第11章 相关与回归分析
第11章回归分析习题解答

B. 是随机变量,且有 y0 N (β0 + β1x0 ,σ 2 ) .
C. 当 β0 , β1 确知时等于 β0 + β1x0 .
D. 等于 βˆ0 + βˆ1x0 .
6. 在回归分析中,检验线性相关显著性常用的三种检验方法,不包含(
A. 相关系数显著性检验法.
B. t 检验法.
; 若 新 保 单 数 x0 = 1000 , 给 出 Y 的 估 计 值 为
yˆ0 = 0.118129 + 0.003585×1000 = 3.703129 .
16. 下表是 16 只公益股票某年的每股帐面价值 x 和当年红利 y ,利用 Excel 的数据分
析功能得到的统计分析结果如下:
方差分析
过 10 周时间,收集了每周加班工作时间的数据和签发的新保单数目, x 为每周签发的新保
单数目,Y 为每周加班工作时间(小时).利用 Excel 的数据分析功能得到统计分析如下表.
Coefficients
标准误差
Intercept X Variable 1
0.118129 0.003585
0.355148 0.000421
15.1
15.1
228.01
228.01
18
15.1
14.5
228.01
210.25
列和
270.1
265
计算可得:
4149.39
3996.14
∑ Syy =
y2 i
−
ny 2
=94.75
∑ Sxx =
x2 i
−
nx 2
=96.39
∑ Sxy = xi yi − nxy = 95.24
《SPSS统计分析》第11章 回归分析

返回目录
多元逻辑斯谛回归
返回目录
多元逻辑斯谛回归的概念
回归模型
log( P(event) ) 1 P(event)
b0
b1 x1
b2 x2
bp xp
返回目录
多元逻辑斯谛回归过程
主对话框
返回目录
多元逻辑斯谛回归过程
参考类别对话框
保存对话框
返回目录
多元逻辑斯谛回归过程
收敛条件选择对话框
创建和选择模型对话框
返回目录
曲线估计
返回目录
曲线回归概述
1. 一般概念 线性回归不能解决所有的问题。尽管有可能通过一些函数
的转换,在一定范围内将因、自变量之间的关系转换为线性关 系,但这种转换有可能导致更为复杂的计算或失真。 SPSS提供了11种不同的曲线回归模型中。如果线性模型不能确 定哪一种为最佳模型,可以试试选择曲线拟合的方法建立一个 简单而又比较合适的模型。 2. 数据要求
线性回归分析实例1输出结果2
方差分析
返回目录
线性回归分析实例1输出结果3
逐步回归过程中不在方程中的变量
返回目录
线性回归分析实例1输出结果4
各步回归过程中的统计量
返回目录
线性回归分析实例1输出结果5
当前工资变量的异常值表
返回目录
线性回归分析实例1输出结果6
残差统计量
返回目录
线性回归分析实例1输出结果7
返回目录
习题2答案
使用线性回归中的逐步法,可得下面的预测商品流通费用率的回归系数表:
将1999年该商场商品零售额为36.33亿元代入回归方程可得1999年该商场 商品流通费用为:1574.117-7.89*1999+0.2*36.33=4.17亿元。
回归分析与相关分析

回归分析与相关分析回归分析是通过建立一个数学模型来研究自变量对因变量的影响程度。
回归分析的基本思想是假设自变量和因变量之间存在一种函数关系,通过拟合数据来确定函数的参数。
回归分析可以分为线性回归和非线性回归两种。
线性回归是指自变量和因变量之间存在线性关系,非线性回归是指自变量和因变量之间存在非线性关系。
回归分析可用于预测、解释和控制因变量。
回归分析的应用非常广泛。
例如,在经济学中,回归分析可以用于研究收入与消费之间的关系;在医学研究中,回归分析可以用于研究生活方式与健康之间的关系。
回归分析的步骤包括确定自变量和因变量、选择合适的回归模型、拟合数据、检验模型的显著性和解释模型。
相关分析是一种用来衡量变量之间相关性的方法。
相关分析通过计算相关系数来度量变量之间的关系的强度和方向。
常用的相关系数有Pearson相关系数、Spearman相关系数和判定系数。
Pearson相关系数适用于连续变量,Spearman相关系数适用于顺序变量,判定系数用于解释变量之间的关系。
相关分析通常用于确定两个变量之间是否相关,以及它们之间的相关性强度和方向。
相关分析的应用也非常广泛。
例如,在市场研究中,相关分析可以用于研究产品价格与销量之间的关系;在心理学研究中,相关分析可以用于研究学习成绩与学习时间之间的关系。
相关分析的步骤包括确定变量、计算相关系数、检验相关系数的显著性和解释相关系数。
回归分析与相关分析的主要区别在于它们研究的对象不同。
回归分析研究自变量与因变量之间的关系,关注的是因变量的预测和解释;相关分析研究变量之间的关系,关注的是变量之间的相关性。
此外,回归分析通常是为了解释因变量的变化,而相关分析通常是为了量化变量之间的相关性。
综上所述,回归分析和相关分析是统计学中常用的两种数据分析方法。
回归分析用于确定自变量与因变量之间的关系,相关分析用于测量变量之间的相关性。
回归分析和相关分析在实践中有广泛的应用,并且它们的步骤和原理较为相似。
考点11 回归分析与独立性检验(学生版)

考点11 回归分析与独立性检验概率与统计,是历年高考的必考点,尤其是新高考改革后,各卷都有考查,其主要考查内容有:数字特征与概率的计算问题、随机变量的均值与方差、回归分析与独立性检验、二项分布及其应用等。
例如:2021年全国高考乙卷(文)、(理)[17],2022年全国新高考卷Ⅱ[19],2022年全国乙卷(文)、(理)[19],2022年全国甲卷(文)[17],2022年北京高考[18]等都对数字特征与概率的计算问题进行了考查。
〔1〕回归分析的实际应用1.求回归直线方程(线性回归方程)的一般步骤 (1)画散点图; (2)求回归直线方程; (3)用回归直线方程进行预报。
2.利用回归方程进行预测,把回归直线方程看作一次函数,求函数值。
3.利用回归直线判断正、负相关,决定正相关还是负相关的是系数bˆ。
4.回归方程的拟合效果,可以利用相关系数判断,当||r 越趋近于1时,两变量的线性相关性越强。
〔2〕独立性检验的实际应用 1.独立性检验的一般步骤(1)根据样本数据列出2×2列联表;(2)计算随机变量2K 的观测值k ,查表确定临界值0k ;(3)如果0k k ≥,就推断“X 与Y 有关系”,这种推断犯错误的概率不超过()02k K P ≥;否则,就认为在犯错误的概率不超过()02k K P ≥的前提下不能推断“X 与Y 有关系”,或者在样本数据中没有发现足够证据支持结论“X 与Y有关系”。
2.独立性检验的应用可以利用独立性检验来推断两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度。
具体做法是: (1)根据实际问题需要的可信程度(或容许犯错误概率的上界)确定临界值0k ; (2)利用公式,由观测数据计算得到随机变量2K 的观测值k ;(3)如果0k k ≥,就说有()()%100102⨯≥-k K P 的把握认为“X 与Y 有关系”(或说在犯错误的概率不超过()2k K P ≥的前提下认为“X 与Y 有关系”),否则就说样本观测数据没有提供“X 与Y 有关系”的充分证据(或说在犯错误的概率不超过()02k K P ≥的前提下不能认为“X 与Y 有关系”)。
管理统计学习题参考答案第十一章

十一章1. 解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。
相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。
相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。
既可以从描述统计的角度,也可以从推断统计的角度来说明。
所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。
所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。
只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。
由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。
在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。
需要指出的是,相关分析和回归分析只是定量分析的手段。
通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。
因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。
计量经济学名词解释和简答题

计量经济学 第一部分:名词解释第一章1、模型:对现实的描述和模拟。
2、广义计量经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。
3、狭义计量经济学:以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。
第二章1、总体回归函数:指在给定Xi 下Y 分布的总体均值与Xi 所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。
2、样本回归函数:指从总体中抽出的关于Y ,X 的若干组值形成的样本所建立的回归函数。
3、随机的总体回归函数:含有随机干扰项的总体回归函数(是相对于条件期望形式而言的)。
4、线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的1次方出现。
5、随机干扰项:即随机误差项,是一个随机变量,是针对总体回归函数而言的。
6、残差项:是一随机变量,是针对样本回归函数而言的。
7、条件期望:即条件均值,指X 取特定值Xi 时Y 的期望值。
8、回归系数:回归模型中βo ,β1等未知但却是固定的参数。
9、回归系数的估计量:指用01,ββ等表示的用已知样本提供的信息所估计出来总体未知参数的结果。
10、最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。
11、最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。
12、估计量的标准差:度量一个变量变化大小的测量值。
13、总离差平方和:用TSS 表示,用以度量被解释变量的总变动。
14、回归平方和:用ESS 表示:度量由解释变量变化引起的被解释变量的变化部分。
15、残差平方和:用RSS 表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。
16、协方差:用Cov (X ,Y )表示,度量X,Y 两个变量关联程度的统计量。
17、拟合优度检验:检验模型对样本观测值的拟合程度,用2R 表示,该值越接近1,模型对样本观测值拟合得越好。
统计学教案习题11多元线性回归与logistic回归
第十一章 多元线性回归与logistic 回归一、教学大纲要求(一)掌握内容1.多元线性回归分析的概念:多元线性回归、偏回归系数、残差。
2.多元线性回归的分析步骤:多元线性回归中偏回归系数及常数项的求法、多元线性回归的应用。
3.多元线性回归分析中的假设检验:建立假设、计算检验统计量、确定P 值下结论。
4.logistic 回归模型结构:模型结构、发病概率比数、比数比。
5.logistic 回归参数估计方法。
6.logistic 回归筛选自变量:似然比检验统计量的计算公式;筛选自变量的方法。
(二)熟悉内容 常用统计软件(SPSS 及SAS )多元线性回归分析方法:数据准备、操作步骤与结果输出。
(三)了解内容 标准化偏回归系数的解释意义。
二、教学内容精要(一) 多元线性回归分析的概念将直线回归分析方法加以推广,用回归方程定量地刻画一个应变量Y 与多个自变量X 间的线形依存关系,称为多元线形回归(multiple linear regression ),简称多元回归(multiple regression )基本形式:01122ˆk kY b b X b X b X =+++⋅⋅⋅+ 式中Y ˆ为各自变量取某定值条件下应变量均数的估计值,1X ,2X ,…,k X 为自变量,k 为自变量个数,0b 为回归方程常数项,也称为截距,其意义同直线回归,1b ,2b ,…, k b 称为偏回归系数(partial regression coefficient ),j b 表示在除j X 以外的自变量固定条件下,j X 每改变一个单位后Y 的平均改变量。
(二) 多元线性回归的分析步骤Y ˆ是与一组自变量1X ,2X ,…,kX 相对应的变量Y 的平均估计值。
多元回归方程中的回归系数1b ,2b ,…, k b 可用最小二乘法求得,也就是求出能使估计值Yˆ和实际观察值Y 的残差平方和22)ˆ(∑∑-=Y Y e i 为最小值的一组回归系数1b ,2b ,…, k b 值。
第11章 多重线性回归分析思考与练习参考答案
第11章多重线性回归分析思考与练习参考答案一、最佳选择题1.逐步回归分析中,若增加自变量的个数,则(D)。
A.回归平方和与残差平方和均增大B.回归平方和与残差平方和均减小C.总平方和与回归平方和均增大D.回归平方和增大,残差平方和减小E.总平方和与回归平方和均减小2.下面关于自变量筛选的统计学标准中错误的是(E)。
A.残差平方和(SS残差)缩小B.确定系数(R)增大2C.残差的均方(MS残差)缩小D.调整确定系数(Rad)增大2E.Cp统计量增大3.多重线性回归分析中,能直接反映自变量解释因变量变异百分比的指标为(C)。
A.复相关系数B.简单相关系数C.确定系数D.偏回归系数E.偏相关系数4.多重线性回归分析中的共线性是指(E)。
A.Y关于各个自变量的回归系数相同B.Y关于各个自变量的回归系数与截距都相同C.Y变量与各个自变量的相关系数相同D.Y与自变量间有较高的复相关E.自变量间有较高的相关性5.多重线性回归分析中,若对某一自变量的值加上一个不为零的常数K,则有(D)。
A.截距和该偏回归系数值均不变B.该偏回归系数值为原有偏回归系数值的K 倍C.该偏回归系数值会改变,但无规律D.截距改变,但所有偏回归系数值均不改变E.所有偏回归系数值均不会改变二、思考题1.多重线性回归分析的用途有哪些?答:多重线性回归在生物医学研究中有广泛的应用,归纳起来,可以包括以下几个方面:定量地建立一个反应变量与多个解释变量之间的线性关系,筛选危险因素,通过较易测量的变量估计不易测量的变量,通过解释变量预测反应变量,通过反应变量控制解释变量。
2.多重线性回归模型中偏回归系数的含义是什么?答:偏回归系数的含义是:在控制其他自变量的水平不变的情况下,该自变量每改变一个单位,反应变量平均改变的单位数。
3.请解释用于多重线性回归参数估计的最小二乘法的含义。
答:最小二乘法的含义是:残差的平方和达到最小。
4.如何判断和处理多重共线性?答:如果自变量之间存在较强的相关,则存在多重共线性。
管理统计学习题参考答案第十一章
一章1. 解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。
相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。
相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。
既可以从描述统计的角度,也可以从推断统计的角度来说明。
所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。
所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。
只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。
由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。
在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。
需要指出的是,相关分析和回归分析只是定量分析的手段。
通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。
因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。
第11章 统计分析—双变量
10- 13 10-
社会 统计学
2、方差齐性检验和t检验结果 、方差齐性检验和t
F值>F 0.025 (n 1-1,n 2-1), 说明方差不齐。
10- 14 10-
P值小于给定的显著性水平α, 说明方差不齐。
P值小于给定的显著性水平α, 拒绝原假设。
社会 统计学
社会 统计学
10- 44 10-
社会 统计学
10- 45 10-
社会 统计学
【例2】“年龄段”与“忙碌程度”
10- 46 10-
社会 统计学
10- 47 10-
社会 统计学
10- 48 10-
社会 统计学
10- 49 10-
社会 统计学
斯皮尔曼等级相关系数(spearman)在这: 斯皮尔曼等级相关系数(spearman)在这: Analyze Correlate Bivariate
2、 比较重要 3、 一般 5、 很不重要 6 、说不清楚
10- 40 10-
社会 统计学
1、将被访者学历与“读书的地位”都看成 定类变量,作列联相关的检验。 2、被访者学历与“读书的地位”均为定序 量,作等级相关检验。
10- 41 10-
社会 统计学
10- 42 10-
社会 统计学
10- 43 10-
社会 统计学
二、独立样本T 检验 独立样本T
Analyze Compare Means
IndependentIndependent-Samples检验变量栏 T Test,
打开Independent-Samples T Test对 IndependentTest对
分组变量栏, 话框 只能有一个分 组变量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答:账单消费额与小费之间存在着高度的正相关关系。
19
统计学 问:若令账单消费额为 y,小费为x,则r的取值是否改变 ? 基础
账单Y 33.5 50.7 63.6 78.5 87.9 98.8 107.3 102.3 120.7 140.6 883.9 小费X 5.5 5.0 12.0 9.4 8.1 17.0 16.0 15.4 18.6 22.5 129.5 YX Y X 1122.25 30.25 184.25 2570.49 25.00 253.50 4044.96 144.00 763.20 6162.25 88.36 737.90 7726.41 65.61 711.99 9761.44 289.00 1679.60 11513.29 256.00 1716.80 10465.29 237.16 1575.42 14568.49 345.96 2245.02 19768.36 506.25 3163.50 87703.23 1987.59 13031.18 20
统计学 基础
学习目标
相关关系的分析 参数的最小二乘估计 回归分析(一元线性) 回归方程的显著性检验 利用回归方程进行预测 用 Excel 进行回归
第 11 章 相关与回归分析
11.1 相关分析
变量间的关系 相关关系的描述与测度 相关系数的显著性检验
11.1 相关分析 变量间的关系
1. 度量变量之间线性关系强度的一个统计量
也称为Pearson相关系数 (Pearson’s correlation coefficient)
2. 样本相关系数的计算公式
r
( x x )( y y ) (x x) ( y y)
2
2
r
nxy xy nx2 (x)2 ny 2 (y)2
账单与小费的成对数据
账单 33.5 50.7 87.9 98.8 63.6 107.3 120.7 78.5 102.3 140.6 (美元) 小费 5.5 5.0 8.1 17 12 16 18.6 9.4 15.4 22.4 (美元)
统计学 问题: 基础
1、是否有足够的证据断定:在账单与小费数额之间存在某种 联系? 2、如果存在某种联系,怎样使用这种联系来确定应该留下多 少小费? 本章的重点就是基于成对出现的样本数据做出一些推论。 如上例,我们想要确定账单与小费数额之间是否存在某种联系, 如果存在,我们就想用一个公式来描述它,这样就能找出人们 留小费时遵循的规则。类似这样的问题还有很多,如: (1)考试分数与复习时间; (2)香烟消费与患癌症率; (3)个人收入水平与受教育年限;(4)血压与年龄; (5)父母身高与子女身高; (6)农作物产量与降雨量。
统计学 基础
Statistics in Practice
消费者应该留下多少小费? 在西方国家餐饮等服务行业有一条不成文的规定,即发生餐饮 等服务项目消费时,必须给服务员一定数额的小费,许多人都 听说小费应该是账单的16%左右,是否真的如此呢?让我们来 考察下表,表中的数据是经过调查所得的样本数据,通过对这 几组数据的分析与观察,我们能发现两者之间的数量关系。
绘制散点图
统计学 基础
14 1Байду номын сангаас 10
散点图
(例题分析)
14 12 10
î û¿ ¼´ »Á ²
8 6 4 2 0
0 50 100 150 200
î û ¿ ¼ ´ » Á ²
8 6 4 2 0
0 100 200 300 400
¸ ¨ Ì ¶ × Ê ² ú Í ¶ × Ê ¶ î » Á ² ¼ ´ û î ¿ Ó ë Ì ¸ ¶ ¨× Ê ² ú Í ¶ Ê ×¶ î µ É Ä ¢ µ ã Í ¼
子女的身高与其父母身高的关系
一个人的收入水平同他受教育程度的关系
农作物的单位面积产量与降雨量之间的关系
11.1 相关关系 相关关系的描述与测度
统计学 基础
散点图
(scatter diagram)
非线性相关
2 2
统计学 基础
相关系数
(例题分析)
统计学 基础
相关系数的性质
性质1:r 的取值范围是 [-1,1]
|r|=1,为完全相关
r =1,为完全正相关 r =-1,为完全负正相关
r = 0,不存在线性相关关系 -1r<0,为负相关 0<r1,为正相关 |r|越趋于 1 表示关系越强; |r|越趋于 0 表示关 系越弱
û ¿ ´ î Ó à ¶ î » Á ² ¼ ´ û ¿ î Ó ë ´ û ¿ î Ó à ¶ î µ Ä É ¢ µ ã ¼ Í
14 12 10
14 12 10
î û ¿ ¼ ´ » Á ²
î û ¿ ¼ ´ » Á ²
8 6 4 2 0
0 5 10 15 20 25 30
8 6 4 2 0 0 40 ´ ¿ û î Ï î Ä ¿ ö · Ê ý » Á ² ¼ ´ û ¿ î Ó ë û ´ î ¿ î Ï Ä ¿ · ö Ê ý Ä ¢ µ É µ ã Í ¼ 20
统计学 基础
相关系数的经验解释
|r|0.8时,可视为两个变量之间高度相关 0.5|r|<0.8时,可视为中度相关 0.3|r|<0.5时,视为低度相关 |r|<0.3时,说明两个变量之间的相关程度 极弱,可视为不相关 5. 上述解释必须建立在对相关系数的显著性 进行检验的基础之上 1. 2. 3. 4.
完全正线性相关
完全负线性相关
负线性相关
不相关
正线性相关
统计学 基础
用散点图描述变量间的关系
(例题分析)
【例】一家大型商业银行在多个地区设 有分行,其业务主要是进行基础设施建 设、国家重点项目建设、固定资产投资 等项目的贷款。近年来,该银行的贷款 额平稳增长,但不良贷款额也有较大比 例的提高,这给银行业务的发展带来较 大压力。为弄清楚不良贷款形成的原因, 希望利用银行业务的有关数据做些定量 分析,以便找出控制不良贷款的办法。 下面是该银行所属的 25 家分行 2002 年 的有关业务数据
统计学 基础
正如 Galton 进一步发现的那样,平均来说,非常矮小的父 辈倾向于有偏高的子代;而非常高大的父辈则倾向于有偏 矮的子代。在第一次考试中成绩最差的那些学生在第二次 考试中倾向于有更好的成绩(比较接近所有学生的平均成绩), 而第一次考试中成绩最好的那些学生在第二次考试中则倾 向于有较差的成绩(同样比较接近所有学生的平均成绩)。同 样,平均来说,第一年利润最低的公司第二年不会最差, 而第一年利润最高的公司第二年则不会是最好的 如果把父代和子代看作两个变量,找出这两个变量的关系, 并根据这种关系建立适当的数学模型,就可以根据父代的 数值预测子代的取值,这就是经典的回归方法要解决的问 题。学完本章的内容你会对回归问题有更深入的理解
计算相关系数
统计学 基础
账单X 33.5 50.7 63.6 78.5 87.9 98.8 107.3 102.3 120.7 140.6 883.9
[例]计算过程
小费Y 5.5 5 12 9.4 8.1 17 16 15.4 18.6 22.5 129.5 XY X Y 1122.25 30.25 184.25 2570.49 25 253.5 4044.96 144 763.2 6162.25 88.36 737.9 7726.41 65.61 711.99 9761.44 289 1679.6 11513.29 256 1716.8 10465.29 237.16 1575.42 14568.49 345.96 2245.02 19768.36 506.25 3163.5 87703.23 1987.59 13031.18
统计学 基础
相关系数的性质
性质2:r具有对称性。即x与y之间的相关系数和y与x之间 的相关系数相等,即rxy= ryx 性质3:r数值大小与x和y原点及尺度无关,即改变x和y的 数据原点及计量尺度,并不改变r数值大小 性质4:仅仅是x与y之间线性关系的一个度量,它不能用 于描述非线性关系。这意为着, r=0只表示两个 变量之间不存在线性相关关系,并不说明变量之 间没有任何关系 性质5:r虽然是两个变量之间线性关系的一个度量,却不 一定意味着x与y一定有因果关系
11.1 相关关系 相关系数的显著性检验
统计学 基础
一些人相信他们手掌生命线的 长度可以用来预测他们的寿命。 M.E. Wilson和L.E. Mather在 《美国医学协会学报》上发表的一封信 中,通过对尸体的研究对此给予了驳斥。 死亡时的年龄与手掌生命线的长度被一 起记录下来。作者得出死亡时的年龄与 生命线的长度不存在显著相关的结论。 手相术失传了,手也就放得下了。
统计学 基础
相关关系
(correlation)
1. 一个变量的取值不能由 另一个变量唯一确定 2. 当变量 x 取某个值时, 变量 y 的取值对应着一 个分布 3. 各观测点分布在直线周 围
y
x
统计学 基础
相关关系
(几个例子)
从遗传学角度看,父母身高较高时,其子女的身高一般也比 较高。但实际情况并不完全是这样,因为子女的身高并不完 全是由父母身高一个因素所决定的,还有其他许多因素的影 响 收入水平相同的人,他们受教育的程度也可能不同,而受教 育程度相同的人,他们的收入水平也往往不同。因为收入水 平虽然与受教育程度有关系,但它并不是决定收入的惟一因 素,还有职业、工作年限等诸多因素的影响 在一定条件下,降雨量越多,单位面积产量就越高。但产量 并不是由降雨量一个因素决定的,还有施肥量、温度、管理 水平等其他许多因素的影响