数理统计与随机过程试题

合集下载

(完整word版)随机过程试题及答案

(完整word版)随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

随机过程例题

随机过程例题

s h X (t) n}
P{s Wk s h, X (t) n} P{X (t) n}
P{s Wk s h, X (t) X (s h) n k} P{X (t) n}
P{s Wk s h} P{X (t) X (s h) n k} P{X (t) n}
[解] E[X (t)] E[Y (t)] 0
RX (t,t )
a2 2
cos
RX ( )
RY (t,t
)
b2 2
cos
RY ( )
故 X (t)和 Y (t)均是平稳过程。
RXY (t, t ) E[ X (t)Y (t )] E{a cos(t )b sin[(t ) ]}
4谱 分析
例2
• 已知平稳过程的相关函数为 RX ( ) ea cos,(其0中) a
> 0, 0 为常数,求谱密度 GX () .
[解]
GX
()
2
0
e a
c os (0
) cos(
) d
0
e a
[c os (0
)
c os (0
)
]d
a
a
a2 ( 0 )2 a2 ( 0 )2
[解] (1) 随机过程 X (t) 是平稳过程,
相关函数:
RX
( )
a2 2
cos(0 )
平均功率: P RX (0) a2 2
(2)
E[ X
2 (t)]
E[a 2
cos2 (0t
)]
a2 2
a2
s in(2 0t )
X (t) 是非平稳过程
平均功率: P lim 1 T E[ X 2 (t)]dt a2 2 T 2T T

随机过程试题及答案

随机过程试题及答案

随机过程试题及答案随机过程是概率论与数理统计的重要理论基础之一。

通过研究随机过程,可以揭示随机现象的规律性,并应用于实际问题的建模与分析。

以下是一些关于随机过程的试题及答案,帮助读者更好地理解与掌握这一概念。

1. 试题:设随机过程X(t)是一个马尔可夫过程,其状态空间为S={1,2,3},转移概率矩阵为:P =| 0.5 0.2 0.3 || 0.1 0.6 0.3 || 0.1 0.3 0.6 |(1) 计算X(t)在t=2时的转移概率矩阵。

(2) 求X(t)的平稳分布。

2. 答案:(1) 根据马尔可夫过程的性质,X(t)在t=2时的转移概率矩阵可以通过原始的转移概率矩阵P的2次幂来计算。

令Q = P^2,则X(t=2)的转移概率矩阵为:Q =| 0.37 0.26 0.37 || 0.22 0.42 0.36 || 0.19 0.36 0.45 |(2) 平稳分布是指随机过程的状态概率分布在长时间内保持不变的分布。

设平稳分布为π = (π1,π2, π3),满足πP = π(即π为右特征向量),且所有状态的概率之和为1。

根据πP = π,可以得到如下方程组:π1 = 0.5π1 + 0.1π2 + 0.1π3π2 = 0.2π1 + 0.6π2 + 0.3π3π3 = 0.3π1 + 0.3π2 + 0.6π3解以上方程组可得到平稳分布:π = (0.25, 0.3125, 0.4375)3. 试题:设随机过程X(t)是一个泊松过程,其到达率为λ=1,即单位时间内到达的事件平均次数为1。

(1) 请计算X(t)在t=2时的累计到达次数的概率P{N(2)≤3}。

(2) 计算X(t)的平均到达速率。

4. 答案:(1) 泊松过程具有独立增量和平稳增量的性质,且在单位时间内到达次数服从参数为λ的泊松分布。

所以,P{N(2)≤3} = P{N(2)=0} + P{N(2)=1} + P{N(2)=2} +P{N(2)=3},其中P{N(2)=k}表示在时间间隔[0,2]内到达的次数为k的概率。

随机过程试题及答案

随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

北京工业大学2010-2013学年数理统计与随机过程(研)试卷

北京工业大学2010-2013学年数理统计与随机过程(研)试卷

北京工业大学2010-2011学年第一学期期末数理统计与随机过程(研) 课程试卷学号 姓名 成绩 注意:试卷共七道大题,请写明详细解题过程。

数据结果保留3位小数。

考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学 盛骤等编第三版(或第四版)高等教育出版社,不能携带和查阅任何其他书籍、纸张、资料等。

考试时允许使用计算器。

考试时间120分钟。

考试日期:2011年1月4日1.某茶叶制造商声称其生产的一种包装茶叶平均每包重量不低于150克,已知茶叶包装重量服从正态分布,现从一批包装茶叶中随机抽取100包,经计算得到样本均值为149.7,样本标准差为0.9,试在α=0.01的显著性水平上检验该制造商的说法是否可信?2. 某食品市场的经理将根据预期到达商店的顾客来决定职员分配数目以及收款台的数目。

为检验工作日上午顾客到达数(用5分钟时间段内进入商店的顾客数来定义)是否服从泊松分布,随机选取了一个由3周内工作日上午的128个5分钟时间段组成通过这些样本,请你帮忙分析到达顾客数服从泊松分布吗?(取显著性水平)3.一家关于MBA 报考、学习、就业指导的网站希望了解国内MBA 毕业生的起薪是否与各自所学的专业有关,为此,他们在已经在国内商学院毕业并且获得学位的MBA 学生中按照专业分别随机抽取了5人,调查了他们的起薪情况,数据如下表所示(单 位: 万元),根据这些数据他们能否得出专业对MBA 起薪有影响的结论?(取显著性水平050.=α)4.为定义一种变量,用来描述某种商品的供给量与价格之间的相关关系.首先要收集(1) 试确定(2) 对回归方程进行显著性检验(α=0.05);(3) 当x=20时,求y 的95%的预测区间。

5.6.设{,}n X n T ∈是一个齐次马尔可夫链,其状态空间{0,1,2}I =,其一步转移概率矩阵为 3104411142431044P ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭其初始状态的概率分布为01(0)(),0,1,2,3i i p P X i i ====求: (1)求2{1}P X =;(2)求2{2|1}n n P X X +==;(3)求012{1,2,1}P X X X ===;(4)讨论此链是否具有遍历性,若是遍历的求其极限分布。

数理统计与随机过程 随机过程试题

数理统计与随机过程 随机过程试题

数理统计和随机过程考试试题一、填空(1,2小题每空3分,3,4,5每空4分,共21分) 1. 设1,,X X X 是来自总体(0,1)XN 的简单随机样本,统计量12()~()C X X t n +,则常数C = ,自由度n = .2. 设),,,(21n X X X 是来自正态总体),(2σμN 的简单随机样本。

记∑==n k k X n X11,*2211()1n k k S X X n ==--∑,则()(X S μ-服从 分布。

3. 已知平稳过程()X t 的功率谱密度为621()/()X k S k k ωω==+∑,则(0)X R = 。

4.设随机过程()X t ,t T ∈,若 ,则称()X t 为弱平稳过程。

5.设()X t 为标准的Wiener 过程,则其相关函数12(,)X R t t = 。

二、假设总体的分布密度为2222exp(),0(;)00x x x f x x θθθ⎧->⎪=⎨⎪≤⎩其中0θ>是未知参数,试求参数θ的极大似然估计量.(14分) 三、设112,,,n X X X 是来自总体211~(,)X N μσ的一组样本,212,,,n Y Y Y 是来自总体222~(,)Y N μσ的一组样本,两组样本独立.其样本方差分别为*2*212,S S ,且设221212,,,μμσσ均为未知. 欲检验假设22012:H σσ=,22112:H σσ<,显著性水平α事先给定. 试构造适当检验统计量并给出拒绝域(临界点由分位点给出).(10分)四、试求随机过程{()cos ,}X t A t t R ω=∈的一维分布函数、一维概率密度函数,自相关函数与协方差函数 ,其中A 服从标准正态分布(0,1).N (15分) 五、(1) 二阶矩过程()X t (01)t ≤<的自相关函数为21212(,)1X R t t t t σ=-,其中120,1t t ≤<,此过程是否均放连续、均方可导,为什么?若均方可导,试求12(,)X R t t '和12(,)XX R t t '(8分);(2) 设()cos sin X t A t B t αα=+,α为常数,,A B 相互独立同分布于2(0,)N σ,判断()X t 是否均方可积。

随机过程习题及部分解答【直接打印】

随机过程习题及部分解答【直接打印】

随机过程习题及部分解答习题一1. 若随机过程()(),X t X t At t =-∞<<+∞为,式中A 为(0,1)上均匀分布的随机变量,求X (t )的一维概率密度(;)X P x t 。

2. 设随机过程()cos(),X t A t t R ωθ=+∈,其中振幅A 及角频率ω均为常数,相位θ是在[,]ππ-上服从均匀分布的随机变量,求X (t )的一维分布。

习题二1. 若随机过程X (t )为X (t )=At t -∞<<+∞,式中A 为(0,1)上均匀分布的随机变量,求12[()],(,)X E X t R t t2. 给定一随机过程X (t )和常数a ,试以X (t )的相关函数表示随机过程()()()Y t X t a X t =+-的自相关函数。

3. 已知随机过程X (t )的均值M X (t )和协方差函数12(,),()X C i t t ϕ是普通函数,试求随机过程()()()Y t X t t ϕ=+是普通函数,试求随机过程()()()Y t X t t ϕ=+的均值和协方差函数。

4. 设()cos sin X t A at B at =+,其中A ,B 是相互独立且服从同一高斯(正态)分布2(0,)N σ的随机变量,a 为常数,试求X (t )的值与相关函数。

习题三1. 试证3.1节均方收敛的性质。

2. 证明:若(),;(),X t t T Y t t T ∈∈均方可微,a ,b 为任意常数,则()()aX t bY t +也是均方可微,且有[()()]()()aX t bY t aX t bY t '''+=+3. 证明:若(),X t t T ∈均方可微,()f t 是普通的可微函数,则()()f t X t 均方可微且[()()]()()()()f t X t f t X t f t X t '''=+4. 证明:设()[,]X t a b 在上均方可微,且()[,]X t a b '在上均方连续,则有()()()b aX t dt X b X a '=-⎰5. 证明,设(),[,];(),[,]X t t T a b Y t t T a b ∈=∈=为两个随机过程,且在T 上均方可积,αβ和为常数,则有[()()]()()b b baaaX t Y t dt X t dt Y t dt αβαβ+=+⎰⎰⎰()()(),b c baacaX t dt X t dt X t dt a c b =+⎰⎰⎰≤≤6. 求随机微分方程()()()[0,](0)0X t aX t Y t t X '+=∈+∞⎧⎨=⎩的()X t 数学期望[()]E X t 。

随机过程习题

随机过程习题

一.填空题〔每空2分,共20分〕2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t0≥对应的一个等待时间序列,则n W 服从Γ分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t2t,;e,e ⎫⎬⎭。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p ∈=⋅∑。

8.在马氏链{}n X ,n 0≥中,记 {}(n)ij v n 0f P X j,1v n-1,X j X i ,n 1,=≠≤≤==≥(n)ij ij n=1f f ∞=∑,假设ii f1<,称状态i 为非常返的。

9.非周期的正常返状态称为遍历态。

三.计算题〔每题10分,共50分〕1.抛掷一枚硬币的试验,定义一随机过程:cos t H X(t)=t Tπ⎧⎨⎩ ,t (-,+)∈∞∞,设1p(H)=p(T)=2,求〔1〕{}X(t),t (,)∈-∞+∞的样本函数集合;〔2〕一维分布函数F(x;0),F(x;1)。

解:〔1〕样本函数集合为{}cos t,t ,t (-,+)π∈∞∞; 〔2〕当t=0时,{}{}1P X(0)=0P X(0)=12==, 故0x<01F(x;0)=0x<12x 11⎧⎪⎪≤⎨⎪≥⎪⎩;同理0x<-11F(x;1)=1x<12x 11⎧⎪⎪-≤⎨⎪≥⎪⎩2.设顾客以每分钟2人的速率到达,顾客流为泊松流,求在2分钟内到达的顾客不超过3人的概率。

3.设明天是否有雨仅与今天的天气有关,而与过去的天气无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、(10分)某工程部队的工程师向领导建议,他提出的一项新工艺在不降低工程质量和影响工程进度的同时,还将节省机器运转的开支。

假如采用旧工艺时机器每星期运转开支平均是1000元,又假定新旧工艺机器每星期运转开支X 都是服从正态分布,且具有标准差250元。

使用新工艺后观察了9个星期,其机器运转开支平均每星期是750元。

试在01.0=α的水平下,检验工程师所述是否符合实际,即新工艺是否能节省开支。

(3554.3)8(005.0=t ,8965.2)8(01.0=t ,57.2005.0=u ,33.201.0=u ) 二、(12分)设母体
X
服从正态分布),(2σμN ,X 是子样),,,(21n X X X Λ的平均数,
∑=-=n
i i n
X X n S 1
2___
2
)1(是子样方差,又设),(~21σμN X n +,且与n X X X ,,,21Λ独立,求:
(1)X E ,X D ,2
n ES ,2n DS ;(2)统计量
1
1
1+--+n n S X
X n
n 的分布。

三、(13分)一个罐中装有黑球和白球,其中黑球、白球的个数均未知,如何用统计的方法估计其中黑球与白球的比例。

(建立模型并给出两种估计方法) 四、(15分)以下为温度对某个化学过程的生产量的影响的数据:
已知
X 和Y 之间具有线性依赖关系。

(1)写出其线性回归模型,并估计参数βα,; (2)讨论回归系数的性质(分布)。

五、(10分)设有一随机过程)( t X ,它的样本函数为周期性的锯齿波。

下图(a )、(b )画出了二个样本函数图。

各样本函数具有同一形式的波形,其区别仅在于锯齿波的起点位置不同。

设在0=t 后的第一个零值点位于0τ,0τ是一个随机变量,它在) , 0 ( T 内均匀分布,即
⎪⎩⎪⎨⎧≤≤=其它值
00
1
)( 0T t T
t f τ
若锯齿波的幅度为A ,求随机过程)( t X 的一维分布函数和分布密度。

六、(10分)() t X 通过一线性系统后产生输出() t Y ,有⎰-=t
T t du u X T
t Y )(1)(
(1) 求该系统的频率响应函数;
(2) 若()t X 为一平稳过程,且其相关函数为,4
1)(2τ
λτ-=
e R X (λ为常数),求输出过程的谱密度。

七、(15分)设0),(≥t t X 为泊松过程,
(1)求})(,)({2211k t X k t X p ==,用21,t t 的函数表示; (2)求该过程的期望和相关函数。

该过程是否为平稳过程? (3)证明泊松过程是具有负指数间隔的计数过程。

八、(15分)设随机过程()0,≥t t X 只取两个值:A ,A -,且
t
A t X A t t X p t A t X A t t X p ∆∆∆∆211})(|)({1})(|)({μμ-=-=-=+-===+
(1)说明()t X 是一个齐次马尔科夫过程,写出转移概率函数满足的微分方程组; (2)求极限概率。

相关文档
最新文档