开关电源变压器参数设计步骤详解
单端反激式开关电源中变压器的设计

单端反激式开关电源中变压器的设计变压器作为单端反激式开关电源中的关键部件,在一定时间内具有不变的变换特性,因此具有较强的可靠性。
变压器的设计方案的选择对单端反激式开关电源的工作稳定性和效率都有很大的影响,因此变压器的设计步骤和要求都需要非常精细地考虑。
一、变压器设计步骤1、选择基本参数:在变压器设计中,首先要根据单端反激式开关电源的功率、输入电压、输出电压、铁芯材料、匝数及其他参数等,确定变压器的基本参数。
2、磁材和匝组设计:根据变压器的基本参数,确定变压器的磁芯材料,以及计算求出的空心铁芯的尺寸,以此作为变压器的磁材和匝组设计的参考。
3、选择变压器结构形式:根据变压器的功率大小,以及其应用环境的实际情况,选择工作最稳定的变压器结构形式。
4、绕组设计:针对上述选择的变压器结构形式,根据变压器的基本参数,选择合适的绕组几何参数,并根据电流要求以及其他条件,采用不同的工艺技术完成绕组的设计。
5、振荡线圈设计:由于单端反激式开关电源较复杂,为了实现对电压幅值、相位和线性度的控制,可能要设计振荡线圈。
因此,在实际的设计中,需要根据电路的实际要求,进行振荡线圈的合理设计。
1、电气特性要求:变压器的电气特性包括变换率、耐压要求、绝缘耐压要求、额定功率、工频噪声。
变压器应能满足额定电压比、额定电流、绝缘耐压、额定功率等要求,而且应保持满足所需的线性度要求,并具有良好的耐辐射和抗干扰能力。
2、机械特性要求:机械特性包括尺寸、外形和结构特性。
变压器的结构特性要求包括安装大小、安装方式、绝缘要求、电正性要求等,并要求可以长时间稳定的运行,在正常工作情况下,满足高强度,无变形。
3、热效应要求:在变压器设计中还应考虑高效率、低损耗要求,其中尤其需要考虑到热效应。
热效应要求变压器的绝缘材料具有高的热稳定性;并且磁芯的结构设计要考虑到磁芯材料的热导性和热抗性;另外,还要考虑到电磁绕组材料的空气隙、绕组物理结构等造成的损耗,以确保变压器的热效应稳定可靠。
反激式开关电源变压器设计步骤(重要)

反激式开关电源变压器设计反激式变压器是反激式开关电源的核心,它决定了反激式变换器一系列的重要参数,如占空比D ,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。
这样可以让其发热量尽量小,对器件的磨损也尽量小。
同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源性能会有很大的下降,如损耗会加大,最大输出功率会下降.设计变压器,就是要先选定一个工作点,在这个点就是最低的交流输入电压,对应于最大的输出功率。
第一步,选定原边感应电压V OR 。
这个值是有自己来设定的,这个值就决定了电源的占空比.可能朋友们不理解什么是原边感应电压。
我们分析一个工作原理图。
当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性上升:I 升=Vs*Ton/L 。
这三项分别是原边输入电压,开关开通时间和原边电感量。
在开关管关断的时候,原边电感放电,电感电流会下降,此时有下降了的电流:I 降=V OR *T OFF /L 。
这三项分别是原边感应电压(即放电电压)、开关管管段时间和电感量。
经过一个周期后,原边电感电流会回到原来的值,不可能会变,所以有:Vs *T ON /L=V OR *T OFF /L 。
即上升了的等于下降了的。
上式中用D 来代替T ON ,用(1-D )来代替T OFF .移项可得:D=V OR /(V OR +Vs)。
这就是最大占空比了.比如说我设计的这个变压器,我选定电感电压V OR =20V ,则Vs 为24V ,D=20/(20+24)=0。
455。
第二步,确定原边电流波形的参数原边电流波形有三个参数,平均电流,有效值电流,峰值电流,首先要知道原边电流的波形,原边电流的波形如下。
这是一个梯形波横向表示时间,总想表示电流大小,这个波形有三个值,一个是平均值I 平均,二是有效值I ,三是峰值Ip 。
首先要确定平均值I 平均:I 平均=Po/(η*Vs )。
开关电源中变压器及电感设计1

开关电源中变压器及电感设计1开关电源中变压器及电感设计1一、变压器设计1.根据电源输出需求确定变压器的额定功率和工作频率。
2.计算变压器的变比。
变压器的变比决定了输入电压和输出电压之间的关系。
通常变压器的变比为输入和输出电压之比的倒数,即输出电压/输入电压。
3.根据变比计算次级匝数。
变压器的次级匝数等于输入匝数乘以变比。
4.根据次级匝数计算主绕组匝数。
主绕组匝数等于次级匝数除以变比。
5.计算主绕组和次级绕组的截面积。
主绕组的截面积一般比次级绕组大,以满足输送更大电流。
6.计算铁芯截面积。
铁芯截面积的大小关系到变压器的能量传输效率,一般选择铁芯截面积略大于主绕组的截面积。
7.选择合适的铁芯材料和线材材料。
铁芯材料的导磁性能和线材材料的电阻等参数会影响变压器的损耗和效率。
8.进行变压器的相关参数计算和模拟。
可以使用相关软件进行变压器参数的计算和仿真,以评估变压器的性能。
9.制作变压器的绕组和组装。
根据计算结果进行绕线并组装变压器。
10.进行变压器的测试和调整。
使用仪器测试变压器的性能,并根据测试结果调整变压器的参数,以满足设计要求。
二、电感设计1.根据电源输出需求确定电感的额定电流和工作频率。
2.根据电感的额定电流和工作频率计算电感的感值。
电感的感值和额定电流和工作频率之间有一定的关系,可以根据公式进行计算。
3.根据感值计算电感的绕组数。
电感的绕组数决定了电感的电流走向和电感的大小。
4.选择合适的磁芯和线材材料。
合适的磁芯材料和线材材料会影响电感的损耗和效率。
5.进行电感的相关参数计算和模拟。
可以使用相关软件进行电感参数的计算和仿真,以评估电感的性能。
6.制作电感的绕组和组装。
根据计算结果进行绕线并组装电感。
7.进行电感的测试和调整。
使用仪器测试电感的性能,并根据测试结果调整电感的参数,以满足设计要求。
总结:变压器和电感的设计是开关电源设计中关键的一环,直接影响到电源的性能和稳定性。
在设计过程中,需根据电源输出需求确定额定功率和工作频率,并计算变压器和电感的相关参数。
反激式开关电源变压器设计参看详解

Npri(V01+VD1)(1-Dmax)
NS1 =
(匝)
Vin(min) Dmax
8. 计算二次其它绕组所需匝数Nsn
Nsn =
(Von+VDn) Ns1 V01 + VD1
(匝)
技术部培训教材
反激式开关电源变压器设计(2)
1.9 检查相应输出端的电压误差
Vsn
δVsn%=(( =
N’sn-Vsn)/Vsn)x100%
0.65(16)
0.5(11)
0.80(20)
1.1(30)
1.1(30)
1.4(35)
1.5(38)
1.8(47)
2.0(51)
2.4(60)
技术部培训教材
反激式开关电源变压器设计(2)
第二种是计算方式,首先假定变压器是单绕组,每增加一个绕组并考 虑安规要求,就需增加绕组面积和磁芯尺寸,用“窗口利用因数”来修整 单绕组电感磁芯尺寸按下式计算:
A’p=Knet.Ap
按照上计算A’P值,加一定裕度,选取相适应的磁芯.
技术部培训教材
反激式开关电源变压器设计(2)
4. 计算一次电感最小值Lpri
Vin(min).Dmax
Lpri =
(H)
Ipk f
式中:f单位为Hz
5. 计算磁芯气隙Lgap
0.4 πLpriIpk . 108
Lgap =
cm2
Iin(MIN)=PINxVIN (MAX) Iin(MAX)=PINxVIN (MIN) 5 估算峰值电流:
K POUT IPK =
VIN (MIN) 其中:K=1.4(Buck 、推挽和全桥电路)
K=2.8(半桥和正激电路) K=5.5(Boost,
单管正激式开关电源变压器设计

单管正激式开关电源变压器设计设计一个单管正激式开关电源变压器的主要目标是将输入电压转换为所需的输出电压,并提供适当的电流输出。
这种类型的电源变压器由一个开关管、一个变压器、一个整流电路和一个滤波电路组成。
以下是一个设计单管正激式开关电源变压器的基本步骤:1.确定功率需求:首先,确定所需的输出功率,这将指导变压器的尺寸和开关管的容量选择。
输出功率通常以所需的输出电压和电流来计算,即P=V*I。
2.选择变压器参数:根据所需的输出功率和输入电压范围,选择适当的变压器参数。
变压器一般由工作频率、变比(输出电压与输入电压之比)和功率容量来定义。
变压器的变比可以通过变压器的匝数比来实现,即N2/N1,其中N2是次级(输出)匝数,N1是主级(输入)匝数。
3.选择开关管:选择能够承受所需输出功率的开关管。
开关管的选择与其导通电阻、封装、耐压和工作频率相关。
常用的开关管有晶体管和功率MOSFET。
4.设计整流电路:整流电路用于将开关管的高频交流输出转换为直流输出。
常见的整流电路包括单相桥式整流器和满桥式整流器。
整流电路的设计需要考虑所需的输出电压、电流和纹波功率因素。
5.设计滤波电路:滤波电路用于去除整流电路输出的高频纹波,并提供平滑的直流输出。
常见的滤波电路包括电容滤波器和电感滤波器。
滤波电路的设计需要考虑所需的输出电压纹波和效率。
6.进行模拟和数字仿真:使用计算机软件进行电路的模拟和数字仿真,以验证设计的正确性和性能。
7.制作原型并测试:根据设计的电路图和布局,制作原型并进行测试。
测试包括输出电压和电流的测量、纹波和效率的评估。
8.进行优化:根据测试结果进行设计的优化。
优化的目标包括提高效率、减小纹波和噪声,以及改进稳定性和可靠性。
上述步骤提供了一个基本的单管正激式开关电源变压器设计的框架。
具体的设计细节和参数将取决于所需的输出功率和输出电压等要求。
为了确保电路的稳定性和可靠性,建议在设计过程中仔细考虑电源的保护和故障检测机制。
反激式开关电源变压器设计步骤及公式

反激式开关电源变压器设计步骤及公式(4种计算方法比较)1.确定已知参数: (主要PWM方式)确定已知参数:(主要RCC方式)来自现代高频开关电源实用技术1,确定系统规格输出功率:输入功率: P୧=输入平均电流: Iୟ୴ൌሺౣሻ同左边占空比D୫ୟ୶=୲=0.5 f୫୧୬:25KHz输入直流电压Vୈେ=√2Vୟୡ在了解输出功率后确定所需磁芯A p=A e*A w(cm4)Ae:磁芯中心柱横截面积(cm2);A w:磁芯窗口面积(cm2)最小AC输入电压:V ACMIN,单位:V最大AC输入电压:V ACMAX,单位:V输入电压频率:f L,50Hz or 60Hz输出电压:V O,最大负载电流:I O输出功率:P O,单位:WIo:Po=Vo*Ioη:0.85P୧ൌP୭η2.峰值电流1T=10000G s输入峰值电流:Iൌכሺౣሻ对于BUCK(降压),推挽,全桥电路K=1.4对于半桥和正激K=2.8对于Boost,BUCK-Boost和反激K=5.5 I୮ൌ2כP୭כTηכV୧୬ሺ୫୧୬ሻכt୭୬A e*A w>כଵలଶככ౩כౣכஔכౣכౙ(cmସ) ;Ae是磁芯截面积(cm2),Aw是磁芯窗口面积(cm2);f的单位为Hz,Bm的单位为Gs,取(1500)不大于3000Gs,δ导线电流密度取:2~3A/mmଶ ,K୫窗口填充系数取0.2~0.4,Kc磁芯填充系数,对于铁氧体该值取1IୋൌP୧V୧୬୫୧୬IൌIୟ୴D୫ୟ୶כ2T୭୬ൌଵD୫ୟ୶(uint:µs)1S=106µsLൌౣכ୍ౌే(µH)3.计算初级电感因所以t୭୬ൌDכTൌଵଶכ若f取25KHz,则t୭୬为20μS选磁芯也可用公式Fosc<50KHz S=1.15*√Po(cmଶሻFosc<60KHz S=0.09*√Po(cmଶሻFosc>=60KHz S=0.075*√Po(cmଶሻNPൌౌכ୍ౌేככ10L P:mH; ΔB:260mT;A e:mm2NsൌሺV୭Vୈሻכሺ1െD୫ୟ୶ሻכNV୧୬୫୧୬כD୫ୟ୶NaൌሺVୟVୟୈሻכሺ1െD୫ୟ୶ሻכNV୧୬୫୧୬כD୫ୟ୶L =ሺౣሻכୈ୍ౌేכ౩ౙ其中L 单位:H f:Hz 电压:V, 电流:A匝比:n=ሺౣሻ=౩౦4. 计算初级匝数初级电感:L ୮ൌሺౣሻכ୲୍౦检验磁芯正规名牌磁性材料的Bm 不得大于3000Gs ,国产杂牌不大于2500Gs 更保险A 值是在磁芯上绕1000匝测得(美国)则N ൌ1000ටౌై此式中L 单位为mH变压器次级圈数:Ns>୬כ୍౦כ౦ୗכౣ*10其中S 为磁芯截面积,B୫值为3000Gs若A 值是用100匝测得且单位是nH/N ଶ,则N ൌ100ටౌై此式中L 单位为mH,A 单位为mH/N ଶ,在计算时要将A 的值由nH 转换为mH 后再代入式中计算;例如:某A 值为1300 nH/N ଶ, L 值为2.3mH,则A =1300nH/N ଶ=1.3 mH/N ଶ代入中计算得N 为133T 初级匝数为:Np=౩୬B(max) = 铁心饱合的磁通密度(Gauss)Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm2 )B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以5. 匝比n=౩ౌ=ሺౣሻ晶体管的基极电流I =୍౦୦ూు6. 次级绕组匝数N ୱ=N *n N ୱଵ=౦כሺାౚሻכሺଵିୈౣ౮ሻሺౣሻכୈౣ౮多路输出时N ୱ୶=ሺ౮ାౚ౮ሻכ౩భభାౚభ其中x 代表几路I ୰୫ୱൌI √27. 原边供电绕组N ୟ=N ୱכ在多路输出时Vo 为主输出电压计算线径(包括初级次级)同左边8. 选择磁芯型号要满足,磁芯中心柱截面积S=0.09*√Po (cm ଶሻ或满足公式A=A ୣכA ୵ൌכଵలଶככ౩כౣכஔכౣכౙ(cm ସ ) ;Ae 是磁芯截面积(cm 2),Aw 是磁芯窗口面积(cm 2);f 的单位为Hz ,Bm 的单位为Gs ,取(1500)不大于3000Gs ,δ导线电流密度取:2~3A /mm ଶ ,K ୫窗口填充系数取0.2~0.4,Kc 磁芯填充系数,对于铁氧体该值取1做较大瓦数的 Power 。
几种开关电源变压器设计计算方法

几种开关电源变压器设计计算方法
开关电源变压器设计计算方法有多种,根据输入和输出电压、电流、效率等参数的不同,可以选择不同的设计方法。
下面介绍几种常见的开关电源变压器设计计算方法。
1.均压系数法:
均压系数法是一种常见的设计方法,适用于输出电压稳定、负载变化较小的情况。
计算步骤如下:
1)确定输入和输出电压、电流;
2)选择变压器的变压比和绕组匝数;
3)根据电流传输比,计算输入和输出绕组的截面积和电流;
4)根据磁通密度,计算变压器的磁芯截面积;
5)计算变压器的工作频率和磁通密度。
2.欧姆法:
欧姆法是一种比较精确的设计方法,适用于需求较高的应用场景。
计算步骤如下:
1)确定输入和输出电压、电流,以及允许的电压降;
2)根据欧姆定律和功率关系,计算输入和输出绕组的电阻;
3)根据电流传输比,计算输入和输出绕组的导线截面积;
4)根据磁通密度,计算变压器的磁芯截面积;
5)计算变压器的工作频率和磁通密度。
3.饱和系数法:
饱和系数法是一种适用于高频开关电源设计的方法,可以有效降低开
关电源的损耗和杂散辐射。
计算步骤如下:
1)确定输入和输出电压、电流,以及允许的饱和电流;
2)根据输入和输出电流计算变压器的有效电流;
3)根据输入电流和变压比,计算输入和输出绕组的有效导线截面积;
4)根据磁通密度,计算变压器的磁芯截面积;
5)计算变压器的工作频率和磁通密度。
以上是几种常见的开关电源变压器设计计算方法。
在实际设计中,还
需要考虑变压器的损耗、绝缘、温升等因素,并结合具体的应用要求进行
优化和调整。
单端反激式DC-DC开关电源变压器的设计全过程

单端反激式DC/DC 开关电源变压器的设计全过程,xuguoping 分享与世纪电源网的网友 变压器的参数计算:(1) 变压器的设计要求:输出电压:10V ~3KV ,8mA (变压器输出之后三倍压)输入电压:24 1V±工作频率:50KHZ最大占空比:45%变换效率:80%(2) 基本参数计算:输入最小电压:min IN V =-IN V V =24-1-0.5=22.5V输出功率:OUT OUT OUT P U I =30000.00824()W =×=输入功率:OUT IN P P η=2430()0.8W == (3) 选择磁芯:由于输出功率为24W ,需要留有一定的余量,选择磁芯的型号为:EI-28。
其具体参数如下:材料:PC40;尺寸:28.0*16.75*10.6(mm);P A :0.6005();:86 4cm e A 2mm W A :69.83; :4300;2mm L A 2/nH N S B :500mT () 390mT (10) 25o C 0o C 使用时为防止出现磁饱和,实取磁通密度m B = 250 mT(4) 粗略估计匝数比以及最大占空比(通过实际计算)min (1)OUT MAX IN MAX V D N V D −= 30000.5522.50.45×=× 162.9=(求出结果后然后取整为Nm )因为匝数比可以根据设计理念修正为M N =165,从而可以产生新的MAX Dmin OUT MAX M IN OUT V D N V V =+ 300022.51653000=×+44.7%=(5) 计算初级平均电流,峰值电流和电流的有效值由于输出功率为24W ,用电流连续模式(CCM )比较适合。
这里取为0.6RP K .min min IN OUT P AVG IN IN P P I V V η== 240.822.5=×1.333A =.1[1]2P AVG P RP MAX I I K D =− 1.333(10.50.6)0.447=−××4.26A=.P RMS P I I ==2.054A =.P RMS I -电流有效值,P I -峰值电流,.P AVG I -平均电流,(RP K R RP PI K I =)电流比例因数,MAX D -最大占空比; 利用Krp 的值可以定量描述开关电源的工作模式,若Krp=1.0,即峰值电流和脉动电流相等,开关电源工作在断续模式;若Krp<1.0,峰值电流大于脉动电流,开关电源工作在连续模式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源高频变压器设计步骤
步骤1确定开关电源的基本参数
1交流输入电压最小值u min
2交流输入电压最大值u max
3电网频率F l开关频率f
4输出电压V O(V):已知
5输出功率P O(W):已知
6电源效率η:一般取80%
7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。
一般取Z=0.5
步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB
步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin
1令整流桥的响应时间tc=3ms
2根据u,查处C IN值
3得到V imin
确定C IN,V Imin值
u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V)
固定输
已知2~3(2~3)×P O≥90
入:100/115
步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90
定V OR、V B 固定输入:230±35已知1P O≥240
1根据u由表查出V OR、V B值
2
由V B 值来选择TVS
步骤5根据Vimin 和V OR 来确定最大占空比
Dmax
V OR
Dmax= ×100% V OR +V Imin -V DS(ON)
1设定MOSFET 的导通电压V DS(ON)
2
应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小
步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I P
u(V)
K RP
最小值(连续模式)最大值(不连续模式)
固定输入:100/1150.41通用输入:85~2650.441固定输入:230±35
0.6
1
步骤7确定初级波形的参数
①输入电流的平均值I AVG
P O
I A VG=
ηV Imin
②初级峰值电流I P
I A VG I P =
(1-0.5K RP )×Dmax
③初级脉动电流I R
u(V)
初级感应电压V OR (V)钳位二极管反向击穿电压V B (V)
固定输入:100/115
6090通用输入:85~265135200固定输入:230±35
135
200
④初级有效值电流I RMS
I RMS=I P√D max×(K RP2/3-K RP+1)
步骤8根据电子数据表和所需I P值选择TOPSwitch芯片
①考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值
I LIMIT(min)应满足:0.9I LIMIT(min)≥I P
步骤9和10计算芯片结温Tj
①按下式结算:
Tj=[I2RMS×R DS(ON)+1/2×C XT×(V Imax+V OR)2f]×Rθ+25℃
式中C XT是漏极电路结点的等效电容,即高频变压器初级绕组分布电容
②如果Tj>100℃,应选功率较大的芯片
步骤11验算I P IP=0.9I LIMIT(min)
1输入新的K RP且从最小值开始迭代,直到K RP=1
2检查I P值是否符合要求
3迭代K RP=1或I P=0.9I LIMIT(min)
步骤12计算高频变压器初级电感量L P,L P单位为μH
106P O Z(1-η)+ η
L P= ×
I2P×K RP(1-K RP/2)f η
步骤13选择变压器所使用的磁芯和骨架,查出以下参数:
1磁芯有效横截面积Sj(cm2),即有效磁通面积。
2磁芯的有效磁路长度l(cm)
3磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2)
4骨架宽带b(mm)
步骤14为初级层数d和次级绕组匝数Ns赋值
1开始时取d=2(在整个迭代中使1≤d≤2)
2取Ns=1(100V/115V交流输入),或Ns=0.6(220V或宽范围交流输入)
3Ns=0.6×(V O+V F1)
4在使用公式计算时可能需要迭代
步骤15计算初级绕组匝数Np和反馈绕组匝数N F
1设定输出整流管正向压降V F1
2设定反馈电路整流管正向压降V F2
3计算N P
V OR
N P=N S×
V O+V F1
4计算N F
V FB+V F2
N F=N S×
V O+V F1
步骤16~步骤22设定最大磁通密度B M、初级绕组电流密度J、磁芯的气隙宽度δ,进行迭代。
1设置安全边距M,在230V交流输入或宽范围输入时M=3mm,在110V/115V交流输入时M=1.5mm。
使用三重绝缘线时M=0
2最大磁通密度B M=0.2~0.3T
100I P L P
B M=
N P S J
若B M>0.3T,需增加磁芯的横截面积或增加初级匝数N P,使B M在0.2~0.3T范围之内。
如B M<0.2T,就应选择尺寸较小的磁芯或减小N P值。
3磁芯气隙宽度δ≥0.051mm
δ=40πS J(N P2/1000L P-1/1000A L)
要求δ≥0.051mm,若小于此值,需增大磁芯尺寸或增加N P值。
4初级绕组的电流密度J=(4~10)A/mm2
1980
J=
1.27πD2PM×(1000 /25.4)2
4I RMS
若J>10A/mm2,应选较粗的导线并配以较大尺寸的磁芯和骨架,使J<10A/mm2。
若J<4A/mm2,宜选较细的导线和较小的磁芯骨架,使J>4A/mm2;也可适当增加NP 的匝数。
5确定初级绕组最小直径(裸线)D Pm(mm)
6确定初级绕组最大外径(带绝缘层)D PM(mm)
⑦根据初级层数d、骨架宽带b和安全边距M计算有效骨架宽带be(mm)
be=d(b-2M)
然后计算初级导线外径(带绝缘层)D PM:D PM=be/NP
步骤23确定次级参数I SP、I SRMS、I RI、D SM、D Sm
1次级峰值电流I SP(A)
I SP=I P×(N P/N S)
②次级有效值电流I SRMS(A)
I SRMS=I SP×√(1-D max)×(K2RP/3-K RP+1)
③输出滤波电容上的纹波电流I RI(A)
I RI=√I2SRMS-I2O
5次级导线最小直径(裸线)D Sm(mm)
D Sm=1.13√I SRMS/J
6次级导线最大外径(带绝缘层)D SM(mm)
b-2M
D SM=
N S
步骤24确定V(BR)S、V(BR)FB
1次级整流管最大反向峰值电压V(BR)S
V(BR)S=V O+V Imax×N S/N P
2反馈级整流管最大反向峰值电压V(BR)FB
V(BR)FB=VFB+V Imax×N F/N P
步骤25选择钳位二极管和阻塞二极管
步骤26选择输出整流管
步骤27利用步骤23得到的I RI,选择输出滤波电容C OUT
1滤波电容C OUT在105℃、100KHZ时的纹波电流应≥I RI
2要选择等效串连电阻r0很低的电解电容
3为减少大电流输出时的纹波电流I RI,可将几只滤波电容并联使用,以降低电容的r0值和等效电感L0
4C OUT的容量与最大输出电流I OM有关
步骤28~29当输出端的纹波电压超过规定值时,应再增加一级LC滤波器1滤波电感L=2.2~4.7μH。
当I OM<1A时可采用非晶合金磁性材料制成的磁珠;大电流时应选用磁环绕制成的扼流圈。
2为减小L上的压降,宜选较大的滤波电感或增大线径。
通常L=3.3μH
3滤波电容C取120μF/35V,要求r0很小
步骤30选择反馈电路中的整流管
步骤31选择反馈滤波电容
反馈滤波电容应取0.1μF/50V陶瓷电容器
步骤32选择控制端电容及串连电阻
控制端电容一般取47μF/10V,采用普通电解电容即可。
与之相串连的电阻可选
6.2Ω、1/4W,在不连续模式下可省掉此电阻。
步骤33选定反馈电路
步骤34选择输入整流桥
①整流桥的反向击穿电压V BR≥1.25√2u max
3设输入有效值电流为I RMS,整流桥额定有效值电流为I BR,使I BR≥2I RMS。
计算I RMS
公式如下:
P O
I RMS=
ηu min cosθ
cosθ为开关电源功率因数,一般为0.5~0.7,可取cosθ=0.5
步骤35设计完毕
在所有的相关参数中,只有3个参数需要在设计过程中进行检查并核对是否在允许的范围之内。
它们是最大磁通密度BM(要求BM=0.2T~0.3T)、磁芯的气隙宽度δ(要求δ≥0.051mm)、初级电流密度J(规定J=4~10A/mm2)。
这3个参数在设计的每一步都要检查,确保其在允许的范围之内。