高中数学排列组合说课讲解
《排列与组合》的说课稿

《排列与组合》的说课稿引言概述:排列与组合是数学中重要的概念,它们在各个领域都有着广泛的应用。
通过排列与组合的学习,可以帮助我们解决各种实际问题,提高我们的逻辑思维能力和数学素养。
本文将从排列与组合的定义、性质、应用等方面进行详细阐述。
一、排列的概念1.1 排列的定义:排列是指从给定的元素中按照一定的顺序选取若干个元素进行排列的方式。
1.2 排列的计算公式:排列的计算公式为A(n,m)=n!/(n-m)!,其中n表示总元素个数,m表示选取的元素个数。
1.3 排列的性质:排列的个数随着元素个数和选取个数的增加而增加,排列的顺序不同则视为不同的排列。
二、组合的概念2.1 组合的定义:组合是指从给定的元素中按照一定的规则选取若干个元素进行组合的方式。
2.2 组合的计算公式:组合的计算公式为C(n,m)=n!/(m!(n-m)!),其中n表示总元素个数,m表示选取的元素个数。
2.3 组合的性质:组合的个数不受元素的排列顺序影响,组合的个数随着选取的元素个数的增加而减少。
三、排列组合的应用3.1 排列组合在概率统计中的应用:排列组合可以帮助我们计算事件发生的可能性,从而进行概率统计的分析。
3.2 排列组合在密码学中的应用:排列组合可以帮助我们设计安全的密码算法,保护信息的安全性。
3.3 排列组合在工程设计中的应用:排列组合可以帮助我们设计出更加合理的工程结构,提高工程的效率和可靠性。
四、排列组合的解题方法4.1 利用计算公式:根据排列组合的计算公式,可以直接计算出排列组合的个数。
4.2 利用递推关系:通过递推关系可以简化排列组合的计算过程,提高解题效率。
4.3 利用实际问题进行练习:通过解决实际问题,可以更好地理解排列组合的概念和应用。
五、总结排列与组合作为数学中的重要概念,具有广泛的应用价值。
通过学习排列与组合,可以提高我们的逻辑思维能力和解决问题的能力,为我们的学习和工作带来更多的帮助。
希望大家能够认真学习排列与组合的知识,不断提升自己的数学素养。
高中数学第四册排列组合讲义.

A B P Q • • • •高中數學第四冊排列組合講義1.A , B 兩隊比籃球賽,每局不得成和局,規定A 隊勝三局為贏;A 隊勝三場前B 勝二局算B 隊贏,試問此比賽之所有可能情形有 種?又其中A , B 輸贏如何?2.有A , B , C , D , …等身高不等的8人排成一橫列,欲使任一較矮者不夾排在二較高者之間之排法共有 種?3.五種不同的顏色塗右圖,相鄰著異色,共有 種不同的塗法。
4.))()((v u z y x g f e d c b a +++++++++的展開式中共有 項。
5.540之正因數共有 個,其一切正因數和為 ,乘積為 。
6.x | 36000,(x , 63)=3,25| x 之自然數x 共有 個。
7.不同的渡船3艘,每艘可載5人,今有7人同時過渡,有 種安全的渡法。
8.如右圖,從A 到B 之走法中,不許走←方向的走法共有 種。
9.下列各街巷,從A 走到B 之捷徑走法各有幾?10. 如右圖自A 到B ,但限定只能走↑→↓三種方向,而且道路不重複走。
試問以下情形各有幾種走法? (1)由A 到B 有 種走法。
(2)由A 不經過P 到B 有 種走法。
(3)由A 不經過Q 到B 有 種走法。
(4)由A 不經過P 且不經過Q 到B 有 種走法。
(5)由A 經過P 但不經過Q 到B 有 種走法。
11. 考慮正五邊形及其所有對角線所成的圖形,此圖形中各線段圍成之各種三角形相似者列為一類,共有m 類,全等者列為一類,共有n 類,求m= 及n= 。
總共有 個三角形。
12. 在平面上任意畫不完全重合之n 個相異圓至多有 個交點。
13. 排容原理:1到100之自然數中,是2或3或5的倍數共有 個。
14. 千元鈔2張,五百元鈔3張,百元鈔4張,每次至少取一張,(1)共有 種取法。
(2)可以配出 種不同的款項。
15. 今有五個不同的門,甲、乙兩人由不同的門進入,不同的門出來,(1)自己可由相同的門進出有 種方法。
高二数学教研会资料《排列组合》说课资料新人教A版

课题:排列组合(复习)一、教学目的:(一):知识与技能:排列、组合都是研究事物在某种给定的模式下所有可能的配置的数目问题,它们之间的主要区别在于是否要考虑选出元素的先后顺序,不需要考虑顺序的是组合问题,需要考虑顺序的是排列问题,排列是在组合的基础上对入选的元素进行排队,因此,分析解决排列组合问题的基本思维是“先组,后排”。
(二):过程与方法目标:1.通过学习、生活中的实际问题的了解,让数学走进生活将生活问题由对具体事例的感性认识上升到对定义的理性认识,可培养学生的梳理归纳能力;2.通过归纳梳理后再加以应用可培养学生的信息迁移和类比推理能力;3.仔细审题,判断是组合问题还是排列问题;要按元素的性质分类,按事件发生的过程进行分步;深入分析、严密周详,注意分清是乘.还是加.,既不少也不多,辩证思维,多角度分析,全面考虑,有助于提高逻辑推理能力,促进学生整体能力的发展。
(三):情感态度与价值观目标:营造亲切、和谐的氛围,以“趣”激学;通过对组合与排列的关系的认识,进行辩证唯物主义观点教育;通过绿化、环保、重阳等努力体现数学学科的人文性和价值性。
二、教学重点:对于附有限制条件的比较复杂的排列组合应用题,要周密分析,设计出合理的方案,把复杂问题分解成若干简单的基本问题后应用分类计数原理或分步计数原理来解决。
三、教学难点:排列组合的解法常常是构造性的,出现错误情况较多,尤其是不能固定于“靠排列符号A与组合符号C来解决所有问题”的固定模型。
对应处理办法:重在“尝试”。
四、内容分析:排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新课程下高考会有题目涉及。
考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目;预测今后高考本部分内容一定会有题目涉及,出现选择填空的可能性较大,与概率相结合的解答题出现的可能性较大。
高三数学排列组合讲解

高三数学排列组合讲解一、教学任务及对象1、教学任务本节课的教学任务是以高三数学中的排列组合为主题,通过对排列组合基本概念、原理及解题策略的深入讲解,使学生掌握排列组合问题的解题方法和技巧。
具体包括以下几个方面:(1)排列组合的基本概念及其应用;(2)排列组合的计算公式及推导过程;(3)排列组合在实际问题中的应用和转化;(4)排列组合问题的解题策略和技巧。
2、教学对象本节课的教学对象为高三学生,他们在前两年的数学学习中,已经接触过一些排列组合的知识,具备一定的数学基础和逻辑思维能力。
然而,由于排列组合问题具有较强的抽象性和复杂性,学生在解决实际问题时仍存在一定的困难。
因此,本节课旨在帮助学生巩固和提升排列组合方面的知识与技能,为高考数学复习打下坚实基础。
二、教学目标1、知识与技能(1)理解并掌握排列组合的基本概念,包括排列、组合的定义及其区别;(2)熟练运用排列组合的计算公式,如排列公式、组合公式、多重集合的排列组合等;(3)掌握排列组合问题的解题策略,如特殊元素优先法、捆绑法、插空法等;(4)能够将实际问题转化为排列组合问题,运用所学知识解决具体问题;(5)通过排列组合的学习,提高学生的逻辑思维能力和数学素养。
2、过程与方法(1)通过实例分析,让学生体会从具体问题中抽象出排列组合问题的过程,培养他们发现问题、分析问题的能力;(2)采用启发式教学方法,引导学生积极参与课堂讨论,培养他们主动探究、合作学习的习惯;(3)通过讲解、练习、讨论等多种教学方式,使学生掌握排列组合的计算方法和解题技巧;(4)注重培养学生的数学思维能力,让他们在解决排列组合问题的过程中,学会运用数学方法进行推理和论证;(5)鼓励学生多角度思考问题,培养他们的创新意识和发散性思维。
3、情感,态度与价值观(1)激发学生对数学学科的兴趣,培养他们热爱数学、探究数学的情感;(2)通过解决排列组合问题,使学生体验到数学学习的成就感,增强自信心;(3)培养学生严谨、踏实的学术态度,让他们认识到数学学习需要勤奋和思考;(4)引导学生正确看待数学学习中的困难,培养他们面对挑战、克服困难的勇气和毅力;(5)通过小组合作学习,培养学生的团队协作精神,使他们学会尊重他人、倾听他人意见;(6)将数学学习与实际生活相结合,让学生认识到数学知识在实际生活中的重要价值,提高他们的数学应用意识。
数学高中排列组合讲解

数学高中排列组合讲解一、教学任务及对象1、教学任务本次教学任务是基于高中数学课程,针对排列组合的知识点进行深入讲解。
排列组合是组合数学的基础,对于培养学生的逻辑思维、抽象思维和问题解决能力具有重要意义。
通过本节课的学习,学生将掌握排列组合的基本原理,学会运用排列组合知识解决实际问题,为后续学习概率论打下坚实基础。
2、教学对象本次教学的对象为高中一年级学生,他们在之前的学习中已经掌握了基本的数学知识,如数学运算、方程、不等式等,具备一定的逻辑思维和抽象思维能力。
然而,排列组合作为一门新的知识点,对学生来说可能存在一定的难度。
因此,在教学过程中,教师需要关注学生的个体差异,因材施教,使学生在轻松愉快的氛围中掌握排列组合知识。
同时,引导学生运用所学知识解决实际问题,提高学生的数学素养和应用能力。
二、教学目标1、知识与技能(1)理解排列组合的概念,掌握排列、组合的计算公式。
(2)能够运用排列组合知识解决实际问题,如计数问题、概率问题等。
(3)培养运用数学符号和术语进行表达、推理的能力。
(4)提高数学思维能力,尤其是逻辑思维和抽象思维能力。
2、过程与方法(1)通过实例引入排列组合的概念,引导学生发现规律,总结计算方法。
(2)采用问题驱动的教学方法,让学生在解决实际问题的过程中,掌握排列组合知识。
(3)运用小组讨论、合作探究等方式,培养学生的团队协作能力和沟通能力。
(4)设计不同难度的练习题,使学生在梯度训练中提高解题技巧和思维能力。
3、情感,态度与价值观(1)激发学生对数学学科的兴趣,培养良好的学习态度。
(2)引导学生认识到数学知识在实际生活中的应用价值,提高学生的数学素养。
(3)培养学生勇于探索、善于思考的品质,增强克服困难的信心和勇气。
(4)通过小组合作,培养学生的团队精神,学会尊重他人、倾听他人意见。
(5)培养学生严谨、踏实的学术态度,树立正确的价值观,认识到知识的力量。
在教学过程中,教师应关注学生的全面发展,将知识与技能、过程与方法、情感,态度与价值观三者有机结合,以提高学生的数学素养和综合能力。
高中数学排列组合讲解

高中数学排列组合讲解
一、概念介绍
排列组合是一种统计学中常见的概念, 指的是从一组有限的物体中抽取满足一定要求的组合方式。
它涉及从一系列物体中按照一定的规律去选择其中的某几个物体而组合成一个新的组合,并且这种组合总数取决于初始物体个数。
排列组合解决的问题有很多,如从n个数中取出m个数使得它们和最多,最少;从n 个数中取出m个数使得它们积最多,最少等等。
二、排列组合基本公式
(1)排列组合的基本公式为A m n =n×(n-1)×(n-2)……×(n-(m-1)),由此可见,如果m=n时,排列组合的概念与阶乘n! 相同,可以将阶乘式写成A m n 的形式,即A n n = n!。
(2)从n个物体中取出m(m≤n)个物体,排列组合的个数称为组合数,组合数的基本公式为 C m n=A m n/A m m = n!/(m!×(n-m)!)。
三、排列组合的应用
(1)在实际的实验研究中,通常会对实验因素采用设置不同的处理水平,来研究其对实验结果的影响,此时每个处理水平中的每个因素必须设置多种不同的组合,并将其均匀的分散到每类处理中,这里就需要引入排列组合技术。
(2)对于寻找一组数中满足要求的组合问题,也可以应用排列组合方法。
例如,一个长度为 n 的正整数序列,要求任意挑选 k 个数,使它们的和最大或最小,这是一个组合问题。
(3)排列组合在抽奖、普查、实验设计等中占有重要的作用,如抽取实验样本时,如果采用随机抽取的方式,就要使用到排列组合的思想。
排列与组合知识讲解

排列与组合是数学中的基本概念,尤其在概率论、统计学和离散数学等领域中有着重要的应用。
以下是关于排列与组合知识的详细讲解:一、基本概念排列:从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
排列的个数用符号Pₙₙ或P(n,m)表示。
例如,从3个不同的数字(1、2、3)中任取2个数字进行排列,可能的排列有:12、13、21、23、31、32,共6种。
因此,P₃₂= 6。
组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
组合的个数用符号Cₙₙ或C(n,m)表示。
例如,从3个不同的数字(1、2、3)中任取2个数字进行组合,可能的组合有:12、13、21、23、31、32,但由于组合不考虑顺序,所以这6种排列被视为同一种组合。
因此,C₃₂= 1。
二、计算公式排列的计算公式:Pₙₙ= n! / (n-m)!,其中“!”表示阶乘,即n! = n ×(n-1) ×(n-2) × ... ×3 ×2 ×1。
例如,P₄₂= 4! / (4-2)! = (4×3×2×1) / (2×1) = 12。
组合的计算公式:Cₙₙ= n! / [m!(n-m)!]。
这个公式也可以理解为从n个不同元素中取出m个元素的排列数除以m个元素的排列数。
例如,C₄₂= 4! / [2!(4-2)!] = (4×3×2×1) / (2×1) / (2×1) = 6。
三、排列与组合的关系排列和组合之间存在密切的关系。
对于从n个不同元素中取出m个元素的情况,排列数Pₙₙ和组合数Cₙₙ之间的关系为:Pₙₙ= m ×Cₙₙ。
这意味着从n个不同元素中取出m个元素的排列数等于从n个不同元素中取出m个元素的组合数乘以m。
高中数学排列组合知识讲解

模块九 排列与组合、二项式定理第一部分:排列、组合 一。
计数原理加法计数原理:如果完成一件事情可以分为m 类,每一类的方法数分别是:N 1,N 2,N 3,…..N m ,则完成这件事情共有N 1+N 2+N 3+…..+N m 种方法。
(又称分类计数原理)乘法计数原理:如果完成一件事情须分为m 步,每一步的方法数分别是:N 1,N 2,N 3,…..N m ,则完成这件事情共有N 1⨯N 2⨯N 3⨯…..⨯N m 种方法。
(又称分类计数原理) 分类计数原理与分步计数原理是计数问题的基本原理,它贯穿于全章学习的始终,体现了解决问题时将其分解的两种常用方法,即把问题分类解决和分步解决。
正确区分和使用两个原理是学好本章的关键,其核心是“完成一件事”是“分类”完成,还是“分步”完成. 二。
排列数、组合数的定义①排列数:从n 个元素中取出m 个排成一列(即排入m 个位置),共有mn A 种排法。
A m n =n (n -1)(n -2)…(n -m +1).特别的:!n A nn = ②组合数:从n 个元素中取出m 个形成一个组合,共有mn C 种取法。
C m n =!)!(!m m n n -特别地:1,10==nn n C C组合数的两个性质: (1)C m n =C mn n-; (2)C m n 1+=C m n +C 1-m n. 三。
解决排列、组合问题的四大原则及基本方法1. 特殊优先原则该原则是指在有限制的排列组合问题中优先考虑特殊元素或特殊位置.范例甲、乙、丙三个同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,则可以排出不同的值班表有( ) A.90种 B.89种 C.60种 D.59种解析:特殊元素优先考虑,甲同学不值周一的班,则先考虑甲,分步完成:①从除周一的5天中任取2天安排甲有25C 种;②从剩下的4天中选2天安排乙有24C 种;③仅剩2天安排丙有22C 种.由分步乘法计数原理可得一共有22254260C C C =··种,即选C. 评注:特殊优先原则是解有限制的排列组合问题的总原则,对有限制的元素和有限制的位置一定要优先考虑. 2.先取后排原则该原则充分体现了mmmn m n C A A =·的精神实质,先组合后排列,从而避免了不必要的重复与遗漏.4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( ). A.12种 B.24种 C.36种 D.48种解析:先分组再排列:将4名教师分成3组有24C 种分法,再将这三组分配到三所学校有33A 种分法,由分步乘法计数原理知一共有234336C A =·种不同分配方案.评注:先取后排原则也是解排列组合问题的总原则,尤其是排列与组合的综合问题.若本例简单分步:先从4名教师中取3名教师分给3所学校有34A 种方法,再将剩下的1名教师分给3所学校有3种选择,则共有34372A =·种分配方案,则有明显重复(如:甲、乙、丙、丁和甲、乙、丁、丙).因此,处理多元素少位置问题时一般采用先取后排原则.3.正难则反原则若从正面直接解决问题有困难时,则考虑事件的对立事件,从不合题意要求的情况入手,再整体排除.100件产品中有6件次品,现从中任取3件产品,至少取到1件次品的不同取法的种数是( ) A.12694C CB.12699C CC.3310094C C -D.3310094A C -解析:从100件次品中取3件产品,至少有1件次品的对立事件是取到3件全部是正品,即从94件正品中取3件正品有394C 种取法,所以满足条件的不同取法是3310094C C -,故选C.如果从正面考虑,则必须分取到1,2,3件次品这三类,没有应用排除法来得简单.而本例最易迷惑人的是B:12699C C ,即从6件次品中取1件确保了至少有1件次品,再从剩下的99件产品中任取2件即可.事实上这样分步并不相互独立,第一步对第二步有明显影响,设次品为ABCDEF ,正品为甲乙丙丁戊…则12699C C 可以是AB甲,也可能是BA甲,因而重复.评注:正难则反原则也是解决排列组合问题的总原则,如果从正面考虑不易突破,一般寻找反面途径.利用正难则反原则的语境有其规律,如当问题中含有“至少”,“最多”等词语时,易用此原则. 4.策略针对原则不同类型的排列、组合问题有着不同的应对策略,不同的限制条件要采用不同的解题方法.①相邻问题捆绑法(整体法),不相邻问题插空法人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.再与其它元素进行排列,同时对相邻元素内部进行自排。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学排列组合模块九 排列与组合、二项式定理第一部分:排列、组合 一。
计数原理加法计数原理:如果完成一件事情可以分为m 类,每一类的方法数分别是:N 1,N 2,N 3,…..N m ,则完成这件事情共有N 1+N 2+N 3+…..+N m 种方法。
(又称分类计数原理)乘法计数原理:如果完成一件事情须分为m 步,每一步的方法数分别是:N 1,N 2,N 3,…..N m ,则完成这件事情共有N 1⨯N 2⨯N 3⨯…..⨯N m 种方法。
(又称分类计数原理)分类计数原理与分步计数原理是计数问题的基本原理,它贯穿于全章学习的始终,体现了解决问题时将其分解的两种常用方法,即把问题分类解决和分步解决。
正确区分和使用两个原理是学好本章的关键,其核心是“完成一件事”是“分类”完成,还是“分步”完成.二。
排列数、组合数的定义①排列数:从n 个元素中取出m 个排成一列(即排入m 个位置),共有mn A 种排法。
A m n =n (n -1)(n -2)…(n -m +1).特别的:!n A nn =②组合数:从n 个元素中取出m 个形成一个组合,共有mn C 种取法。
C m n =!)!(!m m n n -特别地:1,10==nn n C C组合数的两个性质:(1)C m n =C m n n-; (2)C m n 1+=C m n +C 1-m n . 三。
解决排列、组合问题的四大原则及基本方法 1. 特殊优先原则该原则是指在有限制的排列组合问题中优先考虑特殊元素或特殊位置.作,每天1人值班,每人值班2天,如果甲同学不值周一的班,则可以排出不同的值班表有( )A.90种 B.89种 C.60种 D.59种解析:特殊元素优先考虑,甲同学不值周一的班,则先考虑甲,分步完成:①从除周一的5天中任取2天安排甲有25C 种;②从剩下的4天中选2天安排乙有24C 种;③仅剩2天安排丙有22C 种.由分步乘法计数原理可得一共有22254260C C C =··种,即选C.评注:特殊优先原则是解有限制的排列组合问题的总原则,对有限制的元素和有限制的位置一定要优先考虑. 2.先取后排原则该原则充分体现了m m mn m n C A A =·的精神实质,先组合后排列,从而避免了不必要的重复与遗漏.4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( ).A.12种 B.24种 C.36种 D.48种解析:先分组再排列:将4名教师分成3组有24C 种分法,再将这三组分配到三所学校有33A 种分法,由分步乘法计数原理知一共有234336C A =·种不同分配方案.评注:先取后排原则也是解排列组合问题的总原则,尤其是排列与组合的综合问题.若本例简单分步:先从4名教师中取3名教师分给3所学校有34A 种方法,再将剩下的1名教师分给3所学校有3种选择,则共有34372A =·种分配方案,则有明显重复(如:甲、乙、丙、丁和甲、乙、丁、丙).因此,处理多元素少位置问题时一般采用先取后排原则. 3.正难则反原则若从正面直接解决问题有困难时,则考虑事件的对立事件,从不合题意要求的情况入手,再整体排除.100件产品中有6件次品,现从中任取3件产品,至少取到1件次品的不同取法的种数是( )A.12694C CB.12699C CC.3310094C C -D.3310094A C -解析:从100件次品中取3件产品,至少有1件次品的对立事件是取到3件全部是正品,即从94件正品中取3件正品有394C 种取法,所以满足条件的不同取法是3310094C C -,故选C.如果从正面考虑,则必须分取到1,2,3件次品这三类,没有应用排除法来得简单.而本例最易迷惑人的是B:12699C C ,即从6件次品中取1件确保了至少有1件次品,再从剩下的99件产品中任取2件即可.事实上这样分步并不相互独立,第一步对第二步有明显影响,设次品为ABCDEF ,正品为甲乙丙丁戊…则12699C C 可以是AB甲,也可能是BA甲,因而重复.评注:正难则反原则也是解决排列组合问题的总原则,如果从正面考虑不易突破,一般寻找反面途径.利用正难则反原则的语境有其规律,如当问题中含有“至少”,“最多”等词语时,易用此原则. 4.策略针对原则不同类型的排列、组合问题有着不同的应对策略,不同的限制条件要采用不同的解题方法.①相邻问题捆绑法(整体法),不相邻问题插空法范例17人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解析:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A 种不同的排法 乙甲丁丙范例2例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解析:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种②合理分类直接分步法范例在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )个. ( ) A.56 B.57 C.58 D.60 解析:所有大于23145且小于43521的数由以下几类构成:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入由分类加法计数原理可得,一共有234322343212222158A A A A A ++++++=个,故选C.评注:合理分类与直接分步是两个基本原理———分类加法计数原理和分步乘法计数原理最直接的体现,是解排列组合问题的最原始的方法.诸多排列组合问题总是从合理分类,直接分步得到解决的. ③顺序一定消序法(用除法)人排队,其中甲乙丙3人顺序一定共有多少不同的排法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是: 3377A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A种方法。
5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目中,那么不同插法的种数为( ). A.42 B.30 C.20 D.12解析:新插入两个节目,而原来的5个节目顺序不变,从结果考虑,7个节目的全排列是77A ,而顺序不变的5个节目的全排列是55A ,不变的顺序是总体的551A ,则一共有775542A A =种不同的插入种数,故选A .评注:某些元素顺序不变的排列用除法解决,即若共有n 个元素,其中m 个元素顺序不变,则其不同的排列数为.当然本题可以这样考虑:最终有7个节目位置,从7个位置中任选2个位置安排新增节目有27A 种方法,其他5个位置按原5个节目的固定顺序排列,因此共有2742A =种不同的插入方法.④对象相同(元素相同的排列、分配)隔板法个相同的小球放到3个不同的盒中,每个盒不空,一共有______种不同的放法.解析:10个相同的小球有9个空档(确保盒子不空).从9个空档中选2个空档放入两块隔板,将小球分成三部分(每一种放档板的放法对应着10个小球分成3部分的分法),每部分一一对应着一个不同的小盒.因此一共有29C种不同的放法,即2936C=种.四。
几个特殊问题5个人,沿途有三个停靠站,则这5人的下车方法共有由于5人必须都下车,每人都有3种下车方法,故有35种下车方法。
6名实习生分配到7个车间实习,共有多少种不同的分法:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有67种不同的排法。
2. 不同元素分组问题①不平均分组问题9本不同的书,分为3堆,一堆4本,一堆3本,一堆2本,分法有______种。
答:223549CCC⋅⋅②平均分组问题9本不同的书,分为3堆,每堆3本,分法有______种。
答:33333639ACCC3.不同元素分配问题要点:先分组,再入位。
①不平均分配问题9本不同的书,分给3人,一人4本,一人3本,一人2本,分法有______种。
答:先分为3组有223549C C C ⋅⋅种方法,再把3组数分给3人有33A 种,故共有223549C C C ⋅⋅33A 方法。
②平均分组问题9本不同的书,分为3堆,每堆3本,分法有______种。
答:3333333639A A C C C ⋅即有333639C C C ⋅⋅种分法。
第二部分:二项式定理 1.定理内容即n b a )(+=+n n a C 0+-b a C n n 11+-222b a C n n +-333b a C n n ………+n nn b Cn b a )(+展开式的通项公式为:r r n rn b a C -。
注意:第r+1项为r r n rn b a C -+=+0)1n n C x +x C n 1+22x C n +33x C n ………+n nn x C 令x=1有+0n C +1n C +2n C +3n C ………+nn C =2n 2.两个概念的区别①二项式系数:特指展开式中的,0n C ,1n C ,2n C ,3n C ………,nn C ②二项式展开式的系数: 以n x )3(-为例:n x )3(-展开式的第r+1项为r r r n rn x C )(13--:其中二项式系数为rn C ,二项式展开式的系数为:r r n rn C )(13-- 3.求展开式的系数的和82展开式的系数的和是________。
解析:令x=1,得(82展开式的系数的和为8)12(-=1.4.求展开式的第r+1项的系数82展开式的第三项的系数是_______.解析:(82-展开式的第r+1项为:2288)1(2rrrr xC--,第三项的系数是–6282C=-179243)(1x-的展开式2x的系数是( A )(A)-6 (B)-3 (C)0 (D)3解析:4)1(x-的通项为rrr xC)1(4-,3)1(x-的通项为23)1(kkk xC-,故43(1)(1x--的展开式的通项为rrC)1(4-223)1(krkk xC+-,当r=1,k=2及r=2,k=0时,会出现2x,故2x的系数为114)1(-C223)1(-C+224)1(-C03)1(-C=-6.。