分段函数例题

合集下载

微专题20 分段函数问题(解析版)

微专题20 分段函数问题(解析版)

微专题20 分段函数问题【题型归纳目录】 题型一:函数三要素的应用 题型二:函数性质与零点的应用 题型三:分段函数的复合题型四:特殊分段函数的表示与应用 【典型例题】题型一:函数三要素的应用例1.已知函数223,0()2,0x x x f x x x x ⎧+=⎨-<⎩,若f (a )()2f a f --(1),则a 的取值范围是( )A .[0,8]B .[8,)+∞C .(-∞,8]D .[8-,8]【解析】解:f (1)4=,f ∴(a )()8f a --,当0a =时,满足条件;0a >时,223[()2]6a a a a +--+-,整理得:8a , (0a ∴∈,8]0a <时,222[()3]8a a a a ----,整理得:8a , (,0)a ∴∈-∞综上可得:(a ∈-∞,8] 故选:C .例2.已知函数22,0(),0x x e x x f x e x x -⎧+=⎨+<⎩,若()f a f -+(a )2f (1),则a 的取值范围是( ) A .(-∞,1][1,)+∞ B .[0,1] C .[1-,0] D .[1-,1]【解析】解:22,0(),0x x e x x f x e x x -⎧+=⎨+<⎩, ()f x ∴为偶函数,()f a f -+(a )2f (1), 2f ∴(a )2f (1), f ∴(a )f (1),当0x 时,函数()f x 为增函数, ||1a ∴,11a ∴-,故选:D .例3.设函数22,0,(),0.x x x f x x x ⎧+<=⎨-⎩若(f f (a ))2,则实数a 的取值范围是( )A .[2-,)+∞B .(-∞,2]-C .(-∞2]D .(2)+∞【解析】解:()y f x =的图象如图所示,(f f (a ))2,f ∴(a )2-,由函数图象可知2a .故选:C .变式1.当函数2,1()66,1x x f x x x x ⎧⎪=⎨+->⎪⎩取得最小值时,(x = ) A 6B .26C 66 D .266【解析】解:当1x 时,2()0f x x =; 当1x >时,66()626266f x x x x x=+--=, 当且仅当6x x=,即6x 时等号成立. 2660<,∴函数2,1()66,1x x f x x x x ⎧⎪=⎨+->⎪⎩取得最小值为266, 对应的x 6. 故选:A .变式2.已知函数()1f x x =-+,0x <,()1f x x =-0x ,则不等式(1)(1)1x x f x +++的解集( )A .{|21}x x-B .{|12}x x +C .{|12}x x <+D .{|12}x x >【解析】解:当10x +<即1x <-时,不等式(1)(1)1x x f x +++同解于 (1)[(1)1]1x x x ++-++即21x -此时1x <-当10x +即1x -时,不等式(1)(1)1x x f x +++同解于 2210x x +-解得1221x --此时121x--总之,不等式的解集为{|21}x x -故选:A .变式3.已知23,0()(),0x x f x g x x ⎧->=⎨<⎩为奇函数,则((1))f g -= .【解析】解:根据题意,23,0()(),0x x f x g x x ⎧->=⎨<⎩为奇函数,则(1)(1)g f f -=-=-(1)(13)2=--=, 则((1))f g f -=(2)431=-=-, 故答案为:1.变式4.若函数3,0()(3),0log x x f x f x x >⎧=⎨+⎩,2()g x x =,则f (9)= ,[g f (3)]= ,1[()]9f f = .【解析】解:3,0()(3),0log x x f x f x x >⎧=⎨+⎩,2()g x x =,f ∴(9)3log 92==,[g f (3)3](log 3)g g ==(1)211==, 311[()](log )(2)99f f f f f ==-=(1)3log 10==.故答案为:2;1;0变式5.已知函数10()1x x f x x x -+<⎧=⎨-⎩,则不等式(1)(1)1x x f x +++的解集是 . 【解析】解:由题意22&,1(1)(1)2&,1x x x x f x x x x ⎧-<-+++=⎨+-⎩当0x <时,有21x -恒成立,故得0x < 当0x 时,221x x +,解得2121x-,故得021x-综上得不等式(1)(1)1x x f x +++的解集是(21]-∞- 故答案为(-∞21].变式6.设2,||1(),||1x x f x x x ⎧=⎨<⎩,()g x 是二次函数,若[()]f g x 的值域是[0,)+∞,则()g x 的值域是 .【解析】解:在坐标系中作出函数()21111x x x f x x x ⎧-=⎨-<<⎩或的图象,观察图象可知,当纵坐标在[0,)+∞上时,横坐标在(-∞,1][0-,)+∞上变化, ()f x 的值域是(1,)-+∞,而(())f g x 的值域是[0,)+∞, ()g x 是二次函数()g x ∴的值域是[0,)+∞.故答案为:[0,)+∞. 题型二:函数性质与零点的应用例4.已知函数7(13)10,7(),7x a x a x f x a x --+⎧=⎨>⎩是定义域(,)-∞+∞上的单调递减函数,则实数a 的取值范围是()A .11(,)32B .1(3,6]11C .12[,)23D .16(,]211【解析】解:若()f x 是定义域(,)-∞+∞上的单调递减函数, 则满足77011307(13)101a a a a a -<<⎧⎪-<⎨⎪-+=⎩,即0113611a a a ⎧⎪<<⎪⎪>⎨⎪⎪⎪⎩,即16311a <,故选:B .例5.已知函数6(13)10,6(),6x a x a x f x a x --+⎧=⎨>⎩是定义域(,)-∞+∞上的单调递减函数,则实数a 的取值范围是() A .15(,)38B .15(,]38C .1(,1)3D .16(,]311【解析】解:函数6(13)10,6(),6x a x a x f x a x --+⎧=⎨>⎩,()f x 是定义域(,)-∞+∞上的单调递减函数,则满足13001681a a a -<⎧⎪<<⎨⎪-⎩,解得1538a <,故选:B .例6.函数21,0()(1),0axax x f x a e x ⎧+=⎨-<⎩在R 上单调,则a 的取值范围为( ) A .(1,)+∞ B .(1,2] C .(,2)-∞ D .(,0)-∞【解析】解:()f x 在R 上单调; ①若()f x 在R 上单调递增,则: 200101(1)a a a a e >⎧⎪>⎨⎪+-⎩; 12a ∴<;②若()f x 在R 上单调递减,则: 01a a <⎧⎨>⎩; a ∴∈∅;a ∴的取值范围为(1,2].故选:B .变式7.已知221,0()(1),0x x x f x f x x ⎧--+<=⎨-⎩,则()y f x x =-的零点有( )A .1个B .2个C .3个D .4个【解析】解:当0x 时,()(1)f x f x =-,()f x ∴在0x 的图象相当于在[1-,0)的图象重复出现是周期函数, [1x ∈-,0)时,22()21(1)2f x x x x =--+=-++对称轴为1x =-,顶点坐标为(1,2)-. 画出函数()y f x =与y x =的图象如图:则()y f x x =-的零点有2个. 故选:B .变式8.已知定义在R +上的函数33103()13949log x x f x log x x x x ⎧-<⎪=-<⎨⎪>⎩,设a ,b ,c 为三个互不相同的实数,满足,f(a )f =(b )f =(c ),则abc 的取值范围为 . 【解析】解:作出()f x 的图象如图: 当9x >时,由()40f x x ==,得16x =, 若a ,b ,c 互不相等,不妨设a b c <<, 因为f (a )f =(b )f =(c ),所以由图象可知039a b <<<<,916c <<, 由f (a )f =(b ),得331log log 1a b -=-, 即33log log 2a b +=,即3log ()2ab =, 则9ab =,所以9abc c =, 因为916c <<, 所以819144c <<, 即81144abc <<,所以abc 的取值范围是(81,144). 故答案为:(81,144).变式9.已知函数3||,03()13,3log x x f x x x <⎧⎪=⎨+>⎪⎩,设a ,b ,c 是三个互不相同的实数,满足f (a )f =(b )f=(c ),则abc 的取值范围为 .【解析】解:作出函数3||,03()13,3log x x f x x x <⎧⎪=⎨+>⎪⎩的图象如图,不妨设a b c <<,则3423c <<+由f (a )f =(b ),得33|log ||log |a b =,即33log log a b -=, 3log ()0ab ∴=,则1ab =,abc ∴的取值范围为(3,423)+.故答案为:(3,423)+.变式10.已知()f x 在R 上是奇函数,且当0x <时,2()f x x x =+,求函数()f x 的解析式. 【解析】解:当0x >时,0x -<, 0x <时,2()f x x x =+,22()()()f x x x x x ∴-=-+-=-, 又()f x 为奇函数,22()()()f x f x x x x x ∴=--=--=-+,∴当0x >时,2()f x x x =-+,又(0)0f =符合上式,综上得,22,0(),0x x x f x x x x ⎧-<=⎨-+⎩.变式11.已知函数()(0)h x x ≠为偶函数,且当0x >时,2,04()442,4x x h x x x ⎧-<⎪=⎨⎪->⎩,若()h t h >(2),求实数t 的取值范围.【解析】解:函数()(0)h x x ≠为偶函数,且当0x >时,2,04()442,4x x h x x x ⎧-<⎪=⎨⎪->⎩,当4x >时,()42h x x =-递减,且()4h x <-,当04x <时,2()4x h x =-递减,且()[4h x ∈-,0),且0x >,()h x 连续,且为减函数, ()h t h >(2),可得(||)h t h >(2), 即为||2t <,且0t ≠, 解得22t -<<,且0t ≠,则t 的取值范围是(2-,0)(0⋃,2). 题型三:分段函数的复合例7.设函数,0(),0x e x f x lnx x ⎧=⎨>⎩,若对任意给定的(1,)a ∈+∞,都存在唯一的x R ∈,满足22(())2f f x ma m a =+,则正实数m 的最小值是( ) A .12B .1C .32D .2【解析】解:由已知条件知:2220ma m a +>,∴若0x ,则()0x f x e =>,(())0x f f x lne x ∴==,∴这种情况不存在,若01x <,则()0f x lnx =,(())1lnx f f x e x ∴==,1x >时,()0f x lnx =>,(())()f f x ln lnx R =∈,∴只有(())1f f x >,即2221ma m a +>时,对任意给定的(1,)a ∈+∞,都存在唯一的x R ∈,满足22(())2f f x ma m a =+,(1,)a ∈+∞,221m m ∴+,即2210m m +-,0m >,∴解得12m, ∴正实数m 的最小值是12. 故选:A .例8.已知函数12,1()2,1x xx f x x x --⎧⎪=⎨⎪<⎩,2()2g x x x =-,若关于x 的方程[()]f g x k =有四个不相等的实根,则实数(k ∈ ) A .1(2,1)B .1(4,1)C .(0,1)D .(1,1)-【解析】解:对于函数12,1()2,1x xx f x x x --⎧⎪=⎨⎪<⎩,当1x 时,()f x 单调递减且1()1f x -<; 当1x <时,()f x 单调递增且0()1f x <<; 故实数k 一定在区间(0,1)之间, 若2()()g x k g x -=;则可化为22()21g x x x k=-=+; 显然有两个不同的根,若()12g x k -=,则22()21log g x x x k =-=+; 故△2444log 0k =++>; 即14k >; 综上所述,实数1(,1)4k ∈;故选:B .例9.已知函数1|(1)|,1()21,1x ln x x f x x -->⎧=⎨+⎩,则方程3(())2[()]04f f x f x -+=的实根个数为( )A .3B .4C .5D .6【解析】解:设()f x t =,可得 3()2()04f t t -+=,分别作出()y f x =和322y x =+的图象, 可得它们有两个交点,即方程3()2()04f t t -+=有两根,一根为10t =,另一个根为2(1,2)t ∈, 由()0f x =,可得2x =; 由2()f x t =,可得x 有3个解,综上可得方程3(())2[()]04f f x f x -+=的实根个数为4.故选:B .变式12.(多选题)已知函数21,0()log ,0kx x f x x x +⎧=⎨>⎩下列是关于函数[()]1y f f x =+的零点的判断,其中正确的是( )A .在(1,0)-内一定有零点B .在(0,1)内一定有零点C .当0k >时,有4个零点D .当0k <时,有1个零点【解析】解:令[()]10f f x +=得,[()]1f f x =-,令()t f x =,则()1f t =-, ①当0k >时,作出函数()f x 的草图如下,由图象可知,此时()1f t =-的解满足101t <<,20t <,由1()f x t =可知,此时有两个解,由2()f x t =可知,此时有两个解,共4个解,即[()]1y f f x =+有4个零点; ②当0k <时,作出函数()f x 的草图如下,由图象可知,此时()1f t =-的解满足101t <<,由1()f x t =可知,此时有1个解,共1个解,即[()]1y f f x =+有1个零点; 综上,选项BCD 正确. 故选:BCD .变式13.(多选题)设函数||,0()(1),0x lnx x f x e x x >⎧=⎨+⎩,若函数()()g x f x b =-有三个零点,则实数b 可取的值可能是( ) A .0B .13C .12D .1【解析】解:函数()()g x f x b =-有三个零点,则函数()()0g x f x b =-=,即()f x b =有三个根, 当0x 时,()(1)x f x e x =+,则()(1)(2)x x x f x e x e e x '=++=+, 由()0f x '<得20x +<,即2x <-,此时()f x 为减函数, 由()0f x '>得20x +>,即20x -<<,此时()f x 为增函数, 即当2x =-时,()f x 取得极小值21(2)f e -=-, 作出()f x 的图象如图: 要使()f x b =有三个根, 则01b <, 故选:BCD .变式14.(多选题)已知定义域为R 的奇函数()f x 满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<⎩,下列叙述正确的是()A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,但有12()()f x f x >C .若当(0x ∈,]a 时,()f x 的最小值为1,则5[1,]2a ∈D .若关于x 的方程3()2f x =和()f x m =的所有实数根之和为零,则32m =-E .对任意实数k ,方程()2f x kx -=都有解 【解析】解:因为该函数为奇函数, 所以,222,(2)2322,(20)()0,(0)22,(02)2,(2)23x x x x x f x x x x x x x ⎧<-⎪+⎪----<⎪⎪==⎨⎪-+<⎪⎪>⎪-⎩,该函数图象如下:对于A ;如图所示直线与该函数图象有7个交点,故A 正确; 对于B ;当1211x x -<<<时,函数不是减函数,故B 错误;对于C ;直线1y =,与函数图象交于(1,1),5(2,1,),故当()f x 的最小值为1时,[1a ∈,5]2,故C 正确;对于D ;3()2f x =时,若使得其与()f x m =的所有零点之和为0,则32m =-,或317m =-,故D 错误; 对于E ;当2k =-时,函数()f x 与2y kx =+没有交点.故E 错误. 故选:AC .变式15.(多选题)已知定义域为R 的奇函数()f x ,满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<⎩,下列叙述正确的是( )A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,恒有12()()f x f x >C .若当(0x ∈,]a 时,()f x 的最小值为1,则5[1,]2a ∈D .若关于x 的方程3()2f x =和()f x m =的所有实数根之和为零,则32m =- 【解析】解:函数()f x 是奇函数,∴若2x <-,则2x ->,则2()()23f x f x x -==---,则2()23f x x =+,2x <-. 若20x -<,则02x <-,则2()22()f x x x f x -=++=-, 即2()22f x x x =---,20x -<, 当0x =,则(0)0f =. 作出函数()f x 的图象如图:对于A ,联立222y kxy x x =⎧⎨=-+⎩,得2(2)20x k x -++=, △22(2)844k k k =+-=+-,存在1k <,使得△0>,∴存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根,故A 正确;对于B ,当1211x x -<<<时,函数()f x 不是单调函数,则12()()f x f x >不成立,故B 不正确; 对于C ,当52x =时,52()152232f ==⨯-,则当(0x ∈,]a 时,()f x 的最小值为1,则[1a ∈,5]2,故C 正确;对于D ,函数()f x 是奇函数,若关于x 的两个方程3()2f x =与()f x m =所有根的和为0, ∴函数3()2f x =的根与()f x m =根关于原点对称, 则32m =-,但0x >时,方程3()2f x =有3个根, 设分别为1x ,2x ,3x ,且12302x x x <<<<, 则有23232x =-,得136x =,即3136x =, 122x x +=,则三个根之和为1325266+=, 若关于x 的两个方程3()2f x =与()f x m =所有根的和为0, 则()f x m =的根为256-,此时25263()2561682()36m f =-==-=-⨯-+,故D 错误, 故选:AC .变式16.已知函数2,0,()1,0,x k x f x x x -+<⎧=⎨-⎩其中0k .①若2k =,则()f x 的最小值为 ;②关于x 的函数(())y f f x =有两个不同零点,则实数k 的取值范围是 . 【解析】解:①若2k =,则22,0()1,0x x f x x x -+<⎧=⎨-⎩,作函数()f x 的图象如下图所示,显然,当0x =时,函数()f x 取得最小值,且最小值为(0)1f =-. ②令()m f x =,显然()0f m =有唯一解1m =,由题意,()1f x =有两个不同的零点,由图观察可知,1k <, 又0k ,则实数k 的取值范围为01k <. 故答案为:1-;[0,1). 题型四:特殊分段函数的表示与应用例10.对a ,b R ∈,记{max a ,()}()a ab b b a b ⎧=⎨<⎩,则函数(){|1|f x max x =+,2}()x x R ∈的最小值是( )A 35- B 35+ C 15+D 15-【解析】解:当2|1|x x +,即21x x +或21x x +-, 15152x-+时, (){|1|f x max x ∴=+,2}|1|1x x x =+=+,函数()f x 单调递减,1535()(min f x f --==, 当15x -<(){|1|f x max x =+,22}x x =,函数()f x 单调递减,1535()(min f x f --=, 当15x +2()f x x =,函数()f x 单调递增,1535()(min f x f ++== 综上所述:35()min f x -= 故选:A .例11.已知符号函数1,0()0,01,0x sgn x x x >⎧⎪==⎨⎪-<⎩,1()()3x f x =,()()()g x f kx f x =-,其中1k >,则下列结果正确的是( )A .(())()sgn g x sgn x =B .(())()sgn gx sgn x =-C .(())(())sgn g x sgn f x =D .(())(())sgn g x sgn f x =-【解析】解:符号函数1,0()0,01,0x sgn x x x >⎧⎪==⎨⎪-<⎩,1()()3x f x =,11()()()()()33kx x g x f kx f x ∴=-=-,其中1k >,11(())[()()]33kx x sgn g x sgn ∴=-,当0x >时,kx x >,11()()033kx x -<,11(())[()()]133kx x sgn g x sgn =-=-,()1sgn x =;当0x =时,0kx x ==,11()()033kx x -=,(())0sgn g x =,()0sgn x =;当0x <时,kx x <,11()()033kx x ->,11(())[()()]133kx x sgn g x sgn =-=,()1sgn x =-.(())()sgn g x sgn x ∴=-.故选:B .例12.定义全集U 的子集A 的特征函数1,()0,A x Af x x A ∈⎧=⎨∉⎩对于任意的集合A 、B U ⊂,下列说法错误的是()A .若AB ⊆,则()()A B f x f x ,对于任意的x U ∈成立 B .()()()A B A Bf x f x f x =+,对于任意的x U ∈成立 C .()()()A B ABf x f x f x =,对于任意的x U ∈成立D .若UA B =,则()()1A B f x f x +=,对于任意的x U ∈成立【解析】解:对于A ,因为A B ⊆,若x A ∈,则x B ∈, 因为1,1,()0,0,A U x Ax A f x x A x A ∈∈⎧⎧==⎨⎨∈∉⎩⎩, 1,()0,B U x Bf x x B∈⎧=⎨∈⎩,而UA 中可能有B 中的元素, 但UB 中不可能有A 中的元素,所以()()A B f x f x ,即对于任意的x U ∈,都有()()A B f x f x 成立, 故选项A 正确; 对于B ,因为1,()0,()ABU x A Bf x x A B ⎧∈⎪=⎨∈⎪⎩, 当某个元素x 在A 中且在B 中, 由于它在AB 中,故()1ABf x =,而()1A f x =且()1B f x =,可得()()()A B A Bf x f x f x ≠+,故选项B 错误; 对于C ,1,1,0,()0,()()ABU U U x A B x A Bf x A B x A B ⎧⎧∈∈⎪⎪==⎨⎨∈∈⎪⎪⎩⎩,1,1,1,()()0,0,0,()()A B U U U U x A x B x A Bf x f x x A x B x A B ⎧∈∈∈⎧⎧⎪⋅=⋅=⎨⎨⎨∈∈∈⎪⎩⎩⎩,故选项C 正确;对于D ,因为1,()0,U U A x Af x x A ∈⎧=⎨∈⎩,结合1,1,()0,0,A U x Ax A f x x A x A ∈∈⎧⎧==⎨⎨∈∉⎩⎩, 所以()1()B A f x f x =-, 即()()1A B f x f x +=, 故选项D 正确. 故选:B .变式17.定义全集U 的子集A 的特征函数为1,()0,A U x Af x x C A ∈⎧=⎨∈⎩,这里UA 表示集合A 在全集U 中的补集,已A U ⊆,B U ⊆,给出以下结论中不正确的是( ) A .若A B ⊆,则对于任意x U ∈,都有()()A B f x f x B .对于任意x U ∈,都有()1()U C A A f x f x =-C .对于任意x U ∈,都有()()()A B A Bf x f x f x =D .对于任意x U ∈,都有()()()A B A Bf x f x f x =【解析】解:由题意,可得对于A ,因为A B ⊆,可得x A ∈则x B ∈,1,()0,A U x A f x x C A ∈⎧=⎨∈⎩,1,()0,B U x Bf x x C B ∈⎧=⎨∈⎩,而UA 中可能有B 的元素,但UB 中不可能有A 的元素()()A B f x f x ∴,即对于任意x U ∈,都有()()A B f x f x 故A 正确; 对于B ,因为1,0,U U C A x C Af x A ∈⎧=⎨∈⎩,结合()A f x 的表达式,可得1()U C A A f f x =-,故B 正确; 对于C ,1,1,()0,()0,()()A BU U U x A B x A Bf x x C A B x C A C B ⎧⎧∈∈⎪⎪==⎨⎨∈∈⎪⎪⎩⎩1,1,()()0,0,A B U U x Ax Bf x f x x C Ax C B ∈∈⎧⎧==⎨⎨∈∈⎩⎩, 故C 正确; 对于D ,1,()0,()ABU x A B f x x C AB ⎧∈⎪=⎨∈⎪⎩当某个元素x 在A 中但不在B 中,由于它在A B 中,故()1ABf x =,而()1A f x =且()0B f x =,可得()()()A B A Bf x f x f x ≠由此可得D 不正确. 故选:D .变式18.对a ,b R ∈,记,(,),a a bmax a b b a b ⎧=⎨<⎩,函数()(|1|f x max x =+,|2|)()x x R -∈的最小值是 .【解析】解:由题意得, ()(|1|f x max x =+,|2|)x - 11,212,2x x x x ⎧+⎪⎪=⎨⎪-<⎪⎩,故当12x =时,()f x 有最小值13()22f =, 故答案为:32. 变式19.对a ,b R ∈,记{max a ,,},a a b b b a b⎧=⎨<⎩,函数(){|1|f x max x =+,||}()x m x R -∈的最小值是32,则实数m 的值是 .【解析】解:函数(){|1|f x max x =+,||}x m - |1|,|1|||||,|1|||x x x m x m x x m ++-⎧=⎨-+<-⎩, 由()f x 的解析式可得,11()()22m m f x f x --+=-, 即有()f x 的对称轴为12m x -=, 则113()||222m m f -+==, 解得2m =或4-, 故答案为:2或4-.变式20.设函数[],0()(1),0x x x f x f x x -⎧=⎨+<⎩,其中[]x 表示不超过x 的最大整数,如[ 1.2]2-=-,[1.2]1=,[1]1=,若直线10(0)x ky k -+=>与函数()y f x =的图象恰好有两个不同的交点,则k 的取值范围是 . 【解析】解:画出函数[],0()(1),0x x x f x f x x -⎧=⎨+<⎩和函数1()x g x k+=的图象, 若直线1(0)ky x k =+>与函数()y f x = 的图象恰有两个不同的交点, 结合图象可得:1PA PC k k k<, 112(1)3PA k ==--,111(1)2PC k ==--,故11132k <,求得23k <, 故答案为:23k <.【过关测试】 一、单选题1.(2022·辽宁·铁岭市清河高级中学高一阶段练习)若函数()22,14,1x t x f x tx x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则t的最大值为( ) A .32B .53C .74D .95【答案】B【解析】当1x ≤-时,2()2f x x t =-+为增函数,所以当1x >-时,()4f x tx =+也为增函数,所以0124t t t >⎧⎨-+≤-+⎩,解得503t <≤.故t 的最大值为53, 故选:B.2.(2022·云南师大附中高一期中)已知函数()()e e,1ln 21,1xx f x x x ⎧-<⎪=⎨-≥⎪⎩,若关于x 的不等式()()21f ax f ax <+的解集为R ,则实数a 的取值范围为( )A .()()2,11,4--⋃-B .()()1,22,4-C .[)1,2-D .[)0,4【答案】D【解析】当1x <时,()e e x f x =-在(),1-∞上单调递增且()()e e 10xf x f =-<=;当1x ≥时,()()ln 21f x x =-在[)1,+∞上单调递增且()()()ln 2110f x x f =-≥=; 所以()f x 在R 上单调递增,又由()()21f ax f ax <+,则有21ax ax <+,由题,可知210ax ax -+>的解集为R ,当0a =时,20010x x ⋅-⋅+>恒成立,符合题意;当0a ≠时,则有2Δ40a a a >⎧⎨=-<⎩, 解不等式组,得04a <<;综上可得,当[)0,4a ∈时,210ax ax -+>的解集为R . 故选:D.3.(2022·山东省青岛第五十八中学高一期中)已知函数()()23++2,<1=+,1a x a x f x ax x x --≥⎧⎨⎩在(),-∞+∞上单调递减,则实数a 的取值范围为( ). A .()0,3B .1,32⎡⎫⎪⎢⎣⎭C .2,33⎡⎫⎪⎢⎣⎭D .2,33⎛⎫ ⎪⎝⎭【答案】C【解析】因为函数()()23++2,<1=+,1a x a x f x ax x x --≥⎧⎨⎩在(),-∞+∞上单调递减, ∴3<0>011221+1a a a a a -≤-≥-⎧⎪⎪⎪⎨⎪⎪⎪⎩,解得233a ≤<, 即a 的取值范围是2,33⎡⎫⎪⎢⎣⎭,故选:C.4.(2022·山东省青岛第五十八中学高一期中)已知数学符号{}max ,a b 表示取a 和b 中最大的数,若对任意R x ∈,函数()231max 3,,4322f x x x x x ⎧⎫=-++-+⎨⎬⎩⎭,则()f x 的最小值为( )A .5B .4C .3D .2【答案】D【解析】在同一直角坐标系中,画出函数2123313,,4322y x y x y x x =-+=+=-+的图象,根据{}max ,a b 的定义,可得()f x 的图象(实线部分),由()f x 的图象可知,当=1x 时,()f x 最小,且最小值()12f =, 故选:D5.(2022·山西太原·高一阶段练习)设()()2,0=1+++4,>0x a x f x x a x x-≤⎧⎪⎨⎪⎩,若()0f 是()f x 的最小值,则a 的取值范围为( ) A .[]0,3 B .()0,3 C .(]0,3 D .[)0,3【答案】A【解析】当0x >时,由基本不等式可得()114246f x x a x a a x x=+++≥⋅+=+, 当且仅当=1x 时,等号成立;当0x ≤时,由于()()0f x f ≥,则0a ≥,由题意可得()()2min 06f x f a a ==≤+,即260a a --≤,解得23a -≤≤,故03a ≤≤.因此,实数a 的取值范围是[]0,3. 故选:A.6.(2022·福建·厦门双十中学高一阶段练习)已知函数()()22,f x x g x x =-+=,令()()()()()()(),=,<f x f x g x h x g x f x g x ≥⎧⎪⎨⎪⎩,则不等式()74h x >的解集是( )A .1<2x x -⎧⎨⎩或17<<24x ⎫⎬⎭B .{<1x x -或71<<4x ⎫⎬⎭C .11<<22x x -⎧⎨⎩或7>4x ⎫⎬⎭D .{1<<1x x -或7>4x ⎫⎬⎭【答案】C【解析】由()()()()()()(),=,<f x f x g x h x g x f x g x ≥⎧⎪⎨⎪⎩可知,()h x 的图像是()f x 与()g x 在同个区间函数值大的那部分图像,由此作出()h x 的图像,联立2=+2=y x y x -⎧⎨⎩,解得=2=2x y --⎧⎨⎩或=1=1x y ⎧⎨⎩,故12x =-,21x =,所以()2,2=+2,2<<1,>1x x h x x x x x ≤---⎧⎪⎨⎪⎩,又由()74h x >可知,其解集为()h x 的函数值比74大的那部图像的所在区间,结合图像易得,()74h x >的解集为{34<<x x x x 或}5>x x联立2=+27=4y x y -⎧⎪⎨⎪⎩,解得1=27=4x y -⎧⎪⎪⎨⎪⎪⎩或1=27=4x y ⎧⎪⎪⎨⎪⎪⎩,故312x =-,412x =,联立=7=4y x y ⎧⎪⎨⎪⎩,解得7=47=4x y ⎧⎪⎪⎨⎪⎪⎩,故574x =,所以()74h x >的解集为11<<22x x -⎧⎨⎩或7>4x ⎫⎬⎭.故选:C..7.(2022·浙江·高一阶段练习)设函数1,>0()=0,=0-1,<0x f x x x ⎧⎪⎨⎪⎩,则方程2(1)4x f x -=-的解为( )A .2x =-B .3x =-C .=2xD .=3x【答案】A【解析】因为1,>0()=0,=0-1,<0x f x x x ⎧⎪⎨⎪⎩,由2(1)4x f x -=-知,2-1>01=-4x x ⋅⎧⎨⎩,2-1=00=-4x x ⋅⎧⎨⎩,2-1<0(-1)=-4x x ⋅⎧⎨⎩, 解得2x =-. 故选:A .8.(2022·湖北黄石·高一期中)已知函数()f x x x =,若对任意[,1]x t t ∈+,不等式()24()f x t f x +≤恒成立,则实数t 的取值范围是( ) A .15[-- B .15-+ C .1515[---+ D .15[-+ 【答案】B【解析】()22,0,0x x f x x x x x ⎧≥⎪==⎨-<⎪⎩,因为2yx 在0x ≥上单调递增,2y x =-在0x <上单调递增,所以()f x x x =在R 上单调递增,因为)24(2)4(2x x x x x x f f ===,且()24()f x t f x +≤,所以()2(2)f x t f x +≤,所以22x t x +≤,即()222110x x t x t -+=-+-≤在[,1]x t t ∈+恒成立,所以()()22201210t t t t t t ⎧-+≤⎪⎨+-++≤⎪⎩即22010t t t t ⎧-≤⎪⎨+-≤⎪⎩,解得150t -+≤≤, 所以实数t 的取值范围是15-+, 故选:B9.(2022·江西·于都县新长征中学高一阶段练习)已知函数()21,=,2x c f x xx x c x ⎧-<⎪⎨⎪-≤≤⎩ ,若()f x 值域为1,24⎡⎤-⎢⎥⎣⎦,则实数c 的范围是( ) A .11,2⎡⎤--⎢⎥⎣⎦B .1,2⎛⎫-∞- ⎪⎝⎭C .11,22⎡⎤-⎢⎥⎣⎦D .[)1,-+∞【答案】A【解析】当=2x 时,()()221112422,244f f x x x x ⎛⎫=-==-=--≥- ⎪⎝⎭,()f x 值域为1,2,4⎡⎤-∴⎢⎥⎣⎦当x c <时,由()12f x x =-=,得12x =-,此时12c ≤-,由()22f x x x =-=,得220x x --=,得=2x 或=1x -,此时112c -≤≤-,综上112c -≤≤-,即实数c 的取值范围是11,2⎡⎤--⎢⎥⎣⎦,故选:A 二、多选题10.(2022·浙江省永嘉县碧莲中学高一期中)我们用符号min 示两个数中较小的数,若x ∈R ,(){}2min 2,f x x x =-,则()f x ( )A .最大值为1B .无最大值C .最小值为1-D .无最小值【答案】AD【解析】在同一平面直角坐标系中画出函数22y x =-,y x =的图象,如图:根据题意,图中实线部分即为函数()f x 的图象. 由22x x -=,解得12x =-,21x =,所以()222,2,212,1x x f x x x x x ⎧-≤-⎪=-<≤⎨⎪->⎩,∴当1x =时,()f x 取得最大值,且()max 1f x =,由图象可知()f x 无最小值, 故选:AD.11.(2022·黑龙江·哈尔滨三中高一期中)定义{},min ,,a a ba b b a b ≤⎧=⎨>⎩,若函数{}2()min 33,|3|3f x x x x =-+--+,且()f x 在区间[,]m n 上的值域为37,44⎡⎤⎢⎥⎣⎦,则区间[,]m n 长度可以是( )A .74B .72C .114D .1【答案】AD【解析】令23333x x x -+≤--+①,当3x ≥时,不等式可整理为2230x x --≤,解得13x -≤≤,故3x =符合要求, 当3x <时,不等式可整理为2430x x -+≤,解得13x ≤≤,故13x ≤<, 所以不等式①的解为13x ≤≤;由上可得,不等式23333x x x -+>--+的解为1x <或3x >, 所以()233,1333,13x x x f x x x x ⎧-+≤≤⎪=⎨--+⎪⎩或,令23334x x -+=,解得32x =,令27334x x -+=,解得52x =或12, 令3334x --+=,解得34x =或214,令7334x --+=,解得74x =或174,所以区间[],m n 的最小长度为1,最大长度为74.故选:AD.12.(2022·四川省宣汉中学高一阶段练习)设函数()y f x =的定义域为R ,对于任意给定的正数m ,定义函数(),()(),()m f x f x m f x m f x m ≥⎧=⎨<⎩,若函数()2211f x x x =-++,则下列结论正确的是( )A .()338f =B .()3f x 的值域为[]3,12C .()3f x 的单调递增区间为[]2,1-D .()31f x +的图像关于原点对称【答案】ABC【解析】由22113x x -++≥, 解得:24x -≤≤,故23211,24()3,42x x x f x x x ⎧-++-≤≤=⎨><-⎩或,A .23(3)323118f =-+⨯+=,本选项符合题意;B .当24x -≤≤时,2321112x x ≤-++≤; 当42x x -或><时,3()3f x =, 故值域为[3,12],本选项符合题意;C .当24x -≤≤时,23()211f x x x =-++,图像开口向下,对称轴为1x =, 故3()f x 在[]2,1-上单调递增,本选项符合题意;D .2312,33(1)3,33x x y f x x x ⎧-+-≤≤=+=⎨><-⎩或,故函数3(1)y f x =+为偶函数,本选项不符合题意.故选:ABC .13.(2022·福建·厦门双十中学高一阶段练习)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(LEJBrouwer ),简单的讲就是对于满足一定条件的图象不间断的函数()f x ,存在一个点0x ,使()00=f x x ,那么我们称该函数为“不动点”函数,0x 为函数的不动点,则下列说法正确的( )A .()1f x x x -=为“不动点”函数B .()253f x x x -=+的不动点为2±C .()221,1=2,>1x x f x x x ≤⎧-⎪⎨-⎪⎩为“不动点”函数D .若定义在R 上有且仅有一个不动点的函数()f x 满足()()()22f f x x x f x x x --+=+,则()2+1f x x x -= 【答案】ABC【解析】对于A ,令()f x =x ,得1x x x -=,解得2x =22f =⎝⎭(有一个满足足矣),所以()1f x x x-=为“不动点”函数,故A 说法正确;对于B ,令()f x =x 253x x x -+=253x +=,即259x +=,解得2x =±,即()22f =和()22f -=-,所以()253f x x x -=+的不动点为2±,故B 说法正确;对于C ,当1x ≤时,()221f x x -=,令()f x =x ,得221x x -=,解得12x =-或=1x ;当1x >时,()2f x x -=,令()f x =x ,得2x x -=,即2x x -=±,解得=1x (舍去); 综上:1122f ⎛⎫-=- ⎪⎝⎭和()11f =,所以()f x 为“不动点”函数,故C 说法正确;对于D ,不妨设该不动点为t ,则()f t t =,则由()()()22f f x x x f x x x --+=+得()()()22f f t t t f t t t --+=+,即()22++f t t t t t t --=,整理得()2222f t t t t --+=+,所以22t t -+也是()f x 的不动点,故22t t t -+=,解得=0t 或1t =-,即0,1都是()f x 的不动点,与题设矛盾,故D 说法错误. 故选:ABC 三、填空题14.(2022·广东·高一期中)已知函数(2),1(),1aa x x f x x x -<⎧=⎨≥⎩是定义在R 上的增函数,则a 的取值范围是________. 【答案】)1,2⎡⎣【解析】由已知,函数(2),1(),1aa x x f x x x -<⎧=⎨≥⎩是定义为在R 上的增函数, 则(2)y a x =-为单调递增函数,a y x =为单调递增函数,且(2)11a a -⨯≤,所以20021a a a ->⎧⎪>⎨⎪-≤⎩,解得12a ≤<,所以a 的取值范围是:)1,2⎡⎣. 故答案为:)1,2⎡⎣.15.(2022·山西·晋城市第一中学校高一阶段练习)若函数222,0(),0x ax x f x bx x x ⎧+≥=⎨+<⎩为奇函数,则a b +=__________. 【答案】1-【解析】利用奇函数的定义()()f x f x -=-,求.当0x <时,则0x ->,所以222()2()()f x x ax f x bx x bx x -=-=-=-+=--, 所以2b =-,1a =,即2,1b a =-= 故1a b +=-. 故答案为:1-.16.(2022·安徽淮南·高一阶段练习)若函数()()2,113,1ax x x f x a x a x ⎧-<⎪=⎨--≥⎪⎩满足对1x ∀,2x ∈R ,且12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围是______.【答案】21,52⎡⎤⎢⎥⎣⎦【解析】根据题意,任意实数12x x ≠都有()()12120f x f x x x -<-成立,所以函数()f x 是R 上的减函数,则分段函数的每一段单调递减且在分界点处113a a a -≥--,所以0112130113a a a a a a ≥⎧⎪-⎪-≥⎪⎨⎪-<⎪-≥--⎪⎩,解得2152a ≤≤,所以实数a的取值范围是21,52⎡⎤⎢⎥⎣⎦.故答案为:21,52⎡⎤⎢⎥⎣⎦17.(2022·广东·深圳市高级中学高一期中)已知()22f x x x =-,()1g x x =+,令()()(){}max ,M x f x g x =,则()M x 的最小值是___________.513- 【解析】令221x x x -≥+,解得313x +≥313x -≤ 则()()(){}23133132,max ,313313x x x x M x f x g x x x ⎧+--≥⎪⎪==⎨-+⎪+<<⎪⎩,当313x +≥313x -≤()min 313513M x M --==⎝⎭, 313313x -+<<513- 513- 513- 四、解答题18.(2022·四川·宁南中学高一阶段练习)已知函数()f x 的解析式()3+5,0=+5,0<<12+8,>1x x f x x x x x ≤-⎧⎪⎨⎪⎩.(1)求12f f ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭; (2)若()2f a =,求a 的值;【解析】(1)函数()f x 的解析式()3+5,0=+5,0<<12+8,>1x x f x x x x x ≤-⎧⎪⎨⎪⎩. 11115222f ⎛⎫∴=+= ⎪⎝⎭,11111283222f f f ⎛⎫⎛⎫⎛⎫==-⨯+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)因为()3+5,0=+5,0<<12+8,>1x x f x x x x x ≤-⎧⎪⎨⎪⎩且()2f a =,所以3+5=20a a ≤⎧⎨⎩,解得1a =-;或+5=20<<1a a ⎧⎨⎩,解得3a =-(舍去); 或2+8=2>1a a -⎧⎨⎩,解得=3a .综上:1a =-或=3a .19.(2022·浙江·玉环市玉城中学高一阶段练习)(1)已知函数()f x 是一次函数,且满足()()3+121=2+17f x f x x --,求()f x 的解析式;(2)已知函数()2+2,1=,1<<22,2x x f x x x x x ≤≥⎧⎪⎨⎪⎩①求()2f ,()()1f f -②若()3f a =,求a 的值【解析】(1)设()=+,0f x kx b k ≠,则:()+1=++f x kx b k ,()1=+f x kx b k --,故()()3++2+=2+17kx b k kx b k x --,即++5=2+17kx b k x ,故=2k ,=7b .所以()27f x x =+(2)函数()2+2,1=,1<<22,2x x f x x x x x ≤≥⎧⎪⎨⎪⎩,①()2=2?2=4f ,()()()()1=1+2=1=3f f f f --.②当1a ≤时,()=+2=3f a a ,解得=1a ,成立;当12a <<时,()2==3f a a ,解得3a =3a =-;当2a ≥时,()=2=3f a a ,解得3=2a (舍去). 故a 31. 20.(2022·辽宁·高一阶段练习)已知函数()22122f x x x a a =+++,()22122g x x x a a =-+-,R a ∈.设函数()()()()()()(),,f x f x g x M x g x g x f x ⎧≥⎪=⎨>⎪⎩. (1)若1a =,求()M x 的最小值;(2)若()M x 的最小值小于52,求a 的取值范围. 【解析】(1)由题意可得,当()()f x g x ≥时,()()2222112224022f x g x x x a a x x a a x a ⎛⎫-=+++--+-=+≥ ⎪⎝⎭,当()()f x g x <时,()()2222112224022f x g x x x a a x x a a x a ⎛⎫-=+++--+-=+< ⎪⎝⎭, 所以()()(),2,,2.f x x a M x g x x a ⎧≥-⎪=⎨<-⎪⎩当1a =时,()2213,2,211, 2.2x x x M x x x x ⎧++≥-⎪⎪=⎨⎪--<-⎪⎩作出()M x 的图象,如图1: 由图可知()M x 的最小值为()512f -=.(2)()222212,2,212,2,2x x a a x a M x x x a a x a ⎧+++≥-⎪⎪=⎨⎪-+-<-⎪⎩且()f x ,()g x 图象的对称轴分别为直线=1x -,1x =.①如图2,当21a -≤-,即12a ≥时,()M x 在(),1-∞-上随x 的增大而减小,在()1,-+∞上随x 的增大而增大,所以()()2min 1122M x f a a =-=+-,由215222a a +-<,解得31a -<<,故112a ≤<.②如图3,当121a -<-≤,即1122a -<≤时,()M x 在(),2a -∞-上随x 的增大而减小,在()2,a -+∞上随x 的增大而增大,所以()()2min 23M x f a a =-=,则2532a <,解得3030a <<1122a -<≤.③如图4,当21a ->,即12a <-时,()M x 在(),1-∞上随x 的增大而减小,在()1,+∞上随x 的增大而增大,所以()()2min 1122M x g a a ==--,由215222a a --<,解得13a -<<,故112a -<<-. 综上,a 的取值范围为()1,1-.21.(2022·全国·高一课时练习)定义域为R 的函数f (x )满足2(f x f x k k ∈Z)()=(+)及f (-x )=-f (x ),且当()0,1x ∈时2()41xx f x =+.(1)求()f x 在[1,1]-上的解析式;(2)求()f x 在[]21)1,2(k k k Z -+∈上的解析式;(3)求证:()f x 在区间()0,1上单调递减.【解析】(1)∵当(1,0)x ∈-时,(0,1)x , ∴22()()4141x xx x f x f x --=--=-=-++. 由题意,知(0)0f =,又()()11f f -=-,()()()1121f f f -=-+=, ∴()()110f f -==,∴()()()2,1,0412,0,1410,1,0,1xx xx x f x x x ⎧-∈-⎪+⎪⎪=∈⎨+⎪=-⎪⎪⎩,(2)当[21,21]x k k ∈-+时,2[1,1]x k -∈-, ∴()()()22222,21,2412()(2),2,21410,21,2,21x kx k x kx k x k k f x f x k x k k k Z x k k k ----⎧-∈-⎪+⎪⎪=-=∈+∈⎨+⎪=-+⎪⎪⎩(3)设任意的1x ,2(0,1)x ∈,且12x x <, ∵2211221212122(22)(21)()()4141(41)(4)x x x x x x x x x x f x f x ++---=-=+++,且21220x x ->,12210x x +->, ∴12()()f x f x >,即()f x 在区间()0,1上单调递减.。

二次函数--利润问题-分段函数

二次函数--利润问题-分段函数

22.3(3.3)---利润问题-分段函数一.【知识要点】1.分段求最值,进行比较。

2.销售利润=(售价-成本价)×销售量.3.解题步骤:(1).设:设出两变量;(2).列:列出函数解析式;(3).定:确定自变量的取值范围;(4).判:判断存在最大(小)值;(5).求:求出对称轴,并判断对称轴是否在取值范围;(6).算:计算最值。

二.【经典例题】1.九(13)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问该商品第几天时,当天销售利润最大,最大利润是多少?22018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.月份x…3456…售价y1/元…12141618…(1)求y1与x之间的函数关系式.(2)求y2与x之间的函数关系式.(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所获得的利润最大?最大利润是多少元?3.某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件. (1)如图,设第x (0<x ≤20)个生产周期设备售价z 万元/件,z 与x 之间的关系用图中的函数图象表示.求z 关于x 的函数解析式(写出x 的范围). (2)设第x 个生产周期生产并销售的设备为y 件,y 与x 满足关系式y =5x +40(0<x ≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)4.为喜迎佳节,某食品公司推出一种新年礼盒,每盒成本为20元.在元旦节前30天进行销售后发现,该礼盒在这30天内的日销售量p (盒)与时间x (天)的关系如下表:在这30天内,前20天每天的销售价格1y (元/盒)与时间x (天)的函数关系式为11254y x =+(1≤x ≤20,且x 为整数),后10天每天的销售价格2y (元/盒)与时间x (天)的函数关系式为21402y x =-+(21≤x ≤30,且x 为整数). (1)直接写出日销售量p (盒)与时间x (天)之间的关系式;(2)请求出这30天中哪一天的日销售利润最大?最大日销售利润是多少?(3)元旦放假期间,该公司采取降价促销策略.元旦节当天,销售价格(元/盒)比第30天的销售价格降低a%,而日销售量就比第30天提高了4a%,日销售利润比前30天中的最大日销售利润少380元,求a 的值.三.【题库】【A】1.数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在前49天销售中,每销售一件商品就捐赠m元(0<m<10)给希望工程,若前49天销售获得的最大日利润为5408元,求出m的值时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200﹣2x【B】1.我县云蒙湖被临沂市人民政府定位“饮用水水源地”,为净化水源,某水产养殖企业在净化水源的同时,为谋求养殖利润最大化,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y1(元)与销售月份x(月)满足关系式y=﹣x+36,而其每千克成本y2(元)与销售月份x(月)满足的函数关系如图所示.“五•一”之前,月份出售这种品每千克的利润最大.【C】1.(本题满分11分)绵阳经开区“万达广场”开业在即,开发商准备对一楼的40个商铺出租,小王和开发商约定:小王租赁的每个商铺每个月的租金y(元/个.月)与租赁的商铺数量x(个)之间函数关系的图象如图中的折线段ABC 所示(不包含端点A ,但包含端点C ). (1)求y 与x 之间的函数关系式;(2)已知开发商每个月对每个商铺的投入成本共280元,那么当小王租赁的商铺数量为多少时,开发商在这次租赁中,每个月所获的利润w 最大?最大利润是多少?【D 】1.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商销售单价q (元/件)与x 满足:当1≤x <25时q=x+60;当25≤x ≤50时. (1)请分析表格中销售量p 与x 的关系,求出销售量p 与x 的函数关系. (2)求该超市销售该新商品第x 天获得的利润y 元关于x 的函数关系式. (3)这50天中,该超市第几天获得利润最大?最大利润为多少?2.某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。

分段函数练习题

分段函数练习题

分段函数练习题一、选择题1. 若分段函数f(x)定义如下:f(x) = { x^2, 当x > 1;x, 当x ≤ 1;则f(2)的值为:A) 2B) 4C) 1D) 02. 函数g(x) = { 2x+1, 当x < 0;x^2-1, 当x ≥ 0;若g(-1) = 1,则g(1)的值为:A) 0B) 1C) 2D) 33. 已知分段函数h(x) = { 3x+2, 当x < 2; x^2, 当x ≥ 2;求h(-1)+h(3)的值为:A) 6B) 7C) 8D) 94. 若分段函数p(x)定义为:p(x) = { x+1, 当x < 3;x^2, 当x ≥ 3;则p(4) - p(2)的值为______。

5. 函数q(x) = { √x, 当x ≥ 0;-x, 当x < 0;当q(x) = 4时,x的值为______。

三、解答题6. 已知分段函数r(x) = { x-1, 当x < 0;1-x, 当0 ≤ x < 1;x+1, 当x ≥ 1;求r(-2)、r(0)和r(2)的值,并计算r(-2)+r(0)+r(2)的和。

7. 函数s(x) = { 2x, 当x < 1;x+3, 当1 ≤ x < 2;3x-1, 当x ≥ 2;若s(x) = 5,求x的值,并计算在x的取值范围内s(x)的最大值和最小值。

四、证明题8. 证明:若分段函数t(x)定义为:t(x) = { x^2-1, 当x < 0;x^2+1, 当x ≥ 0;则对于任意实数x,t(x) ≥ 0。

9. 某公司根据员工的工龄x(以年为单位)发放奖金,规则如下:奖金函数f(x) = { 1000, 当x < 1;2000+500x, 当1 ≤ x < 5;3000+300x, 当x ≥ 5;若某员工工龄为3年,求其应得的奖金总额。

10. 某商店根据顾客购买的商品数量n(以件为单位)提供折扣,规则如下:折扣函数d(n) = { 0, 当n < 10;0.1n, 当10 ≤ n < 20;0.2n, 当n ≥ 20;若顾客购买了15件商品,求其应享受的折扣金额。

高一数学 分段函数

高一数学 分段函数

12
y
6
x 0 2 4 6 8 10 12 14 16
思考题:甲、乙两人分别骑自行车与摩托车从 A城出发到B城旅游.甲、乙两人离开A• 城的路 程与时间之间的函数图象如图所示.根据图象 你能得到甲、乙两人旅游的哪些信息?
参考答案: 根据图象能得到甲、乙两人旅游的以下一些信息: 1.甲骑自行车从A城去B城用了8个小时.乙骑 摩托车从A城去B城用了2个小时. 2.甲比乙早4个小时出发,晚2个小时到达. 3.甲骑自行车在出发后第一个2小时内行驶了40 千米,第二个2小时内行驶了20千米,然后停留 了1个小时,又在1个小时内行驶了20千米,最后 用2个小时行驶了20千米完成全程到达B城. 4.乙骑摩托车在2小时内行驶了100千米路程到 达B城. 5.甲、乙在距A城60多千米的地方相遇一次.
4. 研究函数y = f(x)与函数y = |f(x)|图象之间的 关系.
5. 研究函数y = f(x)与函数y = f(|x|) 图象之间的 关系.
分段函数
例1. 已知一个函数y=f(x)的定义域是[0, 2], 当x∈[0, 1]时,对应法则为y=x,当x∈(1, 2] 时,对应法则为y=2-x,试用解析法和图 象法分别表示这个函数。
解:已知函数用解析法可表示为
x [0,1] x, y 2 x, x (1,2]
函数的图象如下图.
2 y
1ห้องสมุดไป่ตู้
x 0 1 2
例2. 国内投寄信函(外埠),每封信不超过
20g,付邮资80分,质量超过20g,但不超40g
付160分,质量超过40g,但不超60g付240分,
依次类推,每封x g(0<x≤100)的信函应付的
邮资为y(单位:分),试写出以x为自变量的

一次函数(分段函数)

一次函数(分段函数)

月份 3
4
用水量(m3) 水费(元)
5
7.5
Hale Waihona Puke 927课堂练习
该市某户今年3、4月份的用水量和水费如下表所示:
月份 3
4
用水量(m3) 水费(元)
5
7.5
9
27
设某户每月用水量为x(立方米),应交水费为y(元)。 求:(1)a、c的值
(2)并写出用水不超过6立方米和超过6立方米时,y与x 之间的函数关系式;
小明全家当天17:00到家。
(3)本题答案不唯一,只要合理即可,但需注意合理性, 主要体现在:
①9:30前必须加一次油;
②若8:30前将油箱加满,则当天在油用完前的适当时 间必须第二次加油;
③全程可多次加油,但加油总量至少为25升。
试一试:近几年来,由于经济和社会发展迅速,用电矛盾 越来越突出。为缓解用电紧张,某电力公司特制定了新的 用电收费标准,每月用电量x(度)与应付电费y(元)的关 系如图所示。
y= 300 (5≤x≤15)
上述函数,称为分段函数。
{ 20x+200 (0≤x<5)
y= 300 (5≤x≤15)
议一议
• 我们周围的还存在哪 些分段函数的实例。
如:出租车计费问题, 阶梯水费、电费, 个人所得税, 邮资等等
分段函数的解析式
例 2:从广州市向北京市打长途电话,按时间收费, 3 分钟内收费 2.4 元,每加 1 分钟收费 0.5 元, 求时间 t(分)与电话费 y(元)之间的函数解析式, 并画出函数的图象.
y/千米
2 1.1
1.小明从家里出发去菜地浇水, 又去玉米地锄草,然后回家,其 中x表示时间,y表示小明离他家 的距离。

分段函数初二数学练习题

分段函数初二数学练习题

分段函数初二数学练习题题目一:已知分段函数f(x)如下:f(x) = 3x + 1, x ≤ 1f(x) = 2x - 2, x > 1问题一:求f(-2)的值。

解答一:根据给定的分段函数,当x ≤ 1时,f(x) = 3x + 1。

因此,在问题一中,由于-2 ≤ 1,我们需要计算f(-2)的值。

代入x = -2到第一个分段函数中,得到f(-2) = 3(-2) + 1 = -6 + 1 = -5。

因此,f(-2)的值为-5。

问题二:求f(2)的值。

解答二:根据给定的分段函数,当x > 1时,f(x) = 2x - 2。

因此,在问题二中,由于2 > 1,我们需要计算f(2)的值。

代入x = 2到第二个分段函数中,得到f(2) = 2(2) - 2 = 4 - 2 = 2。

因此,f(2)的值为2。

题目二:已知分段函数g(x)如下:g(x) = x^2, x < 2g(x) = 2x + 1, x ≥ 2问题一:求g(0)的值。

解答一:根据给定的分段函数,当x < 2时,g(x) = x^2。

因此,在问题一中,由于0 < 2,我们需要计算g(0)的值。

代入x = 0到第一个分段函数中,得到g(0) = 0^2 = 0。

因此,g(0)的值为0。

问题二:求g(3)的值。

解答二:根据给定的分段函数,当x ≥ 2时,g(x) = 2x + 1。

因此,在问题二中,由于3 ≥ 2,我们需要计算g(3)的值。

代入x = 3到第二个分段函数中,得到g(3) = 2(3) + 1 = 6 + 1 = 7。

因此,g(3)的值为7。

总结起来,通过以上两个问题的解答可以看出,在计算分段函数的值时,我们需要根据给定的条件来选择合适的分段函数进行代入计算。

只要根据给定的条件,正确选择对应的分段函数进行计算,就可以得到分段函数在给定点的值。

这样的练习题有助于我们熟悉和掌握分段函数的概念和计算方法。

分段函数习题大全

分段函数习题大全

分段函数习题大全1. 问题描述分段函数是数学中常见的一种函数类型,它在不同的区间内有不同的定义。

本文将提供一些分段函数的题,帮助读者更好地理解和掌握分段函数的概念和应用。

2. 题示例2.1 问题一已知函数 f(x) 在区间 (-∞, 1] 上定义如下:$$ f(x) = \begin{cases}x^2 & x \leq 0 \\2x+1 & x > 0\end{cases}$$求函数 f(x) 的定义域、值域以及所有的奇点。

2.2 问题二已知函数 g(x) 在区间[0, +∞) 上定义如下:$$ g(x) = \begin{cases}\frac{1}{x} & x \geq 1 \\x^2 - 1 & 0 \leq x < 1\end{cases}$$求函数 g(x) 的最值以及所有的零点。

3. 解答和说明3.1 问题一的解答根据函数 f(x) 的定义,我们可以得知:- 函数 f(x) 的定义域为 (-∞, +∞),因为 x 可以取任意实数。

- 函数 f(x) 的值域为$[0, +∞)$,因为当 x 小于等于 0 时,$f(x) = x^2$ 的值为非负实数,而当 x 大于 0 时,$f(x) = 2x+1$ 的值可大于等于 1。

- 函数 f(x) 的奇点即为在函数定义区间上不连续的点,对于本题中的分段函数 f(x),奇点为 x = 0。

3.2 问题二的解答根据函数 g(x) 的定义,我们可以得知:- 函数 g(x) 的定义域为[0, +∞),因为 x 可以取大于等于 0 的实数。

- 函数 g(x) 的最大值为 $+\infty$,当 x 趋近于 0 时,$g(x)$ 无上界,没有最小值。

- 函数 g(x) 的零点即为满足 $g(x) = 0$ 的 x 值,根据定义可求得 x = 1。

4. 小结本文提供了两个分段函数的题,旨在帮助读者更好地理解和掌握分段函数的概念和应用。

分段函数练习题

分段函数练习题

分段函数练习题Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】1、分段函数1、已知函数)(x f = ,则 )1()0(-+f f =( ) A . 9 B . C . 3 D .提示:本题考查分段函数的求值,注意分段函数分段求。

解析:0代入第二个式子,-1代入第一个式子,解得)1()0(-+f f =3,故正确答案为C.902、函数的图象为下图中的( )提示:分段函数分段画图。

解析:此题中x ≠0,当x>0时,y=x+1,当x<0时,y=x-1, 故正确答案为C.1203、下列各组函数表示同一函数的是( )①f(x)=|x|,g(x)=⎩⎨⎧<-≥)0()0(x x x x ②f(x)=242--x x ,g(x)=x+2 ③f(x)=2x ,g(x)=x+2④f(x)=1122-+-x x ,g(x)=0 ,x ∈{-1,1}A.①③B.①C.②④D.①④267,0,100,,x x x x x ++<≥⎧⎪⎨⎪⎩71101110||x y x x=+提示:考察是否是同一函数即考察函数的三要素:定义域、值域、对应关系,此题应注意分段函数分段解决。

解析:此题中①③正确,故正确答案为A.1204、设()1232,2()log 1,2x e x f x x x -⎧<⎪=⎨-≥⎪⎩,则((2))f f 的值为( ) A.0 B.1 C.2D.3提示:此题是分段函数当中经常考查的求分段函数值的小题型,主要考查学生对“分段函数在定义域的不同区间上对应关系不同”这个本质含义的理解.考查对分段函数的理解程度。

解析:因为 f (2)=log 3(22﹣1)=1,所以f (f (2))=f (1)=2e 1﹣1=2.因此f (f (2))=f (log 3(22﹣1))=f (1)=2e 1﹣1=2,故正确答案为C.905、定义在R 上的函数)(x f 满足)(x f =, 则)3(f 的值为( )A .1- B. 2- C. 1D. 2提示:本题主要考查分段函数的求值,同时考查了递推关系,属于基础题.解析:将3代入相应的分段函数进行求值,则f (3)=f (2)﹣f (1),f (2)=f (1)﹣f (0)从而f (3)=f (1)﹣f (0)﹣f (1)=﹣f (0),将0代入f (x )=log 2(4﹣x )进行求解.∴f(3)=f (1)﹣f (0)﹣f (1)=﹣f (0)=﹣log 2(4﹣0)=﹣2, 故正确答案为B .⎩⎨⎧>---≤-0),2()1(0),4(log 2x x f x f x x1806、24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则 若00()8,f x x ==则( ) A .232 C. 4D. 1提示:本题主要考查分段函数的求值,但是直接分段函数分段作图就将这道题做麻烦了,不如直接代入求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分段函数常见题型例析
河南 陈长松
所谓“分段函数”是指在定义域的不同部分,有不同对应关系的函数,因此分段函数不是几个函数而是一个函数,它在解题中有着广泛的应用,不少同学对此认识不深,解题时常出现错误.现就分段函数的常见题型例析如下:
1.求分段函数的定义域、值域
例1.求函数)(x f =⎪⎩⎪⎨⎧->-≤+)2(,2
)2(,42x x x x x 的值域.
解:当x ≤-2时,4)2(422-+=+=x x x y , ∴ y ≥-4.
当x >-2时,y =2x , ∴y >2
2-=-1. ∴ 函数)(x f 的值域是{y ∣y ≥-4,或y >-1}={y ∣y ≥-4}. 评注:分段函数的定义域是各段函数解析式中自变量取值集合的并集;分段函数的值域是各段函数值集合的并集.
2.作分段函数的图象
例2 已知函数2(2)()3[22)3[2)x f x x x x -∈-∞-⎧⎪=+∈-⎨⎪∈+∞⎩
,,,,
,,,画函数(
f x 解:函数图象如图1所示.
评注:分段函数有几段,其图象就由几条曲线组成,
作图的关键是根据定义域的不同,分别由表达式做出
其图象.作图时,一要注意每段自变量的取值范围;
二要注意间断函数的图象中每段的端点的虚实. 3.求分段函数的函数值
例3.已知)(x f =⎪⎩
⎪⎨⎧<=>+)0.(0)0(,)0(,1x x x x π 求(((3)))f f f -的值.
解:∵ -3<0 ∴ f (-3)=0,
∴ f (f (-3))=f (0)=π
又π>0 ∴(((3)))f f f -=f (π)=π+1. x 图1
评注:求分段函数的函数值时,首先应确定自变量在定义域中所在的范围,然后按相应的对应关系求值.
4.求分段函数的最值
例4.已知函数)(x f =22(0)(0)x x x ⎧⎨<⎩,≥,
求出这个函数的最值. 解:由于本分段函数有两段,所以这个函数的图象由
两部分组成,其中一部分是一段抛物线,另一部分是
一条射线,如图2所示.因此易得,函数最小值为0,
没有最大值.
5.表达式问题
例5. 如图3,动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B C D ,,再回到A ,设x 表示P 点的行程,y 表示PA 的长度,求y 关于x 的表达式.
解:如图3所示,当P 点在AB 上运动时,PA x =;
当P 点在
BC 上运动时,由PBA △Rt ,求得PA =;
当P 点在
CD 上运动时,由PDA Rt △求出PA =;
当P 点在DA 上运动时,4PA x =-,
所以y 关于x
的表达式是01122343 4.
x x x y x x x ⎧<=<-<⎩, ≤≤,
≤, ≤,, ≤ 在此基础上,强调“分段”的意义,指出分段函数的
各段合并成一个整体,必须用符号“{”来表示,以纠正
同学们的错误认识. A B
P 图3。

相关文档
最新文档