分位数回归

合集下载

分位数回归

分位数回归

三、分位数回归的假设检验
分位数回归估计的检验包括两部分:
–一是与均值回归类似的检验,例如拟合优 度检验、拟似然比检验和Wald检验等; –一是分位数回归估计特殊要求的检验,例 如斜率相等检验和斜率对称性检验等。
1、拟合优度检验
ˆ ˆ ( ) X 假设分位数回归直线为 y ( )
将解释变量矩阵和参数向量都分为两部分,即 ˆ ˆ ˆ ˆ ( ) 0( ) Z 1( ) X (1, Z ) 和 ( ) ( 0( ) , 1( ) ) ,且有 y 定义:
拒绝域,LR
2 1
(q )
' 似然比检验另一种表达, LR 2ln n(ln e* e* ln ee) ~ 2 (q)
' e e 有约束模型残差平方和; ** ee无约束模型残差平方和;
3、Wald检验
给定分位数回归参数估计量的渐近方差协 方差矩阵,我们就可以构造Wald形式的统计量 进行各种约束形式的参数检验。 Wald统计量的一种表达形式:
对一个样本,估计的分位数回归式越多, 对被解释变量yt条件分布的理解就越充分。 以一元回归为例,如果用LAD(最小绝对离 差和)法估计的中位数回归直线与用OLS法估计 的均值回归直线有显著差别,则表明被解释变 量yt的分布是非对称的。
如果散点图上侧分位数回归直线之间与下侧 分位数回归直线之间相比,相互比较接近,则说 明被解释变量yt的分布是左偏倚的。反之是右偏 倚的。 对于不同分位数回归函数如果回归系数的差 异很大,说明在不同分位数上解释变量对被解释 变量的影响是不同的。
最小二乘估计假定解释变量只能影响 被解释变量的条件分布的均值位置。 而分位数回归估计能精确地描述解释 变量对于被解释变量的变化范围以及条件 分布形状的影响,能够更加全面的描述被解 释变量条件分布的全貌,而不是仅仅分析 被解释变量的条件期望(均值),也可以 分析解释变量如何影响被解释变量的中位 数、分位数等。不同分位数下的回归系数 估计量常常不同,即解释变量对不同水平 被解释变量的影响不同。

分位数回归分析

分位数回归分析

分位数回归分析简介分位数回归分析(Quantile Regression Analysis)是一种统计分析方法,用来研究因变量与一个或多个自变量之间关系的非线性问题。

相比于传统的OLS(Ordinary Least Squares)回归分析,分位数回归分析更加灵活,能够提供对不同分位数的因变量条件分布的估计。

分位数回归的定义在传统的OLS回归中,我们通过找到一条线性回归方程来描述自变量和因变量之间的关系。

但是,OLS回归假设因变量在各个条件上的分布是相同的,即在不同的自变量取值下,因变量的条件分布是相同的。

而在分位数回归中,我们允许因变量在不同条件下的分布产生变化,因此可以更准确地描述不同区间的因变量与自变量之间的关系。

分位数回归的目标是找到一组系数,用于描述自变量与因变量在给定分位数时的关系。

分位数回归通过最小化残差的绝对值之和来估计这组系数。

这种方法使得我们能够探索不同分位数下自变量和因变量之间的变化。

分位数回归的优势相比于OLS回归,分位数回归具有以下优势:1.非线性建模能力:分位数回归能够对因变量和自变量之间的非线性关系进行建模,从而更准确地描述实际数据的特征。

2.探索条件分布的能力:由于分位数回归允许因变量在不同条件下的分布变化,因此可以提供对不同分位数的条件分布的估计,进一步帮助我们理解数据的性质。

3.对异常值的鲁棒性:分位数回归对异常值更加鲁棒,因为它通过最小化残差的绝对值之和来估计系数,而不是最小二乘法中常用的最小化残差的平方和。

4.考虑不完全因果关系:分位数回归可以用来研究因变量对自变量的影响程度,考虑到因变量可能由其他未观测的变量影响,从而提供了一种更加全面的因果分析方法。

分位数回归的应用分位数回归广泛应用于各个领域,以下是一些常见的应用场景:1.收入和贫困研究:分位数回归可以用来研究不同收入水平下的贫困率变化,进一步探讨收入不平等的影响因素。

2.教育研究:分位数回归可以用来研究教育水平对工资收入的影响情况,从而分析教育对个体生活水平的提高程度。

分位数回归及其实例

分位数回归及其实例

分位数回归及其实例一、分位数回归的概念分位数回归(Quantile Regression):是计量经济学的研究前沿方向之一,它利用解释变量的多个分位数(例如四分位、十分位、百分位等)来得到被解释变量的条件分布的相应的分位数方程。

与传统的OLS 只得到均值方程相比,它可以更详细地描述变量的统计分布。

传统的线性回归模型描述了因变量的条件分布受到自变量X 的影响过程。

普通最dx--乘法是估计回归系数的最基本的方法,它描述了自变量X 对于因变量y 的均值影响。

如果模型中的随机扰动项来自均值为零而且同方差的分布,那么回归系数的最dx--乘估计为最佳线性无偏估计(BLUE);如果近一步随机扰动项服从正态分布,那么回归系数的最dx--乘法或极大似然估计为最小方差无偏估计(M Ⅵ甩)。

但是在实际的经济生活中,这种假设常常不被满足,饲如数据出现尖峰或厚尾的分布、存在显著的异方差等情况,这时的最小二乘法估计将不再具有上述优良性且稳健性非常差。

最小二乘回归假定自变量X 只能影响因变量的条件分布的位置,但不能影响其分布的刻度或形状的任何其他方面。

为了弥补普通最dx--乘法(0Ls)在回归分析中的缺陷,Koenkel"和Pxassett 于1978年提出了分位数回归(Quantile Regression)的思想。

它依据因变量的条件分位数对自变量X 进行回归,这样得到了所有分位数下的回归模型。

因此分位数回归相比普通最小二乘回归只能描述自变量X 对于因变量y 局部变化的影响而言,更能精确地描述自变量X 对于因变量y 的变化范围以及条件分布形状的影响。

分位数回归是对以古典条件均值模型为基础的最小二乘法的延伸,用多个分位函数来估计整体模型。

中位数回归是分位数回归的特殊情况,用对称权重解决残差最小化问题,而其他的条件分位数回归则用非对称权重解决残差最小化。

一般线性回归模型可设定如下:()((0)),(0,1).x t t I t ρττ=-<∈在满足高斯-马尔可夫假设前提下,可表示如下:01122(|)...k k E y x x x x αααα=++++其中u 为随机扰动项k αααα,...,,,210为待估解释变量系数。

数据分析知识:数据挖掘中的分位数回归

数据分析知识:数据挖掘中的分位数回归

数据分析知识:数据挖掘中的分位数回归分位数回归是一种用于数据挖掘的统计方法,它通过将目标变量的分位数作为样本分布的参考点,对回归模型进行拟合和预测。

在实际应用中,分位数回归通常用于研究一组变量对目标变量的不同分位数的影响,以便确定影响因素和预测目标变量。

以医学研究为例,医生可能需要预测病人的生存时间或治疗效果。

传统的回归模型通常通过计算平均值来预测目标变量,但在医疗应用中,研究人员更关注在不同患者之间生存时间或治疗效果的变化,在这种情况下,分位数回归成为了更有用的工具。

分位数回归的基本思想是,将目标变量设置为分位数,并计算每个分位数的条件概率密度函数。

这些密度函数描述了每个分位数与输入变量之间的关系,并且和传统的回归模型不同,分位数回归不会把所有变量的影响简单地平均起来,而是通过对不同分位数进行建模,更准确地描述了变量之间的复杂关系。

分位数回归的另一个优点是,它可以处理异常值和数据偏斜的问题。

在传统的回归模型中,异常值和数据偏斜会对预测结果产生重大影响,而分位数回归可以通过选择适当的分位数来抵消这些影响,提高模型的预测能力和稳健性。

分位数回归的主要实现方法有两种,一种是基于最小二乘法的线性分位数回归(LQR),另一种是非参数分位数回归(NQR)。

LQR是分位数回归的最简单形式,在这种方法中,目标变量被建模为输入变量的线性组合。

更具体地说,对于多个输入变量,LQR可以被表达为如下的公式:y = β0 + β1x1 + β2x2 +…+ βpxp + ε其中y是目标变量,x1,x2,…,xp是输入变量,β0,β1,β2,…,βp是回归系数,ε是误差项。

在分位数回归中,我们将目标变量的分位数作为参考,通过最小化拟合误差来估计回归系数。

具体地说,我们可以根据数据分布选择适当的分位数,如第25、50和75个百分位数,来构建回归模型。

相比于LQR,NQR是一种更为灵活的方法,它不需要假设目标变量与输入变量之间的线性关系,而是通过基于核密度估计的非参数方法来建模。

最新24分位数回归估计

最新24分位数回归估计

• 例:软件EVIEWS6.0使用手册中实例的斜率对称性检验 结果,其中Y为家庭食物消费支出,X为家庭收入。
Symmetric Quantiles Test
Equation: EQ1
Specification: Y C X
Chi-Sq. d.f. 2
Std. Error 0.025923 0.030529
Prob. 0.0000
Prob. 0.0009 0.0060
Wald统计量 为25.22, 应该拒绝斜
率在 tau=0.25、 0.5和0.75相 等性的假设, 即斜率在不 同分位点上 的值是不同
的。
4、斜率对称性检验
LR()2(V (1 ())V sˆ(()))~2(q)
有约束情况下 最小化θ分位 数回归的目标
函数值
稀疏度
无约束情况下 最小化θ分位 数回归的目标
函数值
约束的数目
3、斜率相等检验
• 斜率相等检验,即检验对于不同的分位点,估计 得到的结构参数(在线性模型中即为斜率)是否 相等。
• 原假设被设定为:
24分位数回归估计
一、分位数回归的提出
1、分位数回归Βιβλιοθήκη 理F(y)=Prob(Yy)
Q ()= in f{ y:F (y) }
Q n()= in f{y:F n(y)}
假定随机变量y的概率分布函数
定义y的θ分位数
给定y的n个观测值,相对应的 分位数
等价地转化为求一个最优化问题
Q n ( ) = a r g m i n { i : Y i |Y i | i : Y i ( 1 ) |Y i | } = a r g m i n { i ( Y i ) }
– 一是与均值回归类似的检验,例如拟合优度检验、约 束回归检验等;

分位数回归模型及在金融经济中的应用

分位数回归模型及在金融经济中的应用
结果分析
对实证结果进行分析,探讨各变量对因变量的影响程度和显著性水 平。
结论与建议
根据实证结果得出结论,并提出相应的政策建议。
05
分位数回归模型的扩展与 改进
分位数回归模型与其他模型的结合
分位数回归模型与GARCH模型结合
01
利用分位数回归模型的优点,对GARCH模型进行扩展和改进,
更准确地描述金融时间序列数据的波动性和相关性。
当自变量和因变量的分位数之间关系非线性时,采用非线性分位数 回归模型。
分位数回归模型的参数估计
参数估计方法
最小二乘法、最大似然估 计法等。
模型诊断
通过残差分析、正态性检 验等方法对模型进行诊断 和检验。
模型优化
根据诊断结果对模型进行 优化,提高模型的拟合度 和预测精度。
03
分位数回归模型在金融经 济中的应用
采用异方差稳健标准误
在异方差性存在的情况下,采用异方差稳健标准误来估计模型参数的置信区间,提高模型 估计的准确性和可信度。
基于异方差性的模型优化
根据异方差性检验的结果,对分位数回归模型进行优化,以更好地拟合数据和降低误差。
分位数回归模型的稳健性考虑
考虑异常值的影响
对异常值进行识别和处理,以避免其对分位数回归模型的估计产 生不良影响。
统计分布与分位数
统计分布
描述随机变量或随机向量在各种 情况下的概率分布情况。
分位数
对于给定的概率水平,统计分布 在某个特定值之前的概率。
分位数回归模型的基本原理
分位数回归模型的概念
基于自变量和因变量的分位数之间关系建立的回归模型。
线性分位数回归
假设自变量和因变量的分位数之间存在线性关系。
非线性分位数回归

分位数回归-Quantile regression

分位数回归-Quantile regression

前言:普通线性回归模型关注的是均值,研究的是在某些解释变量在取值固定的条件下响应变量的期望均值,模型估计方法是最小二乘法,使各个样本残差平方和(MSE)最小。

且只能够获得“在控制一系列干扰因素后,自变量增加一个单位,因变量(的均值)增加多少”这样的结果。

然而,普通最小二乘法处理异常值是将它们平方,平方会显著增加异常值对平均值等统计数据的巨大影响,如果我们不仅希望研究响应变量的期望均值,而且还想知道其对不同分位数上因变量的影响,这时候就需要分位数回归了。

1 分位数回归概述1.1 分位数概念分位数(Quantile),亦称分位点,是指将一个随机变量的概率分布范围分为几个等份的数值点,常用的有中位数(即二分位数)、四分位数(第25、50和75个百分位)、百分位数等。

1.2 分位数回归概念分位数回归既能研究在不同分位点处自变量X对于因变量Y的影响变化趋势,也能研究在不同分位点处的哪些自变量X是主要影响因素。

原理是将数据按因变量进行拆分成多个分位数点,研究不同分位点情况下时的回归影响关系情况。

比如说想要研究学习时间对学业成绩的影响,使用分位数回归我们就可以研究学习时间每增加一个单位,学生的学业成绩会如何变化,这里的学生可以是学习成绩位列前20%的好学生,也可以是位列50%的普通学生,还可以是位列后20%的后进生。

瞬间研究的范围就变大了,群体的异质性也体现出来了。

本质上,分位数回归就是一个加权最小二乘法,给不同的y值(大于分位点和小于分位点的y)不同的权重,比如现在我们有一个数据集是1到10各整数,我们希望求0.7分位数,假设这个0.7分位数是q,然后所有大于q的数都被赋上权重0.7,小于q的赋予权重0.3。

2 案例介绍建立分位数回归来分析产品质量、广告投放对产品销售的影响。

3 软件操作及结果解读3.1 软件操作可以添加需要分析的分位数,常用的分位数有四分位数、十分位数。

本例设定十分位数。

3.2 结果解读1)分位数回归结果表图表说明:上表格展示了分位数回归的参数结果,包括分位数点、变量、样本量、拟合度R²等,可从两方面来进行分析:●在不同分位数处自变量对因变量的回归系数呈现的变化趋势。

第04章分位数回归模型

第04章分位数回归模型

下式(目标函数)最小,
T
T
Q (1 )uˆ( )t uˆ( )t
uˆ( )t 0
uˆ( )t 0
T
T
(1 )(yt X βˆ ( ) )
( yt X βˆ ( ) )
t:yt X ˆ( )
t:yt X ˆ( )
ห้องสมุดไป่ตู้
(15.3)
其中 uˆ( )t 表示第分位数回归方程对应的残差。(0, 1)。第分位数的回归方程表达式是
2
相对于最小二乘估计,分位数回归模型具有四个方面的优 势:
(1)分位数模型特别适合具有异方差性的模型。 (2)对条件分布的刻画更加的细致,能给出条件分布的大 体特征。每个分位点上的回归都赋予条件分布上某个特殊点 (中央或尾部)一些特征;把不同的分位点上的分位数回归 集中起来就能提供一个关于条件分布的更完整的统计特征描 述。并且不同分位点下所给出的参数估计本身也可能有值得 进一步探讨的意义。 (3)分位数回归并不要求很强的分布假设,在扰动项非正 态的情形下,分位数估计量可能比最小二乘估计量更为有效。 (4)与最小二乘法通过使误差平方和最小得到参数的估计 不同,分位数回归是通过使加权误差绝对值之和最小得到参
6
15.5 分位数回归模型的检验 评价分位数回归函数好坏的统计量主要有 3 个,拟合优度、拟似然比检验和 Wald 检验。 (1)拟合优度(Goodness-of-Fit) Koenker 和 Machado(1999)提出了分位数回归的拟合优度的概念。它与一般回归分析中的 R2 很类似。 假设分位数回归直线为
即 F(y(τ))的反函数是 y(τ)。当 τ=0.5 时,y(τ) 是 y 的中位数。τ= 0.75 时,y(τ) 是 y 的第 3/4 分位数,τ= 0.25 时, y(τ) 是 y 的第 1/4 分位数。若 y 服从标准正态分布,y(0.5) = 0,y(0.95) =1.645,y(0.975) =1.960。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分位数回归及其实例
一、分位数回归的概念
分位数回归(Quantile Regression):是计量经济学的研究前沿方向之一,它利用解释变量的多个分位数(例如四分位、十分位、百分位等)来得到被解释变量的条件分布的相应的分位数方程。

与传统的OLS 只得到均值方程相比,它可以更详细地描述变量的统计分布。

传统的线性回归模型描述了因变量的条件分布受到自变量X 的影响过程。

普通最dx--乘法是估计回归系数的最基本的方法,它描述了自变量X 对于因变量y 的均值影响。

如果模型中的随机扰动项来自均值为零而且同方差的分布,那么回归系数的最dx--乘估计为最佳线性无偏估计(BLUE);如果近一步随机扰动项服从正态分布,那么回归系数的最dx--乘法或极大似然估计为最小方差无偏估计(M Ⅵ甩)。

但是在实际的经济生活中,这种假设常常不被满足,饲如数据出现尖峰或厚尾的分布、存在显著的异方差等情况,这时的最小二乘法估计将不再具有上述优良性且稳健性非常差。

最小二乘回归假定自变量X 只能影响因变量的条件分布的位置,但不能影响其分布的刻度或形状的任何其他方面。

为了弥补普通最dx--乘法(0Ls)在回归分析中的缺陷,Koenkel"和Pxassett 于1978年提出了分位数回归(Quantile Regression)的思想。

它依据因变量的条件分位数对自变量X 进行回归,这样得到了所有分位数下的回归模型。

因此分位数回归相比普通最小二乘回归只能描述自变量X 对于因变量y 局部变化的影响而言,更能精确地描述自变量X 对于因变量y 的变化范围以及条件分布形状的影响。

分位数回归是对以古典条件均值模型为基础的最小二乘法的延伸,用多个分位函数来估计整体模型。

中位数回归是分位数回归的特殊情况,用对称权重解决残差最小化问题,而其他的条件分位数回归则用非对称权重解决残差最小化。

一般线性回归模型可设定如下:
()((0)),(0,1).x t t I t ρττ=-<∈
在满足高斯-马尔可夫假设前提下,可表示如下:
01122(|)...k k E y x x x x αααα=++++
其中u 为随机扰动项k αααα,...,,,210为待估解释变量系数。

这是均值回归(OLS )模型表达式,类似于均值回归模型,也可以定义分位数回归模型如下:
01122(|)...()y k k u Q x x x x Q ταααατ=+++++
对于分位数回归模型,则可采取线性规划法(LP )估计其最小加权绝对偏差,从而得到解释变量的回归系数,可表示如下:
01122min (...)x k k E y x x x ραααα-----
求解得:01122ˆˆˆˆˆ(|)y
k k Q x a a x a x a x τ=++++ 其中,
,,001,0234,0,log(/)ln()ln(/)ln()ln()i T i i i T y y y I GDP n g h βββββε=+++++∂++1
从参数的估计方法来看,一般线性回归模型的原理是使得被解释变量y 与其拟合值之差(称作残差)的平方和最小,而分位数回归是使得这个残差的绝对值的一个表达式最小,这个表达式不可微,因此传统的求导方法不再适用,而是采用线性规划方法或单纯形算法。

这也是它与一般线性回归最大的不同点之一。

随着计算机技术的不断突破,上述算法可以很方便地由各种软件实现。

现在主流统计、计量与科学计算软件SAS 、STATA 、EViews 、MATLAB 等中都可以加载分位数回归软件包。

分位数回归能够捕捉分布的尾部特征,当自变量对不同部分的因变量的分布产生不同的影响时.例如出现左偏或右偏的情况时。

它能更加全面的刻画分布的特征,从而得到全面的分析,而且其分位数回归系数估计比OLS 回归系数估计更稳健。

近10多年来,分位数回归在国外得到了迅猛的发展及应用,其研究领域包括经济、医学、环境科学、生存分析以及动植物学等方面。

二、分位数回归的实例
下面举一个实例,关于我国地区经济增长收敛的分位数回归分析。

β-收敛的分位数回归分析。

绝对β-收敛的检验
分三阶段对中国经济增长的绝对收敛情况分位数回归方法进行分析。

表1 1978-2007年关于中国经济绝对收敛的OLS 估计和分位数回归结果 变量
分位数 1978-1991 1992-2003 2004-2007 0
ln t y 0.1 -0.2448(-6.93***) 0.1309(2.84*** ) -0.1098(-6.15***) 0.25 -0.2711(-5.49***) 0.1554(1.72*) -0.0482(-0.76
) 0.5 -0.3253(-4.28***) 0.1914(2.17**) -0.0386(-0.88
) 0.75 -0.2301(-2.05**) 0.1842( 1.55) -0.0497(-1.01
) 0.9
-0.3854(-5.86***) 0.2328(7.43***) -0.1067(-2.20**)
OLS
-0.2791(-4.06***)
0.1727(2.96***)
-0.0806(-2.59**)
常数
0.1
2.8573(12.75
***)
0.3483( 0.9
9 )
1.4088(8.11**
*)
0.25
3.0627(9.77*
**)
0.2172(0.31
)
0.8984(1.54) 0.5
3.4860(7.70*
**)
0.0158(0.02
)
0.8556(2.08**
)
0.75
3.0649(
4.36*
**)
0.2203( 0.2
4)
1.0185(
2.20**
)
0.9
4.1783(9.6**
*)
-0.0141(-0.
06)
1.5943(3.30**
*)
OLS
3.2428(7.95*
**)
0.1893(0.42
)
1.2535
(4.30***)
分位数回归结果分析
通过观察表1,看出人均生产总值在第一阶段从十分位到九十分位β系数显著为负,存在着绝对收敛,而且β系数的绝对值呈现逐渐增加的趋势。

而从1992年到2003年这一阶段可以明显看出十分位,四分之一分位,中位数,四分之三分位,九十分位β系数均为正,而且显著性水平都很高,β系数从十分位的0.1309增加到九十分位的0.2328,存在着显著的递增趋势,因此不存在绝对收敛。

在第三阶段,只有十分位和九十分位β系数通过了显著性检验,其余水平下的β系数都不是很显著,但是总体上β系数均是负的,说明这阶段也存在着绝对β-收敛。

这与许绍元、李善同(2006)得到的结果相似,他们认为我国的地区差距经历了一个先缩小后持续扩大的历程。

与20世纪90年代相比,近年来我国的地区差距发展趋势出现了一定的变化,2000-2004年,我国的地区差距仍然在持续扩大,但扩展的速度比20世纪90年代有所减缓,2004年出现了地区差距缩小的迹象。

相关文档
最新文档