求不定积分的基本方法
不定积分的15个基本公式

不定积分的15个基本公式不定积分是微积分中的一个重要概念,它是对一个函数的不定积分时求出它的原函数。
在计算不定积分时,有一些基本公式可以帮助我们简化计算。
下面是关于不定积分的15个基本公式:1. 常数公式:对于任意常数k,∫kdx = kx + C,其中C为任意常数。
2. 幂函数公式:对于任意常数n,∫x^n dx = (x^(n+1))/(n+1) + C,其中C为任意常数。
3. 倒数公式:∫1/x dx = ln|x| + C,其中C为任意常数。
4. 正弦函数公式:∫sin(x) dx = -cos(x) + C,其中C为任意常数。
5. 余弦函数公式:∫cos(x) dx = sin(x) + C,其中C为任意常数。
6. 正切函数公式:∫tan(x) dx = -ln|cos(x)| + C,其中C为任意常数。
7. 余切函数公式:∫cot(x) dx = ln|sin(x)| + C,其中C为任意常数。
8. 指数函数公式:∫e^x dx = e^x + C,其中C为任意常数。
9. 对数函数公式:∫ln(x) dx = xln(x) - x + C,其中C为任意常数。
10. 反正弦函数公式:∫arcsin(x) dx = xarcsin(x) + sqrt(1-x^2) + C,其中C为任意常数。
11. 反余弦函数公式:∫arccos(x) dx = xarccos(x) - sqrt(1-x^2) + C,其中C为任意常数。
12. 反正切函数公式:∫arctan(x) dx = xarctan(x) - ln|1+x^2| + C,其中C为任意常数。
13. 反余切函数公式:∫arccot(x) dx = xarccot(x) + ln|1+x^2| + C,其中C为任意常数。
14. 双曲正弦函数公式:∫sinh(x) dx = cosh(x) + C,其中C为任意常数。
15. 双曲余弦函数公式:∫cosh(x) dx = sinh(x) + C,其中C为任意常数。
求不定积分的三种方法

求不定积分的三种方法一、基本积分法基本积分法是不定积分求解的基础,它适用于一些简单的函数。
通过掌握基本积分法,我们可以迅速求解相关的不定积分问题。
以下是一些常见的基本积分法:1.幂函数积分法:对于幂函数f(x) = x^n(n为非负整数),其基本积分法为:∫x^n dx = x^(n+1)/(n+1) + C。
2.指数函数积分法:对于指数函数f(x) = a^x(a为正实数),其基本积分法为:∫a^x dx = a^x * ln(a) + C。
3. 对数函数积分法:对于对数函数f(x) = ln(x)(x>0),其基本积分法为:∫ln(x) dx = x * ln(x) + C。
4.三角函数积分法:对于正弦函数f(x) = sin(x),其基本积分法为:∫sin(x) dx = -cos(x) + C。
5.余弦函数积分法:对于余弦函数f(x) = cos(x),其基本积分法为:∫cos(x) dx = sin(x) + C。
二、换元积分法当不定积分的被积函数具有一定的形式时,我们可以通过换元法简化求解过程。
换元积分法是将原函数中的自变量替换为另一个变量,从而使问题变得更容易求解。
以下是一些常见的换元积分法:1.三角换元法:设u = sin(x),则du = cos(x) dx。
将原函数中的x用u表示,可得:∫cos(u) du = sin(u) + C。
2.反三角换元法:设u = cos(x),则du = -sin(x) dx。
将原函数中的x用u表示,可得:∫-sin(u) du = -cos(u) + C。
3.代数换元法:设u = x^2,则du =2x dx。
将原函数中的x 用u表示,可得:∫2x dx = x^2 + C。
三、分部积分法分部积分法是一种非常实用的求解不定积分的方法,它适用于具有一定形式的分式函数。
分部积分法的关键是将分式函数拆分为两个基本函数的乘积,然后利用乘积的导数公式进行积分。
基本的3种不定积分方法

基本的3种不定积分方法不定积分是微积分中的一个重要概念,它是求解函数原函数的过程。
在求不定积分时,通常会遇到各式各样的函数形式,因此需要运用不同的方法来求解。
在本文中,将介绍基本的三种不定积分方法:代入法、分部积分法和换元法。
1.代入法:代入法是一种简单而常用的不定积分方法,它适用于特定的函数形式。
当被积函数是一个复合函数的时候,可以通过代入法来求积分。
具体来说,就是将整个或部分被积函数进行代入。
举个例子,如果要求解函数f(x)=2x^3的不定积分∫f(x)dx,可以通过代入法进行计算。
将x^3看作一个整体,令u=x^3,那么f(x)可以写成f(u)=2u。
所以∫f(x)dx=∫2udx=2∫udx=2∫dx^3=(2/4)x^4+C=x^4/2+C。
2.分部积分法:分部积分法是求解一些函数积分时常用的方法。
它基于求导法则d(uv)/dx=u(dv/dx)+v(du/dx)的逆过程。
根据此法则,可以将一个积分转化为一个简化的形式。
具体的计算步骤如下:步骤1:将被积函数f(x)表示为两个函数的乘积,即f(x)=u(x)v'(x)。
步骤2:计算出u(x)的导数du/dx和v(x)的不定积分∫v'(x)dx。
步骤3:将上述结果带入分部积分公式∫f(x)dx=uv-∫v(x)du/dx中,即∫f(x)dx=u(x)v(x)-∫v(x)du/dx。
举个例子,如果要求解函数f(x)=xln(x)的不定积分∫f(x)dx,可以通过分部积分法来计算。
将f(x)表示为f(x)=ln(x)×x,令u=ln(x),v'=x,则du/dx=1/x,∫v'(x)dx=∫xdx=(1/2)x^2、将上述结果带入分部积分公式∫f(x)dx=uv-∫v(x)du/dx中,得到∫f(x)dx=xln(x)-(1/2)x^2+C。
3.换元法:换元法是不定积分中常用的一种方法,它通过引入一个新的变量来简化被积函数的形式。
常见不定积分的求解方法

常见不定积分的求解方法
1.代换法:当被积函数中含有复杂的函数关系时,我们可以通过适当
的代换将其转化为更简单的形式,从而求解不定积分。
根据具体情况,可
以选择代换变量、代换函数或代换式子。
2.分部积分法:用于求解由两个函数的乘积所组成的不定积分。
根据
分部积分公式:
∫u(x)v'(x)dx = u(x)v(x) - ∫u'(x)v(x)dx
选择适当的函数u(x)和v'(x)进行代入,并反复应用分部积分,直至
求解出不定积分。
3.分式分解法:用于求解由多个分式相加组成的不定积分。
根据部分
分式定理,将复杂的分式分解为简单的分式,并分别求解不定积分。
4.积化和差法:将被积函数中的一些项进行积化和差,通过适当的变换,将不定积分转化为更简单的形式。
例如,常见的积化和差有平方差公式、和差化积公式等。
5.凑微分法:对于一些复杂的不定积分,可以采用凑微分的方法将其
化简。
根据不同情况,可以采用配方法、恒等变换、特殊关系式等凑微分。
6.特殊函数积分法:对于一些特殊的函数,有对应的积分公式或者常
用的积分技巧,可以直接使用这些方法进行求解。
例如,指数函数的积分、三角函数的积分等。
除了上述的常见方法外,在实际求解不定积分时还可以根据具体的情
况选择其他适当的方法。
此外,对于一些无法求解的积分,还可以采用数
值积分的方法进行近似求解。
无论采用哪种方法,求解不定积分需要熟悉
常用的积分公式,掌握各种积分方法的应用技巧,并具备一定的数学思维能力和逻辑推理能力。
求不定积分方法总结

求不定积分方法总结不定积分是微积分的重要内容之一,它是求函数的原函数的逆运算。
在实际计算中,我们经常遇到各种各样的函数需要求不定积分,因此需要掌握一些常用的不定积分方法。
下面将简要总结一下不定积分的常用方法。
1.代数法:代数法是不定积分中最基础的方法,通过运用代数规律和等式变换来求解不定积分。
常见的代数法包括分部积分法、换元积分法、有理函数分解法、幂函数积分等。
这些方法可以灵活应用,根据具体的题目来选择使用的方法。
2.分部积分法:分部积分法是将一个函数的不定积分转化为两个函数的乘积的不定积分,通过选择其中一个函数求导、另一个函数求不定积分,将原不定积分转化为两个已知不定积分的和或差。
该方法常用于特定的乘积形式的积分中,如指数函数与三角函数的乘积、对数函数与幂函数的乘积等。
3.换元积分法:换元积分法是通过进行变量替换,将原不定积分转化为简单的形式。
常见的变量替换包括凑微分法、三角代换、倒代换等。
换元积分法常用于含有复杂函数的不定积分,可以使计算更加简化。
4.常数变易法:常数变易法是通过引入一个常数项,将原不定积分转化为形如f(x)+C的形式,其中C为常数。
这样的不定积分可以通过已知的不定积分法则来求解。
常数变易法常用于复杂函数的不定积分中,通过引入常数项来简化计算过程。
5.常用函数积分形式:在求不定积分时,有一些常见的函数、特殊函数的积分形式是需要牢记的,如幂函数积分、指数函数积分、三角函数积分、反三角函数积分等。
这些常用函数的积分形式可以直接应用,对于一些特定的不定积分问题提供了便捷的求解方式。
6.空间曲线积分:空间曲线积分是在三维空间中对曲线上的向量场进行积分,是向量分析的重要内容之一、在求解空间曲线积分时,常用的方法有参数化法7.积分表与软件:在实际应用中,求解复杂函数的不定积分可能会非常困难,因此可以利用积分表和积分软件来进行计算。
积分表是一种列举了常见函数和其对应的不定积分形式的表格,可以方便地查阅不定积分结果。
求不定积分的几种基本方法

求不定积分的几种基本方法不定积分是求函数的原函数的过程,也就是求导的逆过程。
下面介绍几种基本的求不定积分的方法:1.直接积分法:直接应用不定积分的定义,逐项求积即可。
这个方法适用于具备初等函数原函数的情况,例如多项式函数、指数函数、对数函数、三角函数等。
2. 分部积分法:适用于积分项为两个函数的乘积时,将其转化为一个函数的导数和另一个函数的不定积分的积的形式进行求解。
分部积分法的公式为∫u dv = uv - ∫v du,选择不同的u和dv,通过反复应用该公式,可以将原积分项转化为更简单的形式。
3.换元积分法:也称为代换积分法,适用于积分项中含有复杂的函数形式时,通过建立合适的替代变量,将原积分转化为简单的形式。
换元积分法的核心思想是对积分变量进行代换,一般采用的代换方法有三角代换、指数代换、倒代换等。
换元积分法的关键是选取合适的代换变量,使得原积分转化为更容易求解的形式。
4.幂函数积分法:当积分项中含有形如x^n(n是常数)的幂函数时,可以利用幂函数的积分性质求解。
幂函数积分法是直接求解幂函数不定积分的方法,通过对幂函数的不定积分公式进行推导,得到幂函数积分的一般公式。
5.三角函数积分法:当积分项中含有三角函数时,可以利用三角函数的积分性质求解。
三角函数积分法是根据三角函数的不定积分公式进行求解,通过对三角函数的积分公式进行推导,得到不同三角函数的不定积分形式。
6.无穷级数展开法:对于一些特殊的函数,可以通过将其展开为无穷级数的形式,然后对无穷级数逐项求积分来求解原函数。
以上是一些常见的不定积分的基本方法。
在实际求解过程中,还可以结合不同的方法灵活应用,选择最适合的方法求解不定积分。
同时,需要注意积分常数的添加和积分区间的确定,以保证求解结果的正确性。
不定积分的基本方法与应用

不定积分的基本方法与应用不定积分是微积分中的重要概念,它是求函数的原函数的过程。
在本文中,我们将介绍不定积分的基本方法以及其在实际应用中的具体运用。
一、基本方法1. 代入法(反导法)代入法是最常用的不定积分求解方法之一。
当需要求解一个函数的不定积分时,我们可以通过将该函数的导函数代入到不定积分的表达式中,来求解原函数。
例如,对于函数 f(x) = x^2,我们可以求解其不定积分∫ x^2 dx = 1/3 x^3。
2. 分部积分法分部积分法是另一种常用的不定积分求解方法。
根据分部积分法,当需要求解一个函数积分的时候,我们可以将该函数分解为两个函数之积,并应用积分的线性性质进行求解。
例如,对于函数f(x) = x e^x,我们可以通过分部积分法求解其不定积分∫ x e^x dx = x e^x - ∫ e^x dx。
3. 换元法换元法是通过变量代换来求解不定积分的方法。
当需要求解一个复杂函数的不定积分时,我们可以通过引入一个新的变量并进行代换,从而将原来的不定积分变为一个简单的形式。
例如,对于函数 f(x) =sin(x^2),我们可以通过换元法求解其不定积分∫ sin(x^2) dx = ∫ 2xcos(x^2) dx。
二、应用不定积分在物理学、经济学等领域中有广泛的应用。
以下是一些具体的应用案例:1. 面积计算通过不定积分,我们可以求解曲线与坐标轴之间的面积。
这在几何学和物理学领域中非常有用。
例如,通过计算曲线 y = x^2 和坐标轴之间的面积,我们可以求解二次函数的不定积分∫ x^2 dx,并得到面积为1/3。
2. 弹性力学不定积分在弹性力学中起着重要的作用。
通过应变-位移关系的不定积分,我们可以求解物体受力下的形变情况。
例如,通过对应变关系的不定积分,我们可以求解弹簧受力下的位移,从而帮助设计弹簧的使用和有效性。
3. 经济学在经济学中,不定积分被广泛用于边际利润和成本分析。
通过求解边际效益和边际成本的不定积分,我们可以得到投入和产出之间的最优关系,在经济决策中有着重要的应用。
求不定积分的基本方法

1 例13. 求不定积分 ∫ dx . (2 + cos x) sin x sin x 解: 原式 = ∫ (令 u = cos x) dx 2 (2 + cos x ) sin x 1 =∫ du 2 ( 2 + u )(u − 1) A=1
1 ( 2+u )(u −1)
习题课 不定积分的计算方法
一、 求不定积分的基本方法 二、几种特殊类型的积分
第四章
机动
目录
上页
下页
返回
结束
一、 求不定积分的基本方法
1. 直接积分法 通过简单变形, 利用基本积分公式和运算法则 求不定积分的方法 . 2. 换元积分法
∫ f ( x ) dx
第一类换元法 第二类换元法
∫ f [ϕ (t )]ϕ ′(t ) dt
分部积分
机动
目录
上页
下页
返回
结束
1 dx . 例4. 设 y ( x − y ) = x , 求积分 ∫ x − 3y 解: y ( x − y ) 2 = x 令 x − y = t, 即 y = x −t
2
t3 x= 2 , t −1
t t 2 (t 2 − 3) y = 2 , 而 dx = 2 dt 2 t −1 (t − 1)
=
x x − 3 ln(e 6
+ 1) − 2
x 3 ln(e 3
x + 1) − 3 arctan e 6
+C
返回 结束
机动
目录
上页
下页
3 cos x − sin x dx . 例11. 求 ∫ cos x + sin x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说明: 此技巧适用于形为 acoxsbsin xdx的积分. ccoxsdsin x
机动 目录 上页 下页 返回 结束
例 解1:2因. 求 为I1aco sx isx b n sixn dIx2 及 aco cx sox bssixndx. a acco oxxss b bssiin n xxdx b acco oxxss a bssiin n xxdx
机动 目录 上页 下页 返回 结束
3. 分部积分法
uvdxuvuvdx
使用原则:
1) v 易求出
由 2) uvvdx;比
好求 .
一般经验: 按“反, 对, 幂, 指 , 三”
的顺序, 排前者取为 u ,排后者取为 v .
计算格式: 列表计 算
机动 目录 上页 下页 返回 结束
多次分部积分的 规 律
senc2x
(n 2 )se n 3 x c se xtc axn senc2xtaxn ( n 2 )sn e 2 x c (s 2 x e 1 )d x c
sen c2xtaxn(n2)In(n2)In2
机动 目录 上页 下页 返回 结束
例8. 求
解:
设
x1, F(x)x1
x1
u u u
u (n) u(n1)
(1)n (1)n1
v(n1k) v(n1) v (n) v(n1) v
v
特别: 当 u 为 n 次多项式时u(,n1) 0,计算大为简便 .
机动 目录 上页 下页 返回 结束
例1. 求
解: 原式
2x3x 32x 22x
dx
1 ((3232))x2dxadxx axlnadx
习题课
第四章
不定积分的计算方法
一、 求不定积分的基本方 法
二、几种特殊类型的积分
机动 目录 上页 下页 返回 结束
一、 求不定积分的基本方法
1. 直接积分法 通过简单变形, 利用基本积分公式和运算法则 求不定积分的方法 .
2. 换元积分法
第一类换元法
第二类换元法 (代换: x(t))
(注意常见的换元积分类型)
而 dxt(2t(2t21)32)dt
原式 t t2
3
1
1
t
3t 2
t(2t(2t
2
3) 1) 2
dt
1
1 2ln(xy)21C
机动 目录 上页 下页 返回 结束
例5. 求
解: 原式 arctexaden x
exarcetxa nex
1
ex e2x
dx
exarcetxan(11e2xe)2xe2xdx
exarcetxan x1 2ln(1e2x)C
机动 目录 上页 下页 返回 结束
例6. 求
解:
取
x3x2 3x2 1 6x
60
e 2x
1 2
e
2x
1 4
e
2
x
1 8
e
2
x
1 16
e
2x
原 式 e2x12(x3x2)
14(3x21)
1 8
6x116
6C
8 1 e 2 x (4 x 3 6 x 2 2 x 7 ) C
说明: 此法特别适用于 如下类型的积分:
Pn
(x)sienkax x
dx
cosax
机动 目录 上页 下页 返回 结束
例7. 设
证明递推公式:
I n n 1 1 sn e 2 x t ca x n n n 1 2 I n 2( n 2 )
证: In sen c2xsec2 xdx
1x, x1
则
1 2x2xC 1, x1
x1 2x2C 2, x1
因 连 利用
得
续
,
1 2C 11 2C2
记作
C
得
1 21C11 121 2 1 (2 1 2 1 2xx (x x 2 2 1C )12 x 2x )2 1 C 2 1 2 C ,C ,C ,, x x 1 1
机动 目录 上页 下页 返回 结束
例9. 设 为 的原函数,且
求
解: 由题设 F (x)f(x),则
故
即 又
, 因此
故
机动
1. 一般积分方 法
有理函数
分解
指数代换 万能代换 根式代换
多项式及 部分分式之和
指数函数有理式
三角函数有理式
三角代换
简单无理函数
机动 目录 上页 下页 返回 结束
uv(n1)dxuv(n)uv(n)dx uv(n)uv(n1) uv(n1)dx u v (n ) u v (n 1 ) u v (n 2 ) uv(n2)dx
u v (n ) u v (n 1 ) u v (n 2 ) (1)n 1u(n 1)vdx
快速计算表格:
u(k)
1
ln
2 3
d(32)x 1 (32)2x
arctan32)(x C ln2ln3
机动 目录 上页 下页 返回 结束
例2. 求
解:
原式 [ln x (1x2)5]1 2d[lnx (1x2)5]
2 lnx ( 1x2)523 C
3
分析:
d[lnx (1x2)5]
(1
2
12xx2)dx
x 1 x2
x
x
x.
1e2 e3 e6
x
解: 令t e 6 , 则 x6lnt, dx 6t dt
原式
6
(1t3dtt2t)t6
dt (t1)(t21)t
d t
6lnt 3lnt13ln(t2 1)3arc t tC an 2
机动 目录 上页 下页 返回 结束
例11. 求
解: 令3 co x ssixn A (x c s o x ) i B n ( sx c s o x ) i n s
dx 1 x2
机动 目录 上页 下页 返回 结束
例3. 求
解:
x 2sin x cos x
原式
2 2cos2 x
2 dx
2
xdtanx 2
tanx dx 2
xtanx C 2
分部积分
机动 目录 上页 下页 返回 结束
例4. 设
求积分
解:
令 xyt,即 yxt
x
t
t3 2
, 1
y
t
2
t, 1
2. 需要注意的问题 (1) 一般方法不一定是最简便的方 要注意综合 法 使, 用各种基本积分法, 简便计算 . (2) 初等函数的原函数不一定是初等函数 因, 此不一
定都能积出. 例如 ,
1 k 2 s2 ix d n x(0 k 1 ),
机动 目录 上页 下页 返回 结束
例10. 求
dx
令 aco x ( sA bs B ix ) n cx o ( A s B ) sx in 比较同类 项A 系( c 数c x A d o B s x 3 ) i s ,B ( 故c n A c 1 x , B d o s 2x ) i sn
A B 1
∴ 原式dx2dc(o x c x so ssiisxx n n )