数学思想方法在二次函数中的应用
初中二次函数蕴含的思维方法

初中二次函数蕴含的思维方法作者:***来源:《教育·教学科研》2020年第03期“二次函数”是初中数学的重要组成部分,也是中考的热点和难点。
二次函数中蕴含着丰富的思维方法,学生掌握好了这些思维方法就能掌握好二次函数的知识内容,对以后学习有非常重要的作用,它不但能提升学生的思维能力,也能激发学生的潜力。
下面,笔者就二次函数中几种常用的思维方法进行简单的探究。
数形结合思维的应用我国著名数学家华罗庚曾说:“数形结合百般好,隔裂分家万事休。
”每个几何图形都蕴含着一定的数量关系,而数量关系又常常可以通过几何图形予以直观地反映和描述,所以数形结合思维也就成为研究数学的重要思维方法之一。
二次函数中“数”“形”并进,让学生做到见“数”识“形”,见“形”而想“数”。
1.1二次函数y=ax2+bx+c(a≠0)的图象与系数a,b,c的关系。
例:如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a-b+c0;④b2-4ac>0;正确的有()个?A.1B.2C.3D.4解析:由抛物线开口方向得到a>0,由抛物线对称轴方程得到b=-2a1.2通过观察图象,由交点坐标可以直接写出不等式解集。
例:二次函数y1=ax2+bx+c的图象与一次函数y2=kx+b(k≠0)的图象(如图):当y2>y1时,根据图象写出x的取值范围。
解析:通过观察图像可知,使得的的取值范围是:-2函数方程思维的应用方程和方程组是初中阶段比较重要的部分,并且与数学其他板块的关联性也比较强,同时还是解决其他数学问题的工具。
解决二次函数问题常常会使用方程和方程组的思维,同样求解一元二次方程解时,也可以用到二次函数图象来解决。
2.1求两个函数交点坐标的应用。
例:如图,函数y= 与y=-2x+8的图象交于点A、B.求A、B两点的坐标。
解析:联立函数y= 和y=-2x+8得到关于x,y的方程组,解出方程组即可得到A、B两点的坐标。
数学思想方法在初中二次函数综合问题中的运用

数学思想方法在初中二次函数综合问题中的运用摘要:数形结合、方程与函数、建模思想、分类讨论、整体思想、转化化归以及待定系数法、配方法、消元法等都是初中阶段核心的思想方法。
二次函数综合问题中,蕴含的数学思想方法集中,涉及到的知识点多,掌握思想方法,在解题中的运用技巧,整合所学的知识,能提高分析问题和解决问题的能力。
关键词:二次函数综合问题数学思想方法中图分类号:g633.6 文献标识码: c 文章编号:1672-1578(2012)10-0087-02函数是“数与代数”领域的核心内容,更是难点所在。
二次函数综合问题中,蕴含的数学思想方法集中,涉及到的知识点多,能充分体现学生获取数学信息以及运用数学思想方法分析问题和解决问题的能力,因而成为广大师生关注的热点问题。
解函数综合问题,要善于借助点的坐标将线段和函数解析式结合起来,通过计算和证明是正确求解的关键。
本文以2011年施恩自治州中考数学题为例予以分析。
1 数学实例【题】:如图,在平面直角坐标系中,直线ac:y=■x+8与x轴交与点a,与y轴交与点c,抛物线y=ɑx2+bx+c过点a、点c,且与x轴的另一交点为b(x0,0),其中x0>0,又点p是抛物线的对称轴l上一动点。
⑴求点a的坐标,并在图1中的上找一点p0,使p0到点a与点c的距离之和最小;⑵若△pac周长的最小值为10+2■,求抛物线的解析式及顶点n 的坐标;⑶如图2,在线段co上有一动点m以每秒2个单位的速度从点c向点o移动(m不与端点c、o重合),过点m作mh∥cb交x轴与点h,设m移动的时间为t秒,试把△p0hm的面积s表示成时间t 的函数,当t为何值时,s有最大值,并求出最大值;⑷在⑶的条件下,当s=■时,过m作x轴的平行线交抛物线于e、f两点,问:过e、f、c三点的圆与直线cn能否相切于点c?请证明你的结论。
解:⑴直线ac与x轴的交点为a,令y=0得,x=-6,即点a(-6,0);如图1,连接cb与直线l交于点p0即为所求。
二次函数的应用最值问题

二次函数的应用最值问题二次函数是一个在数学中广泛应用的函数模型。
在实际问题和生产生活中,二次函数的最值问题也经常出现。
本文将介绍二次函数的最值问题,包括实际问题中的二次函数最值、生产生活中的二次函数最值、利用配方法求二次函数的最值、利用导数求解二次函数的最值、利用作图法求解二次函数的最值、利用公式法求解二次函数的最值和利用对称轴求解二次函数的最值等方面。
一、实际问题中的二次函数最值在实际问题中,二次函数最值通常出现在诸如最大利润、最小成本、最高产量等问题中。
例如,一个工厂生产一种产品,该产品的成本包括固定成本和可变成本。
固定成本是不随产量变化的成本,而可变成本是随产量变化的成本。
因此,总成本函数是一个开口向下的二次函数。
为了使总成本最低,需要找到自变量的取值,使得总成本函数的导数为零,并判断导数是否为零,从而确定最值是否存在。
二、生产生活中的二次函数最值在生产生活中,二次函数最值也经常出现。
例如,一个公司投资一个项目,该项目的收益随投资额变化,且收益函数是一个开口向下的二次函数。
为了使收益最大,需要找到投资额的最优解。
最优解可以通过求解收益函数的导数并令其为零得到。
三、利用配方法求二次函数的最值配方法是求二次函数最值的一种常用方法。
该方法的基本思想是将二次函数转化为一个完全平方项和一个常数项之和的形式,然后利用平方的非负性求出最值。
具体步骤如下:(1)将二次函数配方为一个完全平方项和一个常数项之和的形式;(2)根据平方的非负性,求出这个完全平方项的取值;(3)将这个完全平方项的取值代入配方后的二次函数中,求出最值。
四、利用导数求解二次函数的最值利用导数求解二次函数的最值是一种比较简单的方法。
该方法的基本思想是先求出二次函数的导数,然后令导数为零,解出此时的自变量取值,最后比较所有自变量取值对应的函数值,找出最大(或最小)的一个即可。
五、利用作图法求解二次函数的最值作图法是一种直观地求解二次函数最值的方法。
数学思想方法妙解二次函数

A 一 B 了’
( )因为点E 轴 上 , △ 2 在 SA ,
\ /
\/ 0
D
形 巾某 些位 置 关 系所 隐含 的 等 量 关
系( 线段和差、 面积和差、 相似三角形
对 应边成 比例 )等构造 方程.通过 将
图形 的 变换 、 元 二 次方 程 、 何 问 一 几 题综 合进 二 次 函数 中 . 以解答 题 的形
戆 l 考数字公开
同 , 点的 标 ( , 理 当 E坐 为 —。 一 ) 8
( ) 使 广 告 美 观 , 户 要 求 把 3为 客
业额 均较高 ?
( )每 台 彩 电 的 利 润 是 1 ( 9 0 l O 一 0 0 元 , 天 销 售 (+ 30 一Ox 3 0 ) 每 6 3 ) ,l= 3 0 - 0x 3 0 )6 3 ) x 台  ̄ y (9 0 10 - 0 0 (+ = , J
它做 成矩 形 的长是 宽 与 ( 宽 ) 比 长+ 的 例 中项 , 时 的设 计 费 是多 少 ( 确 此 精
到 1 ) 兀 ? () 1 因为 周 长 为 l 米 , 边 2 一
长 为 . 以 矩 形 此 边 的邻 边 长 为 ( 一 米 所 6
时 卅 . ,西蔷 y6
在 △AD E中 , AO = 0 , : , E 9。 4
f kb , , 4 lo - + i ' , -  ̄t  ̄ - r
: 6 若 O O 的长 是关 于 , A, B 的二 次 函数
y x— x 1 所 对 应 的 方 程 的 两 个 根 , = 27 + 2
:
辱
.
且 0 0且 >
5
( ) < 时 , 线 y a +  ̄ 左 向 2 当Ⅱ 0 直 =x l 右 是 下 降 的 .此 时 抛 物 线 的 开 口 向
运用数形结合思想探讨二次函数在初中数学中的相关应用

运用数形结合思想探讨二次函数在初中数学中的相关应用发布时间:2022-08-11T18:15:02.792Z 来源:《中小学教育》2022年7月4期作者:鲍炜[导读]鲍炜安徽省芜湖市第二十九中学中图分类号:G652.2 文献标识码:A 文章编号:ISSN1001-2982 (2022)7-179-021引言数学是一种既古老又年轻的文化,也是自然科学的基础学科。
人类从远古时代的结绳计数,到如今可以宇宙航行,无时无刻不受到数学思想的影响。
最近几年,我国数学课程中关于数学学习的理念发生了深刻地变化,数学教学的主要目的和任务早已不是简单的知识和方法的传授,而是通过数学学习培养学生的数学能力。
二次函数是初高中教材中一个重要的内容。
二次函数是中考命题的重点,同时也是省示范高中自主招生考试的重要考点。
如何让学生对二次函数了解更加的深刻透彻,本论文运用数形结合思想对初中二次函数做了更深一步的研究。
我们通过以下几个方面的阐述让学生更加深入理解二次函数的知识,更加体会到数形结合思想的运用:利用二次函数图象讨论一元二不等式的解(自主招生考试考点)、利用二次函数图象讨论二次方程根的分布问题(中考难点)、巧用二次函数图象讨论含绝对值的二次函数问题自主招生考试考点)、巧用二次函数图象讨论二次函数与一次函数的交汇问题(中考重点)。
2 国内外研究现状查阅相关文献,众多数学教育者从不同角度和侧面探讨了数形结合在教学、解题及函数中的应用,也给出了自己独特的见解。
在所查阅到的国内外参考文献中,教育者们对数形结合在二次函数中只针对二次函数中的某一问题作了相应的介绍,并未给出较为深入系统的研究。
数形结合思想在初高中二次函数中的应用非常广泛,对数形结合在初高中二次函数中的综合应用进行深入研究,使之形成完整的体系,对今后利用数形结合思想在二次函数教学、解题及其在中考以及自主招生考试中的应用具有重要的意义。
3 提出问题数形结合不仅是一种重要的解题方法,而且是一种基本的数学思想,同时二次函数也是初高中比较重要的一个内容,为了促进学生对这种思想方法的掌握,我们初中老师在依据教材对标课程标准的前提下,要适当提高二次函数的教学难度,这样学生到了高中才能较好的掌握二次函数内容,能起到承上启下的作用。
浅谈数学思想在初中数学二次函数中的渗透

浅谈数学思想在初中数学二次函数中的渗透摘要:二次函数是初中数学教学中的重点内容,教师需要加强学生对二次函数概念和性质的理解,提升学生的学习兴趣,使其真正掌握有效地函数学习方法。
关键词:初中数学;二次函数;策略学生对于二次函数知识不感兴趣的原因一方面在于学生对以往旧知识的掌握不扎实,另一方面还没有适应二次函数知识的综合性,缺乏一定的思维能力和对整体知识的梳理能力。
教师要让学生明白数学知识的螺旋结构,只有建立知识间联系,才能够对知识加以内化,从而有效掌握。
一、方程思维到函数思维的转换二次函数是初中阶段数学课程内容中的重中之重,那么教师在进行该部分内容教学时也应注意到对传统教学方法的调整和改进。
二次函数的学习首先是概念的理解,理解二次函数的基本性质需要建立在熟悉二次函数图像的基础之上,只有熟练掌握函数图像的规律和使用方法,才能够更进一步把握二次函数曲线以及其方程表达式的含义。
基于此,教师要善于运用生活实例来让学生直观地去理解并区分开二次函数表达式与一元二次方程的不同,明确二次函数呈现的是两个不同未知数之间的动态变化关系。
除此之外,概念的认知与掌握还与更加深入的思考有密切关系。
比如理解常量是如何变成变量的,这一过程就需要联系到之前所学过的代数与几何相关知识。
相比于知识的硬性转变,更多需要的是思维和观念上的转变,这就需要教师引导学生从函数的图像到变量的变化,从静态思维过渡到动态思维,切实理解函数在变化的过程中,其图像上会表达出一些什么。
二、不同数学思想的渗透1、数形结合思想清晰直观的图像可以有效化解抽象代数式子中的理解障碍,往大了说这也就是具象思维到抽象思维之间的转换。
而在二次函数知识中,主要涉及到的数形结合思想就是“以形助数”和“以数解形”。
以二次函数性质为例,从2,到2,2,再到2,探究一般二次函数2的图象和性质,这需要经历“列表描点→连线画图→观察特征→总结性质”的过程,那么重点就在于是否能够通过直观的图像来帮助学生理解这些表达式中所蕴含的基本规律。
数学思想在二次函数中的应用

【 分析 】 观察抛 物线 的位置走 向 、 关 键
点 的 位 置 坐 标 以 及 解 析 式 中 各 系 数 与 图 象的对应关系 . 从 而 作 出判 断 .
( 2 )该宾馆每 天的利 润 ( 元) 关 ( 元)
的 函数 解 析 式 ; 当每 个房 间 的 定 价 为 每 天
多 少元 时 , 取 得 最 大值 .
解 : 观察 图象可 知 . 抛物线 开 口向下 .
£
【 分析 】 每 天 的入 住 量 = 总 房 间数 一 每 天
的定 价 增 加 量 + 1 0. 每 天 的 房 间 收 费: 每 间
得a < O. 因 为 抛 物 线 的对 称 轴 = 一 = 1 . 所
二 次 函 数解 析 式 为 : ’ , =( 一 3) ( x +1 ) , 即y 一
一
3.
【 点评 】 方程 思 想 体 现 了 已知 与 未 知 的
利 用 顶 点 坐 标 公 式 和 点 的 坐 标 满 足 解 析
决 . 其 中方 程 思 想 体 现 最 多 的是 利 用 待 定 对 立 统 一 关 系 . 解法 1 是设 一 般 式 求 解 . 即 解法 2 是利用顶 点式求解 : 例1 已知 二 次 函数 的 图象 顶 点 是 ( 1 , 式来列 方程组 :
析 式.
二 、数 形 结 合 思 想
“ 数 无 形 时少 直 观 . 形 少 数 时难 入微 ” . 数 形 结 合 思 想 就 是 充 分 利 用 数 量 关 系 和 图形 的结 合 , 寻求 解 题 思 路 . 其 实 质 是将 抽 象 的 数 学 语 言 与 直 观 的 图形 相 结 合 . 从 而 达 到 以形 助 数 、 以 数 解 形 的效 果 . 例 2 已 知 二 次
数形结合思想在二次函数中的应用

数形结合思想在二次函数中的应用数与形是数学中的两个最古老,中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。
二次函数是初中数学教学的重要内容,集中体现了数形结合思想,本文结合二次函数的数学,探寻渗透数形结合思想的有效策略。
标签:数学结合;二次函数;应用著名数学家华罗庚先生在谈到数形结合的好处时曾作诗赞美:“数与形,本是相倚依,焉能分作两边飞。
数无形时少直觉,形少数时难入微。
数形结合百般好,隔离分家万事休。
切莫忘,几何代数流一体,永远联系莫分离。
”数形结合思想是指导学生数学学习的重要数学思想之一,掌握数形结合的方法,可以极大地提高学生的数学学习效果,训练学生的数学思维,让学生终身受益。
二次函数作为初中数学教学的重要内容,集中体现了数形结合思想,是训练数形结合方法的良好载体。
“数(代数)”与“形(几何)”是数学的两个基本研究对象,这两个内容既互相独立又互相联系,体现在数学解题过程中包括“以数解读形”和“以形分析数”两个方面。
数形结合思想就是把数和形有机组合,使数学问题得到转化,“形”让“数”更具体明了,“数”使“形”更形象灵活。
因此,数形结合思想在数学解题中有广泛的应用。
数形结合思想在二次函数中的应用比较广泛,借助数形结合思想可以方便快捷地解决二次函数问题,怎样利用数形结合思想解决二次函数问题呢?要在解题中有效实现“数形结合”,最好能够明确“数”与“形”常见的结合点,从“以数助形”角度来看,主要有以下两个结合点:第一,以数轴、坐标系为桥梁把函数图象几何化;第二,利用面积、距离、角度等几何量来解决二次函数问题。
一、二次函数中的形转数二次函数图象的顶点在原点0,经过点A(1,1);点F(0,1)在y轴上,直线y=1与y轴交于点H。
(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线=y-1交于点M,求证:FM平分∠OFP。
解析:二次函数的解析式可以顺利解决,对于(2)点P是(l)中图象上的点,过点P作X轴的垂线与直线=y-1交于点M,求证:FM平分∠OFP;我们要挖掘图象蕴含的信息,PM平行于y轴,可得∠OFM=∠PMF,接下来探究乙PMF是否等于∠PFM,因为P在二次函数的图象上,可以设出P点的坐标,那么由P向y 轴作垂线段PB,构造直角三角形,利用勾股定理表达出PF的长度,依据P的坐标可以表示PM的长度,那么可以证明PF=PM,于是可以得到∠PM=F乙PFM,所以∠OFM=∠PFM,结论得到证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关键词:数学思想方法在二次函数中的应用;分类讨论思想;转化思想;方程思想;数形结合
中图分类号:G633.6文献标识码:B文章编号:1672-1578(2019)31-0143-02
1.分类讨论思想在二次函数中的应用
分类讨论思想是一种重要的数学思想,在解决二次函数问题时经常用到。许多二次函数问题,往往在相同的题设下,会产生几种不同的结果,这就需要借助于分类讨论思想按照同一标准,确定分类对象,把可能存在的一切情况都列举出来,一一加以研究,然后进行归纳,合并,综合得出结论。
(1)若导弹运行轨道为一抛物线,求该抛物线的解析式;
(2)说明按(1)中轨道运行的导弹能否击中目标C的理由。
3.方程思想在二次函数中的应用
方程思想是一种广泛应用的数学思想,是解决二次函数问题的一个有力工具。在二次函数问题中,或多或少存在着等量关系,我们经常把所研究的二次函数问题中的数量关系,转化为方程或方程组等数学模型,通过解方程或方程组,实观未知向已知的转化。可见,方程思想方法,对解决二次函数问题,作用十分重大。如待定系数法求二次函数解析式,求解几何图形中的函数关系,求二次函数与其他图形的交点问题等,都离不开方程思想。
参考文献:
[1]蒲宏金.如何培养学生的分类整合思想方法[J].湖南教育(下),2011年04期.
[2]謝敏良.数学思想方法在解二次根式问题中的活用[J].数学学习与研究,2011年15期.
例1,已知抛物线y=ax2+bx+c(a>0),它与x轴交于点A和B,与y轴交于点C,试求S△AoC+S△BoC
2.转化思想在二次函数中的应用
转化思想是一种最基本的数学思想,是解决二次函数问题不可忽视的方法。二次函数的问题一般都是综合性很强的题目,如何把复杂的问题向简单的问题转化,是解题成败的关键所在。转化思想在二次函数中运用的思想一般是把生活、生产、科研中的实际问题通过建立数学模型转化为数学问题;把几何问题转化为函数问题;把位置关系转化为数量关系;把非常规问题转化为常规问题,最终实现未知向已知的转化,从而使问题得到解决。
数学思想方法在二次函数中的应用
作者:庄梅芳
来源:《读与写·上旬刊》2019年第11期
摘要:数学思想方法在二次函数中的应用,蕴含的数学思想方法集中,教师应激发学生பைடு நூலகம்学习积极性,向学生提供充分的从事数学活动的机会,涉及到的知识点多,掌握思想方法,在解题中的运用技巧,整合所学的知识,学生能提高分析问题和解决问题的能力。
例3已知二次函数y=x2+bx+a(b<0)的图像与y轴交于点P(0,3),与x轴交于A、B两点,且AB=2
(1)求bc的值,并写出这个函数的解析式;
(2)过P点作x轴的平行线,求这条平行线被二次函数图像所截得的线段的长;
(3)求△PAB的面积;
4.数形结合思想在二次函数中的应用
数形结合思想是一种典型的数学思想,是研究二次函数问题离不开的思想方法。数学是以现实世界中的空间形式与数量关系为研究对象,即数学是研究数、形及其关系的一门科学。在建立直角坐标系后,平面上的点就可以用坐标来表示,进一步又可建立平面上曲线与方程间的联系,这就使数与形结合起来,二次函数问题正是这种思想的充分体现,使数和形的结合达到了一个新的境地。在二次函数问题中,我们通过图形形象直观地表示出抽象的数量关系,即利用形来研究数,另一方面,通过数量计算准确地表示出图形的性质即利用数来研究形。数形结合思想的运用,是验证二次函数解题能力和创造性的有力根据。