学科的基础,任何自然科学都离不开实验。
科学界中大多数的公式定理都是由实验反复验证而推导出来的,只有经得起实验验证的定理定律才具有普遍实用性。
而科学的实验设计是利用已有的专业学科知识,以大量的实践经验为基础而得出的既能减少实验次数,又能缩短试验周期,从而迅速找到优化方案的一种科学计算方法。
这就必然涉及到实验的数据处理,也只有对实验得出的数据作出科学合理的处理,才能使实验结果更具说服力。
实验设计方法最早应用于农业、生物学、遗传学方面。
早在20世纪中期,就有一些欧美国家将实验设计应用于工业生产,以达到减少成本而获取最大利益的目的。
随着时间的推移,实验设计越来越受到人们的重视,也开始在各个领域开始广泛的应用。
医学是一门将科学和生活紧密结合的学科,因此医学中的实验设计显得尤为的重要。
科学的实验设计不仅能起到节约时间,节约成本的作用,还能使分析更具普遍适用性,或减少药物风险,或增强药物疗效,更加福泽患者。
二,. 试验设计与数据分析(一)完全随机试验设计与单因素方差分析完全随机试验设计比较简单,处理数与重复数都不受限制,适用于试验条件,、环境、试验动物差异较小的试验【1】,完全随机试验设计只设置1个试验因素,可采取单因素方差分析,如果有协变量影响,则考虑单因素协方差分析。
方差分析的前提条件是样本独立性、正态性和方差齐性【2-3】,若不满足这 3个条件,则需进行平方根转换#对数转换和反正弦转换( 在Excel中通过插入函数或利用 Spss的数据转换命令进行转换) ,或者选择非参数检验( 如秩和检验、符号检验等) 。
以上条件中,对独立性要求最严格,但一般都可满足,根据试验设计的随机化基本原则在试验设计和试验过程中已被充分考虑。
相互独立的随机样本才能保证变异的可加性( 可分解性) 。
单因素方差分析必须考虑正态性和方差齐性,但无重复数据的方差分析,如正交设计则不考虑这 2 个问题,正态性和方差齐性是以单元格为基本单位的,每个单元格若只有1个数据,则无法分析; 对于有重复数据的多因素方差分析,真正分到每个格子中的样本例数一般都只有 3-5例,很难检验出差别,或者极端情况,因为极个别格子方差不齐而导致检验不能通过,这种情况实际上对分析结果影响并不太严重,只要数据分布不是明显偏态,不存在极端值即可【4】,正态性检验的方法有多种,如图示法( 概率图或分位数图) ,或计算法( 如矩法、 W检验法、D检验法) 等,本文主要采用 Spss中依据矩法原理的单样本K-S法进行正态性检验。
方差齐性是指相互比较的各样本的总体方差相等。
1,例 1. 为了比较5种不同配合饲料对猪的饲喂效果,选取了品种、性别、体重基本相同的仔猪 25头,随机分成5组,投喂不同饲料,经30d试验后,各组的增重结果列于表1【5】,( 1) Spss操作( 部分数据文件见图 1)正态性检验,Analyze—→ Nonparametric Test----→ 1-Sample K-S,净增重---→Test Variable List, Test Distribution中选择 Normal →Ok。
5组饲料的P值分别为0.722、0.967、1.000、0.964、1.000,均服从正态分布。
单因素方差分析。
本题只有1个试验因素,无协变量影响,属于简单的单因素方差分析,选择 Spss中针对单因素单向方差分析的One-way ANOVA命令进行快速分析。
Analyze→Compare Means→One-way ANOVA,组别→Factor,净增重→Dependent List,Post Hoc→Post Hoc Multiple Comparisons( 多重比较) →Duncan→Continue→Options→Descriptive,Homogeneity-of-Variance(方差齐性检验) →Continue→Ok。
输出结果有描述性统计量、方差齐性检验、方差分析、多重比较。
方差齐性检验结果,P=0.579大于0.05即方差齐性。
方差分析结果,P=0.003小于0.01,表明不同配合饲料对猪的饲喂效果有极显著差异,且饲料5 对猪增重效果最佳。
( 2)Excel作图。
选择图表类型并生成初图。
复制 Spss描述性统计结果→编辑(Excel中) →选择性粘贴→Unicode 文本。
插入→图表→柱形图→子图表类型→簇状柱形图( 右侧类型中的第一个) →下一步→数据区域( 选定平均值一列数据区域) →完成。
图形初步编辑。
数据轴主要网格线→右键→清除,绘图区→右键→清除,图例→右键→清除; 数据柱→数据系列格式→图案→边框→自定义→颜色→黑色,内部→颜色选白色; 图表区→右键→图表区格式→图案→边框→无,区域→无→确定,字体→字体先选宋体,再选Times New Romen,字形→常规,字号→8 号。
图表区左上角小正方图变为 45度双向箭头时,向右下角方向拉动,将横坐标轴长度调整为Excel中 3个单元格长度,将纵坐标轴长度调整为Excel中 6个单元格长度( 横、纵坐标轴长度视具体情况而定,图形美观即可) ,纵坐标→右键→坐标轴格式→刻度→主要刻度单位为 4( 视具体情况而定) →确定。
添加误差线。
若样本数相同,误差线既可选择标准偏差( SD) ,又可选择标准误差( SE) ,若样本数不同,则只能选择标准误差,通常都选择标准误差.。
数据柱→右键→数据系列格式→误差线→显示方式→正偏差→自定义: ( C)+ ( 选定标准误那列数据区域) →确定"。
多重比较结果标注。
根据图 2多重比较结果,不在同一列,表示差异显著(P<0.05) ,用不同字母表示,同列用相同字母表示,表示差异不显著(0.05< P) ,点击绘图区→敲入相应的英文字母→Enter→放入对应数据柱上。
变成.JPG图片。
复制Excel 中图形至Word中,编辑→选择性黏帖→图片( 增强型图元文件) 。
(3)Word编辑。
点击图片→右键→显示“图片”工具栏→裁剪→调节图片四边至合适大小→文字环绕→浮于文字上方→点击图片→图表区左上角空心圆变为 45度双向箭头时向右下角方向拉动,调节至合适大小。
图表标题和坐标轴标目填写的通常做法是在Excel中完成: 图表区→右键→图表选项→将图表标题、横、纵坐标标目分别输入图表标题( T) ,分类(X)轴( C) ,数值( Y) 轴(V )中。
但如果论文中图形较多,一旦图表标题和横、纵坐标轴标目出现错误会造成修改不便,或者几个图形组合在一起,为了美观,需使几个图形具有相同的横、纵坐标长度,则要反复调整,势必会增加工作量。
可通过插入文本框实现。
插入→文本框→横排→输入横坐标标目→点击文本框边缘→右键→设置文本框格式→颜色与线条→线条→颜色选为白色→确定。
若为纵坐标标目,点击所写的纵坐标标目→右键→文字方向→方向→选择第二行第 1个.。
最后,按Shift 将横、纵坐标标目与图形进行组合( 见图3) .。
(二)随机区组设计与2因素方差分析随机单位组设计也称为随机区组( 或窝组) 设计。
它是根据局部控制的原则,如将同窝、同性别、体重基本相同的动物划归一个单位组,每一单位组内的动物数等于处理数,并将各单位组的试验动物随机分配各处理组[6]。
随机区组设计的数据分析中将区组作为 1 个因素,再考虑另一试验因素,因此通常采用2因素方差分析中最简单的两因素无交互方差分析。
例2, 4个品种的猪,分别用3种配合料 ( 每种饲料喂 1 头猪) 饲养 3个月的增重结果见表 2。
分别检验不同品种以及不同饲料对猪增重效果是否有显著差异[10]。
数据文件见图4输出结果有方差分析、单因素统计量以及多重比较( 由于本文主要介绍数据分析过程以及作图技巧,在此不将方差分析、单因素统计量作为重点列出) 。
方差分析表明,品种、饲料P值分别为 0.000,0.016,即不同品种及不同配合饲料对猪的饲喂效果均有显著影响,品种 1和饲料 2和 3 对猪增重效果最好。
(1)根据单因素统计量和多重比较结果画出柱状图。
为了节省作图时间,根据单因素统计量和图 5 多重比较结果在 Excel中先做好图 6中左图&复制→粘贴→点击图表区→右键→源数据→在数据区域中插入右图数据,这样 2 个图形大小基本一致,重新添加平均值、误差线和多重比较结果,为了使数据柱对比更加鲜明,将Excel 中纵坐标最大和最小值调节为合适的数值。
调整2个图形横坐标在Excel 同一行单元格上,调整横、纵坐标轴,使 2个图形具有相同长度的横纵、坐标轴,具有相同数量的主要刻度单位。
(2)调整2个图形使数据柱具有相同宽度。
点击数据柱→右键→数据系列格式→选项→分类间距→调整数值使 2 个图形数据柱具有相同宽度.。
(3)组合图形。
Shift→分别点击 2 个图形→右键→组合→复制至 Word 中→编辑→选择性粘帖→图片( 增强型图元文件).。
插入图表标题和坐标轴标目,并与图形组合。
三常见的医学实验设计类型(一)医学实验设计类型有几十种:常见的有:配对设计、成组设计、单因素K水平设计( K≥3)、配伍组设计、拉丁方设计(拉丁方设计中,试验处理数= 横行单位组数= 直列单位组数 =试验处理的重复数【1】)、交叉设计、析因设计、正交设计和具有重复测量的设计。
正交设计是利用正交表来安排与分析多因素试验的一种设计方法,它利用从试验的全部水平组合中,挑选部分有代表性的水平组合进行试验,通过对这些部分试验结果的分析了解全面试验的情况,找出最优的水平组合【1,7-8】.。
从是否便于考察因素之间交互作用的角度看,前六种设计都不便考察交互作用,后三种设计是可以考察交互作用的。
从同时考察因素的个数多少角度看,前三种设计都属于单因素设计,配伍组设计属于二因素设计,拉丁方设计、交叉设计都属于三因素设计,而后三种设计即可以用于二因素设计,又可以用于多因素设计。
由于配伍组设计、拉丁方设计和交叉设计都不便考察交互作用,故最适合用于安排只含一个处理因素,含一个或二个区组因素的实验研究场合。
如果实验中同时涉及二个或二个以上处理因素,因素之间的交互作用往往又是不可忽视的,此时,就应当选用析因设计或正交设计。