1.1.1变化率问题-1.1.2导数的概念
2020年人教版A版数学选修2-2全册完整讲义学案(教师用书)

第一章导数及其应用§1.1变化率与导数§1.1.1变化率问题§1.1.2导数的概念§1.1.3导数的几何意义§1.2导数的计算§1.2.1几个常用函数的导数§1.2.2基本初等函数的导数公式及导数的运算法则(一) §1.2.2基本初等函数的导数公式及导数的运算法则(二) §1.3导数在研究函数中的应用§1.3.1函数的单调性与导数§1.3.2函数的极值与导数§1.3.3函数的最大(小)值与导数§1.4生活中的优化问题举例§1.5定积分的概念§1.5.1曲边梯形的面积§1.5.2汽车行驶的路程§1.5.3定积分的概念§1.6微积分基本定理§1.7定积分的简单应用§1.7.1定积分在几何中的应用§1.7.2定积分在物理中的应用章末整合提升章末达标测试第二章推理与证明§2.1合情推理与演绎推理§2.1.1合情推理§2.1.2演绎推理§2.2直接证明与间接证明§2.2.1综合法和分析法§2.2.2反证法§2.3数学归纳法章末整合提升章末达标测试第三章数系的扩充与复数的引入§3.1数系的扩充和复数的概念§3.1.1数系的扩充和复数的概念§3.1.2复数的几何意义§3.2复数代数形式的四则运算§3.2.1复数代数形式的加、减运算及其几何意义§3.2.2复数代数形式的乘除运算章末整合提升章末达标测试模块综合检测§1.1 变化率与导数§1.1.1 变化率问题 §1.1.2 导数的概念[课标要求]1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景.(难点) 2.会求函数在某一点附近的平均变化率.(重点)3.会利用导数的定义求函数在某点处的导数.(重点、难点)一、函数平均变化率如果函数关系用y =f (x )表示,那么变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率.习惯上用Δx 表示x 2-x 1,即Δx =x 2-x 1,可把Δx 看作是相对于x 1的一个“增量”,可用x 1+Δx 代替x 2;类似地,Δy =f (x 2)-f (x 1).于是平均变化率可以表示为Δy Δx. 二、导数的有关概念 1.瞬时变化率函数y =f (x )在x =x 0处的瞬时变化率是f (x 0+Δx )-f (x 0)Δx =ΔyΔx. 2.函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率称为函数y =f (x )在x =x 0处的导数,记作,即f ′(x 0)=ΔyΔx=f (x 0+Δx )-f (x 0)Δx.知识点一 平均变化率 【问题1】 气球的膨胀率 阅读教材,思考下面的问题.吹一只气球,观察一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?答案 气球的半径r (单位:dm)与体积V (单位:L)之间的函数关系是r (V )=33V4π, (1)当空气容量V 从0增加到1 L 时,气球半径增加了r (1)-r (0)≈0.62(dm), 气球的平均膨胀率为r (1)-r (0)1-0≈0.62(dm/L).(2)当空气容量V 从1 L 增加到2 L 时,气球半径增加了r (2)-r (1)≈0.16(dm), 气球的平均膨胀率为r (2)-r (1)2-1≈0.16(dm/L).可以看出,随着气球体积逐渐变大,它的平均膨胀率逐渐变小了. 【问题2】 高台跳水人们发现,在高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)存在函数关系h (t )=-4.9t 2+6.5t +10.计算运动员在时间段①0≤t ≤0.5,②1≤t ≤2内的平均速度v ,并思考平均速度有什么作用? 答案 (1)在0≤t ≤0.5这段时间里,v =h (0.5)-h (0)0.5-0=4.05(m/s);(2)在1≤t ≤2这段时间里,v =h (2)-h (1)2-1=-8.2(m/s).由以上计算体会到平均速度可以描述运动员在某段时间内运动的快慢. 【问题3】 结合问题1和问题2说出你对平均变化率的理解.答案 (1)如果上述两个问题中的函数关系用y =f (x )表示,那么问题1中的变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,平均变化率可以描述一个函数在某个范围内变化的快慢.问题1中的平均变化率表示在空气容量从V 1增加到V 2时,气球半径的平均增长率.问题2中的平均变化率表示在时间从t 1增加到t 2时,高度h 的平均增长率.(2)平均变化率的几何意义就是函数y =f (x )图象上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2))所在直线的斜率. (3)平均变化率的取值①平均变化率可以表现函数的变化趋势,平均变化率为0,并不一定说明函数f (x )没有发生变化.②自变量的改变量Δx 取值越小,越能准确体现函数的变化规律. (4)平均变化率的物理意义平均变化率的物理意义是把位移s 看成时间t 的函数s =s (t ),在时间段[t 1,t 2]上的平均速度,即v =s (t 2)-s (t 1)t 2-t 1.知识点二 函数在某点处的导数【问题1】 (1)物体的平均速度能否精确反映它的运动状态? (2)什么叫做瞬时速度? (3)它与平均速度有什么关系?答案 (1)物体的平均速度不能精确地反映物体的运动状态,如高台跳水运动员相对于水面的高度h 与起跳时间t 的函数关系h (t )=-4.9t 2+6.5t +10,易知h (6549)=h (0),v =h (6549)-h (0)6546-0=0,而运动员依然是运动状态.(2)设物体运动的路程与时间的关系是s =f (t ),当Δt 趋近于0时,函数f (t )在t 0到t 0+Δt 之间的平均变化率f (t 0+Δt )-f (t 0)Δt趋近于常数,我们把这个常数称为t 0时刻的瞬时速度.(3)平均速度只能粗略地描述物体的运动状态,并不能反映物体在某一时刻的瞬时速度.当时间间隔|Δt |趋近于0时,平均速度v 就无限趋近于t 0时的瞬时速度.【问题2】 平均变化率与瞬时变化率有什么关系?答案 (1)区别:平均变化率不是瞬时变化率.平均变化率刻画函数值在区间[x 1,x 2]上变化的快慢,瞬时变化率刻画函数值在x 0点处变化的快慢.(2)联系:当Δx 趋近于0时,平均变化率ΔyΔx 趋近于一个常数,这个常数即为函数在x 0处的瞬时变化率,它是一个固定值.【问题3】 导数与瞬时变化率有什么关系? 答案 导数与瞬时变化率的关系导数是函数在x 0及其附近函数的改变量Δy 与自变量的改变量Δx 之比在Δx 趋近于0时所趋近的数,它是一个局部性的概念,若ΔyΔx存在,则函数y =f (x )在x 0处有导数,否则不存在导数.可以说导数就是函数在某点处的导数,例如,位移s 关于时间t 的导数就是运动物体在某时刻的瞬时速度.题型一 求函数的平均变化率求函数f (x )=x 2在x 0到x 0+Δx 之间的平均变化率. 【解析】 函数f (x )=x 2在x 0到x 0+Δx 的平均变化率为 f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=x 20+2x 0Δx +(Δx )2-x 2Δx=2x 0·Δx +(Δx )2Δx =2x 0+Δx .●规律方法求函数y =f (x )平均变化率的步骤(1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.[特别提醒](1)求函数平均变化率时注意Δx ,Δy ,两者都可正、可负,但Δx 的值不能为零,Δy 的值可以为零. (2)求点x 0附近的平均变化率,可用f (x 0+Δx )-f (x 0)Δx的形式.1.若本例中,Δx =13,x 0=1,2,3,比较函数f (x )=x 2在哪一点附近的平均变化率最大?解析 x 0=1到x =1+13=43的平均变化率k 1=f ⎝⎛⎭⎫43-f (1)13=⎝⎛⎭⎫432-1213=73, x 0=2到x =73的平均变化率k 2=f ⎝⎛⎭⎫73-f (2)13=⎝⎛⎭⎫732-2213=133,x 0=3到x =103的平均变化率k 3=f ⎝⎛⎭⎫103-f (3)13=⎝⎛⎭⎫1032-3213=193,由于k 1<k 2<k 3,∴函数f (x )=x 2在x 0=3附近的平均变化率最大. 题型二 物体运动的瞬时速度物体自由落体的运动方程是s =12gt 2(g =9.8 m/s 2),求物体在t =3 s 这一时刻的速度.【解析】 平均速度Δs Δt =12g (3+Δt )2-12g ×32Δt=12g (6+Δt ). 当Δt 趋于0时,Δs Δt =12g (6+Δt )趋于3g ,所以v =3g =29.4(m/s),即物体在t =3 s 时的速度为29.4 m/s.●规律方法求运动物体瞬时速度的步骤(1)求时间改变量Δt 和位置改变量Δs =s (t 0+Δt )-s (t 0). (2)求平均速度v =ΔsΔt.(3)求瞬时速度:当Δt 无限趋近于0,ΔsΔt 无限趋近于的常数v 即为瞬时速度.提示 求ΔyΔx (当Δx 无限趋近于0时)的极限的方法(1)在极限表达式中,可把Δx 作为一个变量来参与运算.(2)求出ΔyΔx的表达式后,Δx 无限趋近于0就是令Δx =0,求出结果即可.2.一辆汽车按规律s =2t 2+3做直线运动,求这辆车在t =2时的瞬时速度(时间单位:s ,位移单位:m). 解析 设这辆车在t =2附近的时间变化量为Δt ,则位移的增量Δs =[2(2+Δt )2+3]-(2×22+3)=8Δt +2(Δt)2,ΔsΔt=8+2Δt,ΔsΔt=(8+2Δt)=8.所以,这辆车在t=2时的瞬时速度为8 m/s.题型三求函数在某点处的导数(6分)求函数y=x-1x在x=1处的导数.【规范解答】因为Δy=(1+Δx)-11+Δx-(1-11)=Δx+Δx1+Δx,(2分)所以ΔyΔx=Δx+Δx1+ΔxΔx=1+11+Δx.(4分)当Δx→0时,f′(1)=ΔyΔx=(1+11+Δx)=2,即函数y=x-1x在x=1处的导数为2.(6分)●规律方法求函数y=f(x)在x=x0处的导数的步骤(1)求函数值的变化量Δy=f(x0+Δx)-f(x0);(2)求平均变化率ΔyΔx=f(x0+Δx)-f(x0)Δx;(3)取极限,得导数f′(x0)=ΔyΔx.3.利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.解析由导数的定义知,函数在x=2处的导数f′(2)=f(2+Δx)-f(2)Δx,而f(2+Δx)-f(2)=-(2+Δx)2+3(2+Δx)-(-22+3×2)=-(Δx)2-Δx,于是f′(2)=-(Δx)2-ΔxΔx=(-Δx-1)=-1.易错误区(一) 对导数的概念理解不清致误若函数f (x )在x =a 的导数为m ,那么 f (a +2Δx )-f (a -2Δx )Δx 的值为________.【解析】f (a +2Δx )-f (a -2Δx )Δx=f (a +2Δx )-f (a )+f (a )-f (a -2Δx )Δx=f (a +2Δx )-f (a )Δx +f (a )-f (a -2Δx )Δx ①=2f (a +2Δx )-f (a )2Δx+2f (a -2Δx )-f (a )-2Δx=2m +2m =4m . 【答案】 4m [易错防范]1.误认为①处两极限值均为m ,即运算结果为2m .2.对平均变化率中自变量的增加量“Δx ”理解不当.在平均变化率f (x 0+Δx )-f (x 0)Δx 中,分子中的“Δx ”与分母中的“Δx ”应取相同值,且可正可负.3.熟记瞬时变化率(即导数)的几种变形形式f (x 0+Δx )-f (x 0)Δx=f (x 0-Δx )-f (x 0)-Δx=f (x 0+n Δx )-f (x 0)n Δx=f (x 0+Δx )-f (x 0-Δx )2Δx=f ′(x 0).若f ′(1)=2 016,则f (1+Δx )-f (1)-2Δx=________.解析f (1+Δx )-f (1)-2Δx=-12f (1+Δx )-f (1)Δx=-12f ′(1)=-12×2 016=-1 008.答案 -1 008[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.质点运动规律s =2t 2+5,则在时间(2,2+Δt )中,相应的平均速度等于 A .8+2Δt B .8+2Δt +4ΔtC .4+ΔtD .8+Δt解析 Δs =s (2+Δt )-s (2)=2(2+Δt )2+5-(2×22+5)=2(Δt )2+8Δt . ∴Δs Δt =2(Δt )2+8Δt Δt =8+2Δt . 答案 A2.函数y =x 2-2x 在x =2附近的平均变化率是 A .2B .ΔxC .Δx +2D .1解析 Δy =f (2+Δx )-f (2) =(2+Δx )2-2(2+Δx )-(4-4) =(Δx )2+2Δx ,∴Δy Δx =(Δx )2+2Δx Δx=Δx +2.答案 C3.设函数y =f (x )可导,则f (1+3Δx )-f (1)Δx 等于 A .f ′(1)B .3f ′(1) C.13f ′(1) D .以上都不对 解析 f (1+3Δx )-f (1)Δx=3f (1+3Δx )-f (1)3Δx =3f ′(1). 答案 B4.一个物体的运动方程为s =(2t +1)2,其中s 的单位是米,t 的单位是秒,那么该物体在1秒末的瞬时速度是A .10米/秒B .8米/秒C .12米/秒D .6米/秒解析 ∵s =4t 2+4t +1,Δs =[4(1+Δt )2+4(1+Δt )+1]-(4×12+4×1+1)=4(Δt )2+12Δt ,Δs Δt =4(Δt )2+12Δt Δt=4Δt +12, ∴v =Δs Δt =(4Δt +12)=12(米/秒). 答案 C5.如果函数y =f (x )=x 在点x =x 0处的瞬时变化率是33,那么x 0的值是 A.34B.12 C .1D .3解析 函数f (x )=x 在x =x 0处的瞬时变化率,f ′(x 0)=x 0+Δx -x 0Δx =Δx Δx (x 0+Δx +x 0)=12x 0=33,答案 A 6.某物体做直线运动,其运动规律是s =t 2+16t(t 的单位是秒,s 的单位是米),则它的瞬时速度为0米/秒的时刻为A .8秒末B .6秒末C .4秒末D .2秒末解析 设当t =t 0时该物体瞬时速度为0米/秒,∵Δs Δt =(t 0+Δt )2+16t 0+Δt -⎝⎛⎭⎫t 20+16t 0Δt =2t 0+Δt -16(t 0+Δt )t 0, ∴Δs Δt=2t 0-16t 20, 由2t 0-16t 20=0得t 0=2. 答案 D二、填空题(每小题5分,共15分)7.函数y =-3x 2+6在区间[1,1+Δx ]内的平均变化率是________.解析 Δy Δx =[-3(1+Δx )2+6]-(-3×12+6)Δx=-6Δx -3(Δx )2Δx=-6-3Δx . 答案 -6-3Δx8.一质点的运动方程为s =1t,则t =3时的瞬时速度为________. 解析 由导数定义及导数的物理意义知s ′=1t +Δt -1t Δt=-Δt (t +Δt )·t ·Δt =-1t 2+t ·Δt =-1t 2, ∴s ′ |t =3=-19,即t =3时的瞬时速度为-19.9.已知曲线y =1x -1上两点A ⎝⎛⎭⎫2,-12、B ⎝⎛⎭⎫2+Δx ,-12+Δy ,当Δx =1时,割线AB 的斜率为________. 解析 Δy =⎝ ⎛⎭⎪⎫12+Δx -1-⎝⎛⎭⎫12-1 =12+Δx -12=2-(2+Δx )2(2+Δx )=-Δx 2(2+Δx ). ∴Δy Δx =-Δx2(2+Δx )Δx =-12(2+Δx ), 即k =Δy Δx =-12(2+Δx ). ∴当Δx =1时,k =-12×(2+1)=-16. 答案 -16三、解答题(本大题共3小题,共35分)10.(10分)一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2.(1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度;(3)求t =0到t =2的平均速度.解析 (1)v 0=s (Δt )-s (0)Δt=3Δt -(Δt )2Δt=(3-Δt )=3. (2)v 2=s (2+Δt )-s (2)Δt =(-Δt -1)=-1.(3)v -=s (2)-s (0)2=6-4-02=1. 11.(12分)已知f (x )=x 2,g (x )=x 3,求适合f ′(x 0)+2=g ′(x 0)的x 0值.解析 由导数的定义知,f ′(x 0)=Δf Δx =(x 0+Δx )2-x 20Δx =2x 0,g ′(x 0)=Δg Δx =(x 0+Δx )3-x 30Δx=3x 20. 因为f ′(x 0)+2=g ′(x 0),所以2x 0+2=3x 20,即3x 20-2x 0-2=0,解得x 0=1-73或x 0=1+73.12.(13分)节日期间燃放烟花是中国的传统习惯之一,制造时通常希望它在达到最高点时爆裂.如果烟花距地面的高度h (m)与时间t (s)之间的关系式为h (t )=-4.9t 2+14.7t +18,求烟花在t =2 s 时的瞬时速度,并解释烟花升空后的运动状况.解析 因为Δh Δt =h (t +Δt )-h (t )Δt=-9.8t -4.9Δt +14.7, 所以h ′(t )=Δh Δt =(-9.8t -4.9Δt +14.7)=-9.8t +14.7,所以h ′(2)=-4.9,即在t =2 s 时烟花正以4.9 m/s 的速度下降.由h ′(t )=0得t =1.5,所以在t =1.5 s 附近,烟花运动的瞬时速度几乎为0,此时达到最高点并爆裂,在1.5 s 之前,导数大于0且递减,所以烟花以越来越小的速度上升,在1.5 s 之后,导数小于0且绝对值越来越大,所以烟花以越来越大的速度下降,直至落地.§1.1.3 导数的几何意义[课标要求]1.了解导函数的概念;理解导数的几何意义.(难点)2.会求导函数.(重点)3.根据导数的几何意义,会求曲线上某点处的切线方程.(重点、易错点)一、导数的几何意义1.切线:如图,当点P n (x n ,f (x n ))(n =1,2,3,4…)沿着曲线f (x )趋近于点P (x 0,f (x 0))时,割线PP n 趋近于确定的位置,这个确定位置的直线PT 称为点P 处的切线.显然割线PP n 的斜率是k n =f (x n )-f (x 0)x n -x 0,当点P n 无限趋近于点P 时,k n 无限趋近于切线PT 的斜率.2.几何意义:函数y =f (x )在x =x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,即曲线y =f (x )在点P (x 0,f (x 0))处的切线斜率k =f (x 0+Δx )-f (x 0)Δx=f ′(x 0).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).二、函数y =f (x )的导函数从求函数f (x )在x =x 0处导数的过程可以看到,当x =x 0时,f ′(x 0)是一个确定的数.这样,当x 变化时, f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=f (x +Δx )-f (x )Δx.知识点一 导数的几何意义【问题1】 曲线的切线是不是一定和曲线只有一个公共点?答案 不一定.曲线的切线和曲线不一定只有一个公共点,和曲线只有一个公共点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.【问题2】 曲线f (x )在点(x 0,f (x 0))处的切线与曲线过某点(x 0,y 0)的切线有何不同?答案 曲线f (x )在点(x 0,f (x 0))处的切线,点(x 0,f (x 0))一定是切点,只要求出k =f ′(x 0),利用点斜式写出切线即可;而曲线f (x )过某点(x 0,y 0)的切线,给出的点(x 0,y 0)不一定在曲线上,即使在曲线上也不一定是切点.知识点二 导数与函数的单调性【问题1】 观察下面两个图形,在曲线的切点附近(Δx →0时)曲线与那一小段线段有何关系?答案 能在曲线的切点附近,曲线与切线贴合在一起,可用切线近似代替曲线.【问题2】 按照切线近似代替曲线的思想,切线的单调性能否表示曲线的变化趋势?如上左图,若在某一区间上曲线上各点的切线斜率均为负,则可判定在该区间上曲线的单调性如何?答案 在连续区间上切线斜率的正负,对应了曲线的单调性.【问题3】 如问题1中右图,当t 在(t 0,t 2)上变化时,其对应各点的导数值变化吗?会怎样变化? 答案 会.当t 变化时h ′(t )便是t 的一个函数,我们称它为h (t )的导函数.知识点三 函数y =f (x )的导函数【问题】 函数在某点处的导数与导函数有什么关系?答案 区别:(1)f ′(x )是函数f (x )的导函数,简称导数,是对一个区间而言的,它是一个确定的函数,依赖于函数本身,而与x 0,Δx 无关;(2)f ′(x 0)表示的是函数f (x )在x =x 0处的导数,是对一个点而言的,它是一个确定的值,与给定的函数及x 0的位置有关,而与Δx 无关.联系:在x =x 0处的导数f ′(x 0)是导函数f ′(x )在x =x 0处的函数值,因此求函数在某一点处的导数,一般先求导函数,再计算导函数在这点的函数值.题型一 求曲线的切线方程已知曲线y =13x 3上一点P ⎝⎛⎭⎫2,83,如图,求:(1)点P 处的切线的斜率;(2)点P 处的切线方程.【解析】 (1)∵y =13x 3, ∴y ′=Δy Δx =13(x +Δx )3-13x 3Δx =133x 2Δx +3x (Δx )2+(Δx )3Δx =13[3x 2+3x Δx +(Δx )2]=x 2, y ′|x =2=22=4.∴点P 处的切线的斜率等于4.(2)在点P 处的切线方程是y -83=4(x -2), 即12x -3y -16=0.●规律方法求曲线上某点处的切线方程的步骤(1)求出该点的坐标.(2)求出函数在该点处的导数,即曲线在该点处的切线的斜率.(3)利用点斜式写出切线方程.1.例1中的P 点换为坐标原点(0,0),其他不变,如何解答?解析 由例1知y =13x 3的导函数为y ′=x 2. (1)点P 处的切线斜率k =0.(2)在点P 处的切线方程是y -0=0×(x -0)即y =0.(注意:原点处的切线即x 轴,结合图象理解切线的定义)题型二 求切点坐标过曲线y =x 2上哪一点的切线满足下列条件?(1)平行于直线y =4x -5;(2)垂直于直线2x -6y +5=0;(3)倾斜角为135°.【解析】 f ′(x )=f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,x 0=2,y 0=4,即P (2,4)是满足条件的点.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,得x 0=-32,y 0=94, 即P ⎝⎛⎭⎫-32,94是满足条件的点. (3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,得x 0=-12,y 0=14, 即P ⎝⎛⎭⎫-12,14是满足条件的点. ●规律方法求切点坐标的一般步骤(1)先设切点坐标(x 0,y 0).(2)求导函数f ′(x ).(3)求切线的斜率f ′(x 0).(4)由已知条件求出切线的斜率k .由此得到方程f ′(x 0)=k ,解此方程求出x 0.(5)由于点(x 0,y 0)在曲线y =f (x )上,故将x 0代入曲线方程可得y 0,即可写出切点坐标.2.(1)曲线y =x 2-3x 在点P 处的切线平行于x 轴,则点P 的坐标为________.(2)已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________. 解析 (1)根据题意可设切点为P (x 0,y 0),因为Δy =(x +Δx )2-3(x +Δx )-(x 2-3x )=2x Δx +(Δx )2-3Δx , Δy Δx =2x +Δx -3, 所以f ′(x )=Δy Δx =(2x +Δx -3)=2x -3.由f ′(x 0)=0,即2x 0-3=0,得x 0=32, 代入曲线方程得y 0=-94, 所以P ⎝⎛⎭⎫32,-94. (2)由导数的几何意义得f ′(1)=12, 由切线方程得f (1)=12×1+2=52, 所以f (1)+f ′(1)=3.答案 (1)⎝⎛⎭⎫32,-94 (2)3 题型三 导数几何意义的综合应用已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 1,l 2的方程;(2)求由直线l 1、l 2和x 轴所围成的三角形的面积.【解析】 (1)f ′(1)=Δy Δx =f (1+Δx )-f (1)Δx=[(1+Δx )2+(1+Δx )-2]-(1+1-2)Δx=(Δx +3)=3, 所以直线l 1的方程为y =3x -3.设直线l 2与曲线y =x 2+x -2相切于点B (b ,b 2+b -2),则可求得切线l 2的斜率为2b +1.因为l 1⊥l 2,则有2b +1=-13,b =-23. 所以直线l 2的方程为y =-13x -229. (2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1、l 2与x 轴交点的坐标分别为(1,0)、⎝⎛⎭⎫-223,0. 所以所求三角形的面积S =12×253×⎪⎪⎪⎪-52=12512. ●规律方法与导数几何意义相关题目的解题策略(1)与导数的几何意义相关的综合问题解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点的坐标是常设的未知量.(2)与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线间的位置关系等,因此要综合应用所学知识解题.3.设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值. 解析 ∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3+a (x 0+Δx )2-9(x 0+Δx )-1-(x 30+ax 20-9x 0-1)=(3x 20+2ax 0-9)Δx +(3x 0+a )(Δx )2+(Δx )3, ∴Δy Δx=3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2.当Δx 无限趋近于零时,Δy Δx 无限趋近于3x 20+2ax 0-9,即f ′(x 0)=3x 20+2ax 0-9. ∴f ′(x 0)=3⎝⎛⎭⎫x 0+a 32-9-a23. 当x 0=-a 3时,f ′(x 0)取最小值-9-a 23.∵斜率最小的切线与12x +y =6平行, ∴该切线斜率为-12. ∴-9-a 23=-12.解得a =±3.又a <0,∴a =-3.规范解答(一) 求曲线过点P (x 1,y 1)的切线方程(12分)已知函数y =f (x )=x 3-3x 及y =f (x )上一点P (1,-2),求过点P 与曲线y =f (x )相切的直线l的方程.[审题指导]【规范解答】 (1)y ′=(x +Δx )3-3(x +Δx )-x 3+3xΔx=3x 2-3.(2分)设切点坐标为(x 0,x 30-3x 0), 则直线l 的斜率k =f ′(x 0)=3x 20-3,所以直线l 的方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0).又因为直线l 过点P (1,-2),所以-2-(x 30-3x 0)=(3x 20-3)(1-x 0), 所以2x 30-3x 20+1=0,即(x 0-1)2(2x 0+1)=0,解得x 0=1或x 0=-12.(6分)故所求直线斜率为k =3x 20-3=0或k =3x 20-3=-94, 于是y -(-2)=0·(x -1)或y -(-2)=-94(x -1),即y =-2或y =-94x +14.(10分)故过点P (1,-2)的切线方程为 y =-2或y =-94x +14.(12分)[题后悟道]1.求过点P (x 1,y 1)的切线方程的步骤: (1)设切点(x 0,f (x 0)).(2)利用所设切点求斜率k =Δy Δx. (3)用(x 0,f (x 0)),P (x 1,y 1)表示斜率(或利用切点和斜率写出切线方程).(4)根据斜率相等求得x 0,然后求得斜率k (或利用已写出的切线过点P (x ,y ),求出x 0,然后求得斜率k ). (5)根据点斜式写出切线方程. 2.注意事项:(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异.过点P 的切线,点P 不一定是切点,也不一定在曲线上;在点P 处的切线,点P 必为切点,且在曲线上.(2)若曲线y =f (x )在点x 0处的导数f ′(x 0)不存在,则切线与y 轴平行或不存在;若f ′(x 0)=0,则切线与x 轴平行.已知曲线y =2x 2-7,求曲线过点P (3,9)的切线方程. 解析 y ′=Δy Δx=[2(x +Δx )2-7]-(2x 2-7)Δx=(4x +2Δx )=4x .由于2×32-7=11≠9,故点P (3,9)不在曲线上.设切点为A (x 0,y 0),则切线的斜率k =4x 0, 故所求切线方程为y -y 0=4x 0(x -x 0). 将P (3,9)及y 0=2x 20-7代入上式,得 9-(2x 20-7)=4x 0(3-x 0).解得x 0=2或x 0=4,所以切点为(2,1)或(4,25). 从而所求切线方程为8x -y -15=0或16x -y -39=0.[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析 由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小, 结合导数的几何意义知f ′(x A )<f ′(x B ),选B. 答案 B2.曲线y =12x 2-2在点⎝⎛⎭⎫1,-32处的切线的倾斜角为 A .1 B.π4 C.5π4D .-π4解析 f ′(1)=12(1+Δx )2-2+32Δx=12+Δx +12(Δx )2-2+32Δx=(1+12Δx )=1,即切线的斜率为1,故切线的倾斜角为π4.答案 B3.若曲线y =2x 2-4x +a 与直线y =1相切,则a 等于 A .1 B .2 C .3D .4解析 设切点坐标为(x 0,1), 则f ′(x 0)=[2(x 0+Δx )2-4(x 0+Δx )+a ]-(2x 20-4x 0+a )Δx=(4x 0+2Δx -4)=4x 0-4=0,∴x 0=1,即切点坐标为(1,1). ∴2-4+a =1,即a =3. 答案 C4.设曲线y =x 2+x -2在点M 处的切线斜率为3,则点M 的坐标为 A .(0,-2) B .(1,0) C .(0,0)D .(1,1)解析 设点M (x 0,y 0), ∴k =(x 0+Δx )2+(x 0+Δx )-2-(x 20+x 0-2)Δx=2x 0+1, 令2x 0+1=3,∴x 0=1,则y 0=0.故选B. 答案 B5.曲线y =x 2在点(1,1)处的切线与坐标轴所围三角形的面积为 A.14B.12 C .1D .2 解析 f ′(1)=Δy Δx=(1+Δx )2-1Δx=(2+Δx )=2.则曲线在点(1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.则三角形的面积为S =12×1×12=14.答案 A6.已知点P 在曲线F :y =x 3-x 上,且曲线F 在点P 处的切线与直线x +2y =0垂直,则点P 的坐标为 A .(1,1)B .(-1,0)C .(-1,0)或(1,0)D .(1,0)或(1,1)解析 设点P (x 0,y 0),则f ′(x 0)=ΔyΔx=[(x 0+Δx )3-(x 0+Δx )]-(x 30-x 0)Δx=3x 20-1=2⇒x 0=±1. 答案 C二、填空题(每小题5分,共15分)7.如果函数f (x )在x =x 0处的切线的倾斜角是钝角,那么函数f (x )在x =x 0附近的变化情况是________(填“逐渐上升”或“逐渐下降”).解析 由题意知f ′(x 0)<0,根据导数的几何意义知,f (x )在x =x 0附近的变化情况是“逐渐下降”. 答案 逐渐下降8.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ab =________.解析a (1+Δx )2+b -(a +b )Δx=(a Δx +2a )=2a =2,∴a =1,又3=a ×12+b ,∴b =2, 即a b =12. 答案 129.已知曲线y =x 24的一条切线的斜率为12,则切点的坐标为________.解析 设切点的坐标为(x 0,y 0), 因为Δy Δx =(x 0+Δx )24-x 204Δx =12x 0+14Δx ,当Δx →0时,Δy Δx →12x 0,而切线的斜率为12,所以12x 0=12,所以x 0=1,y 0=14.故切点坐标为⎝⎛⎭⎫1,14. 答案 ⎝⎛⎭⎫1,14 三、解答题(本大题共3小题,共35分) 10.(10分)已知曲线C :y =x 3.求:(1)曲线C 上横坐标为1的点处的切线的方程;(2)第(1)小题中的切线与曲线C 是否还有其他的公共点? 解析 (1)将x =1代入曲线C 的方程得y =1, ∴切点为P (1,1). ∵y ′=ΔyΔx=(x +Δx )3-x 3Δx=3x 2Δx +3x (Δx )2+(Δx )3Δx=[3x 2+3x Δx +(Δx )2]=3x 2,∴y ′|x =1=3.∴点P 处的切线方程为y -1=3(x -1), 即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)(x 2+x -2)=0,解得x 1=1,x 2=-2.从而求得公共点为P (1,1)或P (-2,-8). 故第(1)小题中的切线与曲线C 还有其他的公共点.11.(12分)已知一物体的运动方程是s =⎩⎪⎨⎪⎧3t 2+2,0≤t <3,29+3(t -3)2,t ≥3.求此物体在t =1和t =4时的瞬时速度. 解析 当t =1时,Δs Δt =3(1+Δt )2+2-(3×12+2)Δt =6+3Δt , 所以s ′(1)=ΔsΔt=(6+3Δt )=6.故当t =1时的瞬时速度为6. 当t =4时,Δs Δt =29+3(4+Δt -3)2-[29+3×(4-3)2]Δt =6+3Δt , 所以s ′(4)=ΔsΔt=(6+3Δt )=6,故当t =4时的瞬时速度为6.12.(13分)已知曲线f (x )=x 2的一条在点P (x 0,y 0)处的切线,求: (1)切线平行于直线y =-x +2时切点P 的坐标及切线方程; (2)切线垂直于直线12x -4y +5=0时切点P 的坐标及切线方程;(3)切线的倾斜角为60°时切点P 的坐标及切线方程. 解析 f ′(x 0)=(x 0+Δx )2-x 20Δx=2x 0.(1)因为切线与直线y =-x +2平行, 所以2x 0=-1,x 0=-12,即P ⎝⎛⎭⎫-12,14, 所以切线方程为y -14=-⎝⎛⎭⎫x +12, 即4x +4y +1=0.(2)因为切线与直线12x -4y +5=0垂直,所以2x 0·18=-1,x 0=-4,即P (-4,16).所以切线方程为y -16=-8(x +4), 即8x +y +16=0.(3)因为切线的倾斜角为60°,所以切线的斜率为3,即2x 0=3,x 0=32, 所以P ⎝⎛⎭⎫32,34,所以切线方程为y -34=3⎝⎛⎭⎫x -32, 即43x -4y -3=0.§1.2 导数的计算§1.2.1 几个常用函数的导数§1.2.2 基本初等函数的导数公式及导数的运算法则(一)[课标要求]1.能根据导数的定义求函数y =c ,y =x ,y =x 2,y =x ,y =1x 的导数.(难点)2.掌握基本初等函数的导数公式并能进行简单的应用.(重点、难点)一、常用函数的导数原函数导函数f (x )=c f ′(x )=0 f (x )=x f ′(x )=1 f (x )=x 2 f ′(x )=2x f (x )=1xf ′(x )=-1x 2f (x )=xf ′(x )=12x二、基本初等函数的导数公式原函数导函数①f (x )=c f ′(x )=0 ②f (x )=x n (n ∈Q *) f ′(x )=nx n -1 ③f (x )=sin x f ′(x )=cos_x ④f (x )=cos x f ′(x )=-sin_x ⑤f (x )=a x (a >0) f ′(x )=a x ln_a ⑥f (x )=e xf ′(x )=e x ⑦f (x )=log a x (a >0且a ≠1) f ′(x )=1x ln a⑧f (x )=ln xf ′(x )=1x知识点一 几个常用函数的导数【问题1】 用定义求下列常用函数的导数: ①y =c ;②y =x ;③y =x 2;④y =1x ;⑤y =x .答案 ①y ′=0;②y ′=1;③y ′=2x ;④y ′=Δy Δx=1x +Δx -1xΔx=-1x (x +Δx )=-1x 2(其他类似);⑤y ′=12x.【问题2】 导数的几何意义是曲线在某点处的切线的斜率.物理意义是运动物体在某一时刻的瞬时速度. (1)函数y =f (x )=c (常数)的导数的物理意义是什么? (2)函数y =f (x )=x 的导数的物理意义呢?答案 (1)若y =c 表示路程关于时间的函数,则y ′=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.(2)若y =x 表示路程关于时间的函数,则y ′=1可以解释为某物体做瞬时速度为1的匀速运动. 【问题3】 由正比例函数y =kx (k ≠0)的图象及导数可知;|k |越大函数增加(k >0)或减少(k <0)的速度越 快.画出函数y =x 2的图象,结合图象及导数说明函数y =x 2的变化情况.答案 图象如图从导数作为函数在一点的瞬时变化率来看,y ′=2x 表明:当x <0时,随着x 的增加,y =x 2减少得越来越慢;当x >0时,随着x 的增加,y =x 2增加得越来越快.若y =x 2表示路程关于时间的函数,则y ′=2x 可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .知识点二 基本初等函数的导数公式【问题】 你能说出基本初等函数的导数公式的特点吗? 答案 (1)常数函数的导数为零.(2)有理数幂函数f (x )=x α的导数依然为幂函数,且系数为原函数的次数,幂指数是原函数的幂指数减去1. (3)正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数. (4)指数函数的导数依然为指数函数,且系数为原函数底数的自然对数. (5)公式⑥是公式⑤的特例,公式⑧是公式⑦的特例.题型一 利用公式求导数求下列函数的导数:(1)y =x 7;(2)y =1x 2;(3)y =3x ;(4)y =2sin x 2cos x2;(5)y =log 12x 2-log 12x .【解析】 (1)y ′=7x 7-1=7x 6. (2)∵y =x -2,∴y ′=-2x -2-1=-2x -3. (3)∵y =x 13,∴y ′=13x -23.(4)∵y =2sin x 2cos x2=sin x ,∴y ′=cos x .(5)∵y =log 12x 2-log 12x =log 12x ,∴y ′=(log 12x )′=1x ln 12.●规律方法用公式求函数导数的方法(1)若所求函数符合导数公式,则直接利用公式求解.(2)对于不能直接利用公式的类型,关键是将其合理转化为可以直接应用公式的基本函数的模式,如y =1x 2可以写成y =x -2,y = 3x =x 13等,这样就可以直接使用幂函数的求导公式求导,以免在求导过程中出现指数或系数的运算失误.1.求下列函数的导数:(1)y =lg 4;(2)y =2x;(3)y =x 2x ;(4)y =2cos 2x 2-1. 解析 (1)y ′=(lg 4)′=0;(2)y ′=(2x )′=2x ln 2;(3)∵y =x 2x=x 2-12=x 32,∴y ′=(x 32)′=32x 12; (4)∵y =2cos 2x 2-1=cos x , ∴y ′=(cos x )′=-sin x .题型二 导数公式在解决切线问题中的应用(6分)已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.【规范解答】 y ′=(x 2)′=2x ,设切点为M (x 0,y 0),则y ′0|x x ==2x 0.(2分)∵PQ 的斜率为k =4-12+1=1,而切线平行于PQ , ∴k =2x 0=1,即x 0=12,所以切点为M ⎝⎛⎭⎫12,14.(4分) ∴所求的切线方程为y -14=x -12,(5分) 即4x -4y -1=0.(6分)●规律方法利用导数解决求曲线的切线方程问题的策略求曲线的切线方程主要有两种类型.(1)已知切点型,其步骤为: 求导函数―→求切点处导数,即切线斜率―→写出切线方程 (2)未知切点型,其步骤为:设切点―→求导函数―→求切线斜率k =f ′(x 0) 写出切线的点斜式方程―→列出关于x 0的方程(组)―→求切点―→写出切线方程2.求曲线y =x 过点(3,2)的切线方程.解析 ∵点(3,2)不在曲线y =x 上,∴设过(3,2)与曲线y =x 相切的直线在曲线的切点为(x 0,y 0),则y 0=x 0. ∵y =x ,∴y ′=(x 12)′=12x 12-1=12x. ∴根据导数的几何意义,曲线在点(x 0,y 0)处的切线斜率k =12x 0. ∵切线过点(3,2),∴2-y 03-x 0=12x 0,2-x 03-x 0=12x 0, 整理得(x 0)2-4x 0+3=0,解得x 0=1,x 0=9,∴切点坐标为(1,1)或(9,3).(1)当切点坐标为(1,1)时,切线斜率k =12, ∴切线方程为y -2=12(x -3),即x -2y +1=0. (2)当切点坐标为(9,3)时,切线斜率k =16,∴切线方程为y -2=16(x -3),即x -6y +9=0. 综上可知:曲线y =x 过点(3,2)的切线方程为:x -2y +1=0或x -6y +9=0.易错误区(二) 正确使用求导公式已知直线y =kx 是曲线f (x )=e x 的切线,则k 的值等于________.【解析】 设切点的坐标为(x 0,y 0),由f (x )=e x ,可得y ′=f ′(x )=e x ,又k =y 0x 0,f ′(x 0)=0e x , 所以0e x =y 0x 0且y 0=0e x ①. 解得x 0=1,y 0=e.k =y 0x 0=e. 【答案】 e[易错防范]1.①处一要注意导数0e x ,即切线斜率y 0x 0,二要注意切点在曲线上,即y 0=0e x . 2.导数几何意义的应用本例实质是求过点(0,0)且与曲线y =e x 相切的直线方程的斜率.要把切线的斜率与导数联系起来,要注意切点的坐标既满足切线方程又满足曲线方程.3.牢记导数公式导数公式是函数导数计算的关键,解题时要注意使用.例如,在本例中,要正确应用公式(e x )′=e x .已知曲线y =1x3在点P (-1,-1)处的切线与直线m 平行且距离等于10,求直线m 的方程.解析 因为y ′=-3x 4, 所以曲线在点P (-1,-1)处的切线斜率为k =-3,则切线方程为y +1=-3(x +1),即3x +y +4=0.由题意设直线m 的方程为3x +y +b =0(b ≠4),所以|b -4|32+12=10,所以|b -4|=10, 所以b =14或b =-6,所以直线m 的方程为3x +y +14=0或3x +y -6=0.[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.下列结论不正确的是A .若y =3,则y ′=0B .若y =1x ,则y ′=-x 2C .若y =x ,则y ′=12x D .若y =x ,则y ′=1解析 对于A ,常数的导数为零,故A 正确;对于B ,y ′=(x -12)′=-12x -32=-12x 3,故B 错误; 对于C ,y ′=(x 12)′=12x -12=12x,故C 正确; 对于D ,y ′=x ′=1,故D 正确.答案 B2.已知曲线f (x )=x 3的切线的斜率等于3,则切线有A .1条B .2条C .3条D .不确定 解析 ∵f ′(x )=3x 2=3,解得x =±1,切点有两个,即可得切线有两条.。
§1.1.2导数的概念

= lim Δ x→ 0
f(x0-Δx)-f(x0) -Δx
或
f
′(x0)=
lim
x x0
f(x)x--fx(0 x0).
§1.1.2 导数的概念
1.了解瞬时速度、瞬时变化率的概念; 2.理解导数的概念,知道瞬时变化率就是导
数,体会导数的思想及其内涵;
3.会求函数在某点的导数
思考:已知物体作变速直线运动,其运动方程
为s=s(t)(s表示位移,t 表示时间),求物体在
t0 时刻的速度.
如图设该物体在时刻t0的位置是s(t0)=OA0,在时刻
2、把分式化简后令△x=0(一般分母中不含△x), 所求之值就是函数y=f(x)在x=xo处的导数。
例1、已知f(x)=x2+3.
(1)求f(x)在x=1处的导数;
(2)求f(x)在x=a处的导数.
[思路点拨]
确定函数 的增量
定义法,
Δy Δx
―Δx―→→0
极限
―→
导数
解:(1)因为ΔΔyx=f1+ΔΔxx-f1
探究三、求函数y=f(x)在x=xo处的导数步骤:
1.求函数增量: Dy f ( x0 Dx) f ( x0 )
2.算比值(平均变化率):Dy f ( x0 Dx) f ( x0 )
Dx
Dx
3.取极限:
简记为:一差、二比、三极限
注意:1、取极限前,要注意化简Δy,保证使Δx→0 时,分母不为 0. Δx
2.求运动物体瞬时速度的三个步骤 第一步:求时间改变量Δt 和位移改变量Δs=s(t0+Δt)-s(t0); 第二步:求平均速度 v =Δs;
Δt 第三步:求瞬时速度,当Δt 无限趋近于:
人教版高中数学选修2-2全套课件

(2)根据导数的定义
f′(x0)=Δlixm→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0 Δx
= lim Δx→0
2x0+Δx2+4x0+Δx-2x20+4x0 Δx
= lim Δx→0
4x0·Δx+2Δx2+4Δx Δx
= lim Δx→0
(4x0+2Δx+4)
=4x0+4,
∴f′(x0)=4x0+4=12,解得 x0=2.
(1)函数f(x)在x1处有定义. (2)Δx是变量x2在x1处的改变量,且x2是x1附近的任意一点, 即Δx=x2-x1≠0,但Δx可以为正,也可以为负. (3)注意自变量与函数值的对应关系,公式中若Δx=x2-x1, 则Δy=f(x2)-f(x1);若Δx=x1-x2,则Δy=f(x1)-f(x2).
解析: (1)由已知∵Δy=f(x0+Δx)-f(x0) =2(x0+Δx)2+1-2x20-1=2Δx(2x0+Δx), ∴ΔΔyx=2Δx2Δx0x+Δx=4x0+2Δx. (2)由(1)可知:ΔΔxy=4x0+2Δx,当 x0=2,Δx=0.01 时, ΔΔyx=4×2+2×0.01=8.02.
(3)在 x=2 处取自变量的增量 Δx,得一区间[2,2+Δx]. ∴Δy=f(2+Δx)-f(2)=2(2+Δx)2+1-(2·22+1)=2(Δx)2+ 8Δx. ∴ΔΔyx=2Δx+8,当 Δx→0 时,ΔΔxy→8.
1.求瞬时变化率时要首先明确求哪个点处的瞬时
变化率,然后,以此点为一端点取一区间计算平均变化率,并逐步
已知f(x)=x2+3.
(1)求f(x)在x=1处的导数;
(2)求f(x)在x=a处的导数.
[思路点拨]
确定函数 的增量
1.1.1变化率问题与导数概念

法国《队报》网站的文章称刘翔以不可思议的速度 统治了赛场。这名21岁的中国人跑的几乎比炮弹还 快,赛道上显示的12.94秒的成绩已经打破了12.95 奥运会记录,但经过验证他是以12.91秒平了世界纪 录,他的平均速度达到8.52m/s。
1.1.1 变化率问题
问题1
吹气球
的值为-13.1 .
探1.运动员在某一时刻t0的瞬时速度 究 怎样表示? ?
瞬时速度,即是时间增量趋近于0时某一时刻的速度, 由极限的观点可知:当t 0, 时,
h t0Байду номын сангаас t h t0 瞬时速度为: lim t 0 t
2.函数f(x)在x=x0处的瞬时变化率怎样表示?
观 察 ?
当△t趋近于0时,平均 速度有什么样的变化趋 势?
我们发现:当△t趋近于0时,即无论t从 小于2的一边,还是从大于2的一边趋近 v 于2时,平均速度 都趋近于一个确定 的值-13.1。
从物理的角度看: 时间间隔| △t |无限变小时,平均速度 v 就无限趋近于t=2时的瞬时速度。 所以:运动员在t=2时的瞬时速度是-13.1m/s 为了表述方便,我们用:
令△x = x2 – x1 , △ y = f (x2) – f (x1) ,则
y f (x 2 ) f (x1 ) f (x 1 x) f (x 1 ) x x x 2 x1
问题: 平均变化率的几何意义是什么?
y f (x 2 ) f (x 1 ) x x 2 x1
y 及临近一点B(-1+Δx,-2+Δy), 则 =( x
)
A、3
B、3Δx-(Δx)2 D、3-Δx
C 、 3-(Δx)2
高二数学理科下学期一课一练答案

1.1.1--1.1.2 变化率问题 导数的概念答案1.D 2.A 3.C 4.B 5.B 6.B 7.-9 8.2.1 9.-210.解 因为Δy =-2(2+Δx )2+5-(-2×22+5)=-8Δx -2(Δx )2,所以函数在区间[2,2+Δx ]内的平均变化率为ΔyΔx=错误!=-8-2Δx . 11.解 Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3)=12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx , ∴ΔyΔx=错误!=2Δx +16. ∴y ′|x =3=lim Δx→0 ΔyΔx =lim Δx→0(2Δx +16) =16.12.解 ∵f (1+Δx )-f (1)=a (1+Δx )2+c -a -c=a (Δx )2+2a Δx . ∴f ′(1)=lim Δx→0 错误! =lim Δx→0 错误!=lim Δx→0 (a Δx +2a )=2,即2a =2, ∴a =1.13.解 (1)∵物体在t ∈[3,5]内的时间变化量为Δt =5-3=2,物体在t ∈[3,5]内的位移变化量为Δs =3×52+2-(3×32+2)=3×(52-32)=48, ∴物体在t ∈[3,5]内的平均速度为 Δs Δt =482=24 (m/s). (2)求物体的初速度v 0即求物体在t =0时的瞬时速度. ∵物体在t =0附近的平均变化率为 ΔsΔt =错误! =错误! =3Δt -18,∴物体在t =0处的瞬时变化率为 lim Δt→0 Δs Δt =lim Δt→0 (3Δt -18)=-18, 即物体的初速度为-18 m/s.(3)物体在t =1时的瞬时速度即为函数在t =1处的瞬时变化率. ∵物体在t =1附近的平均变化率为 ΔsΔt=错误! =错误!=3Δt -12.∴物体在t =1处的瞬时变化率为 lim Δt→0 Δs Δt =lim Δt→0(3Δt -12)=-12. 即物体在t =1时的瞬时速度为-12 m/s.1.1.3 导数的几何意义答案1.C 2.B 3.D 4.A 5.A 6.3 7.B 8.3 9.⎣⎡⎦⎤-1,-1210.解 曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1 =lim Δx→0 错误! =lim Δx→0 (3Δx +2)=2.∴过点P (-1,2)的直线的斜率为2, 由点斜式得y -2=2(x +1), 即2x -y +4=0.所以所求直线方程为2x -y +4=0.11.解 (1)由⎩⎪⎨⎪⎧ y =x2+4,y =x +10,解得⎩⎪⎨⎪⎧ x =-2y =8或⎩⎪⎨⎪⎧x =3y =13.∴抛物线与直线的交点坐标为(-2,8)或(3,13). (2)∵y =x 2+4, ∴y ′=lim Δx→0 错误! =lim Δx→0 错误! =lim Δx→0 (Δx +2x )=2x . ∴y ′|x =-2=-4,y ′|x =3=6,即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为6.∴在点(-2,8)处的切线方程为4x+y=0;在点(3,13)处的切线方程为6x-y-5=0.12.解∵Δy=f(x0+Δx)-f(x0)=(x0+Δx)3+a(x0+Δx)2-9(x0+Δx)-1-(x30+ax20-9x0-1) =(3x20+2ax0-9)Δx+(3x0+a)(Δx)2+(Δx)3,∴ΔyΔx=3x20+2ax0-9+(3x0+a)Δx+(Δx)2.当Δx无限趋近于零时,ΔyΔx无限趋近于3x20+2ax0-9. 即f′(x0)=3x20+2ax0-9∴f′(x0)=3(x0+a3)2-9-a23.当x0=-a3时,f′(x0)取最小值-9-a2 3 .∵斜率最小的切线与12x+y=6平行,∴该切线斜率为-12.∴-9-a23=-12.解得a=±3.又a<0,∴a=-3.13.解相应图象如下图所示.§1.2导数的计算1.2.1 几个常用函数的导数1.2.2 基本初等函数的导数公式及导数的运算法则(一答案1.D2.B3.A4.B5.A6.10ln 107.-3 48.D 9.ln 2-110.解 (1)y ′=(x x )′=⎝⎛⎭⎫x 32′=32x 32-1=32x . (2)y ′=⎝⎛⎭⎫1x4′=(x -4)′=-4x -4-1 =-4x -5=-4x5. (3)y ′=(5x3)′=⎝⎛⎭⎫x 35′=35x 35-1=35x -25=355x2. (4)∵y =log 2x 2-log 2x =log 2x , ∴y ′=(log 2x )′=1x·ln 2.(5)∵y =-2sin x2⎝⎛⎭⎫1-2cos2x 4=2sin x2⎝⎛⎭⎫2cos2x 4-1=2sin x 2cos x2=sin x ,∴y ′=(sin x )′=cos x . 11.解 ∵y =3x2,∴y ′=(3x2)′=⎝⎛⎭⎫x 23′=23x -13,∴y ′|x =8=23×8-13=13.即在点P (8,4)处的切线的斜率为13.∴适合题意的直线的斜率为-3. 从而适合题意的直线方程为 y -4=-3(x -8), 即3x +y -28=0.12.解 根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线,对应的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20),则y ′|x =x 0=2x 0=1, 所以x 0=12,所以切点坐标为⎝⎛⎭⎫12,14,切点到直线x -y -2=0的距离d =⎪⎪⎪⎪12-14-22=728,13.解 f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x , f 3(x )=(-sin x )′=-cos x , f 4(x )=(-cos x )′=sin x , f 5(x )=(sin x )′=f 1(x ), f 6(x )=f 2(x ),…,f n +4(x )=f n (x ),可知周期为4, ∴f 2 014(x )=f 2(x )=-sin x .1.2.2 基本初等函数的导数公式及导数的运算法则(二答案1.D 2.B 3.B 4.D 5.A 6.12 7.0.4 m/s 8.D 9.610.解 (1)方法一 y ′=(2x 2+3)′(3x -1)+(2x 2+3)(3x -1)′=4x (3x -1)+3(2x 2+3) =18x 2-4x +9.方法二 ∵y =(2x 2+3)(3x -1) =6x 3-2x 2+9x -3, ∴y ′=(6x 3-2x 2+9x -3)′ =18x 2-4x +9.(2)∵y =(x -2)2=x -4x +4,∴y ′=x ′-(4x )′+4′=1-4·12x -12=1-2x -12.(3)∵y =x -sin x 2cos x 2=x -12sin x ,∴y ′=x ′-(12sin x )′=1-12cos x .11.解 设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b .又已知f ′(x )=2x +2,∴a =1,b =2. ∴f (x )=x 2+2x +c .又方程f (x )=0有两个相等实根, ∴判别式Δ=4-4c =0, 即c =1.故f (x )=x 2+2x +1.12.(1)解 由7x -4y -12=0得y =74x -3.当x =2时,y =12,∴f (2)=12,①又f ′(x )=a +b x2,∴f ′(2)=74,②由①,②得⎩⎨⎧2a -b 2=12,a +b 4=74.解之得⎩⎪⎨⎪⎧a =1b =3.故f (x )=x -3x.(2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x2知 曲线在点P (x 0,y 0)处的切线方程为 y -y 0=(1+3x20)(x -x 0), 即y -(x 0-3x0)=(1+3x20)(x -x 0). 令x =0得y =-6x0,从而得切线与直线x =0的交点坐标为(0,-6x0). 令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12|-6x0||2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6. 13.解 设l 与C 1相切于点P (x 1,x 21),与C 2相切于点Q (x 2,-(x 2-2)2).对于C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 21=2x 1(x -x 1), 即y =2x 1x -x 21.①对于C 2:y ′=-2(x -2),则与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2), 即y =-2(x 2-2)x +x 2-4.②因为两切线重合, 所以由①②,得错误!解得⎩⎪⎨⎪⎧x1=0,x2=2或⎩⎪⎨⎪⎧x1=2,x2=0.所以直线l 的方程为y =0或y =4x -4.1.2.2 基本初等函数的导数公式及导数的运算法则(三)答案1.A2.C3.B4.B5.-24(2 011-8x)26.-27.18.B9.D10.解(1)设y=u8,u=1+2x2,∴y′=(u8)′(1+2x2)′=8u7·4x=8(1+2x2)7·4x=32x(1+2x2)7.(2)设y=u-12,u=1-x2,则y′=(u-12)′(1-x2)′=(-12u-32)·(-2x)=x(1-x2)-3 2 .(3)y′=(sin 2x-cos 2x)′=(sin 2x)′-(cos 2x)′=2cos 2x+2sin 2x=22sin (2x+π4 ).(4)设y=cos u,u=x2,则y′=(cos u)′·(x2)′=(-sin u)·2x=(-sin x2)·2x=-2x sin x2.11.解f(x)=ax2-2x+1+ln(x+1),f(0)=1.∴f′(x)=2ax-2+1 x+1=错误!,f′(0)=-1,∴切点P的坐标为(0,1),l的斜率为-1,∴切线l的方程为x+y-1=0.12.解函数s=5-25-9t2可以看作函数s=5-x和x=25-9t2的复合函数,其中x是中间变量.由导数公式表可得s x′=-12x-12,x t′=-18t.故由复合函数求导法则得s t′=s x′·x t′=(-12x -12)·(-18t )=9t 25-9t2,将t =715代入s ′(t ), 得s ′(715)=0.875 (m/s). 它表示当t =715s 时,梯子上端下滑的速度为0.875 m/s. 13.证明 设y =f (x )是奇函数,即f (-x )=-f (x ),两边对x 求导,得f ′(-x )·(-x )′=-f ′(x ),即-f ′(-x )=-f ′(x ),f ′(-x )=f ′(x ),故原命题成立.1.3.1 函数的单调性与导数答案1.A 2.D 3.A 4.B 5.⎣⎡⎦⎤-13,1∪[2,3) 6.⎝⎛⎭⎫π3,5π3 7.解 由y =f ′(x )的图象可以得到以下信息:x <-2或x >2时,f ′(x )<0,-2<x <2时,f ′(x )>0, f ′(-2)=0,f ′(2)=0.故原函数y =f (x )的图象大致如下:8.A 9.C 10.a ≤011.解 (1)函数的定义域为(0,+∞),y ′=1-1x,由y ′>0,得x >1;由y ′<0, 得0<x <1.∴函数y =x -ln x 的单调增区间为(1,+∞),单调减区间为(0,1). (2)函数的定义域为{x |x ≠0}, y ′=-12x2, ∵当x ≠0时,y ′=-12x2<0恒成立. ∴函数y =12x的单调减区间为(-∞,0),(0,+∞),没有单调增区间.12.解 (1)由y =f (x )的图象经过点P (0,2),知d =2,∴f (x )=x 3+bx 2+cx +2,f ′(x )=3x 2+2bx +c .由在点M (-1,f (-1))处的切线方程为6x -y +7=0,知-6-f (-1)+7=0,即f (-1)=1,f ′(-1)=6.∴⎩⎪⎨⎪⎧3-2b +c =6-1+b -c +2=1,即⎩⎪⎨⎪⎧2b -c =-3b -c =0解得b =c =-3.故所求的解析式是f (x )=x 3-3x 2-3x +2. (2)f ′(x )=3x 2-6x -3.令f ′(x )>0,得x <1-2或x >1+2; 令f ′(x )<0,得1-2<x <1+2.故f (x )=x 3-3x 2-3x +2的单调递增区间为(-∞,1-2)和(1+2,+∞),单调递减区间为(1-2,1+2).13.解 (1)由已知条件得f ′(x )=3mx 2+2nx ,又f ′(2)=0,∴3m +n =0,故n =-3m . (2)∵n =-3m ,∴f (x )=mx 3-3mx 2, ∴f ′(x )=3mx 2-6mx .令f ′(x )>0,即3mx 2-6mx >0,当m >0时,解得x <0或x >2,则函数f (x )的单调增区间是(-∞,0)和(2,+∞); 当m <0时,解得0<x <2,则函数f (x )的单调增区间是(0,2). 综上,当m >0时,函数f (x )的单调增区间是(-∞,0)和(2,+∞); 当m <0时,函数f (x )的单调增区间是(0,2).1.3.2 函数的极值与导数答案1.A 2.D 3.D 4.C 5.C 6.B 7.3 8.9 9.③10.解 (1)函数的定义域为(-∞,1)∪(1,+∞).∵f ′(x )=错误!,令f ′(x )=0,得x 1=-1,x 2=2.当x 变化时,f ′(x ),f (x )的变化情况如下表:故当x =-并且极大值为f (-1)=-38.(2)函数的定义域为R ,f ′(x )=2x e -x +x 2·⎝⎛⎭⎫1ex ′ =2x e -x -x 2e -x =x (2-x )e -x ,令f ′(x )=0,得x =0或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:当x =2时,函数有极大值,且为f (2)=4e -2. 11.解 ∵f ′(x )=3x 2+mx -2m 2=(x +m )(3x -2m ),令f ′(x )=0,则x =-m 或x =23m .当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )极大值=f (-m )=-m 3+2m 3+2m 3-4=-2,∴m =1.12.解 (1)f ′(x )=3x 2-2x -1.令f ′(x )=0,则x =-13或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )的极大值是f (-3)=27+a ,极小值是f (1)=a -1.(2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1, 由此可知,x 取足够大的正数时,有f(x)>0,x取足够小的负数时,有f(x)<0,所以曲线y=f(x)与x轴至少有一个交点.由(1)知f(x)极大值=f(-13)=527+a,f(x)极小值=f(1)=a-1.∵曲线y=f(x)与x轴仅有一个交点,∴f(x)极大值<0或f(x)极小值>0,即527+a<0或a-1>0,∴a<-527或a>1,∴当a∈(-∞,-527)∪(1,+∞)时,曲线y=f(x)与x轴仅有一个交点.13.解(1)当a=0时,f(x)=x2e x,f′(x)=(x2+2x)e x,故f′(1)=3e.(2)f′(x)=[x2+(a+2)x-2a2+4a]e x.令f′(x)=0,解得x=-2a或x=a-2,由a≠23知,-2a≠a-2.以下分两种情况讨论:①若a>23,则-2a<a-2.当x变化时,f′(x),f(x)的变化情况如下表:所以f(x)函数f(x)在x=-2a处取得极大值f(-2a),且f(-2a)=3a e-2a.函数f(x)在x=a-2处取得极小值f(a-2),且f(a-2)=(4-3a)e a-2.②若a<23,则-2a>a-2.当x变化时,f′(x),f(x)的变化情况如下表:所以f(x)在(a-2,-2a)内是减函数.函数f(x)在x=a-2处取得极大值f(a-2),且f(a-2)=(4-3a)e a-2.函数f (x )在x =-2a 处取得极小值f (-2a ),且f (-2a )=3a e -1.3.3函数的最大(小)值与导数答案1.B 2.C 3.A 4.C 5.C 6.-1e7.[-4,-2] 8.D9.(-∞,2ln 2-2]10.解 f ′(x )=6x 2-12x =6x (x -2),令f ′(x )=0,得x =0或x =2,当x 变化时,f ′(x ),f (x )的变化情况如下表:∴当x min =-37,得a =3.当x =0时,f (x )的最大值为3. 11.解 (1)f ′(x )=3x 2-2ax +b ,∵函数f (x )在x =-1和x =3处取得极值, ∴-1,3是方程3x 2-2ax +b =0的两根. ∴⎩⎨⎧-1+3=23a -1×3=b3,∴⎩⎪⎨⎪⎧a =3b =-9.(2)由(1)知f (x )=x 3-3x 2-9x +c , f ′(x )=3x 2-6x -9.当x 变化时,f ′(x ),f (x )随x 的变化如下表:而∴当x ∈[-2,6]时,f (x )的最大值为c +54, 要使f (x )<2|c |恒成立,只要c +54<2|c |即可, 当c ≥0时,c +54<2c ,∴c >54; 当c <0时,c +54<-2c ,∴c <-18.∴c ∈(-∞,-18)∪(54,+∞),此即为参数c 的取值范围.12.解 (1)f ′(x )=3x 2+2ax ,由已知条件错误!即⎩⎪⎨⎪⎧a +b +1=02a +3=-3,解得⎩⎪⎨⎪⎧a =-3b =2.(2)由(1)知f (x )=x 3-3x 2+2, f ′(x )=3x 2-6x =3x (x -2). f ′(x )与f (x )随x 的变化情况如下:由f (x )=f (0)因此根据f (x )图象,当0<t ≤2时,f (x )的最大值为 f (0)=2,最小值为f (t )=t 3-3t 2+2; 当2<t ≤3时,f (x )的最大值为 f (0)=2,最小值为f (2)=-2; 当t >3时,f (x )的最大值为f (t )=t 3-3t 2+2,最小值为f (2)=-2. 13.解 (1)f ′(x )=(x -k +1)e x .令f ′(x )=0,得x =k -1, f (x )与f ′(x )的变化情况如下表:所以f (x )(2)当k -1≤0,即k ≤1时, 函数f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ;当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1]上单调递减,在(k -1,1)上单调递增, 所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1. 当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.习题课答案1.A 2.B 3.A 4.D 5.3 6.27.A 8.B 9.(-2,2)10.解 f ′(x )=3x 2-2ax +3,由已知得f ′(3)=0, ∴3×9-6a +3=0.∴a =5, ∴f (x )=x 3-5x 2+3x +6. 令f ′(x )=3x 2-10x +3=0, 得x 1=13,x 2=3.则x ,f ′(x ),f (x )的变化关系如下表.∴f (x )在最小值为f (3)=-3. 11.(1)解 f ′(x )=1+2ax +bx.由已知条件得错误!即⎩⎪⎨⎪⎧ 1+a =0,1+2a +b =2.解得⎩⎪⎨⎪⎧a =-1,b =3.(2)证明 因为f (x )的定义域为(0,+∞), 由(1)知f (x )=x -x 2+3ln x . 设g (x )=f (x )-(2x -2) =2-x -x 2+3ln x , 则g ′(x )=-1-2x +3x=-错误!.当0<x <1时,g ′(x )>0,当x >1时, g ′(x )<0.所以g (x )在(0,1)内单调递增, 在(1,+∞)内单调递减.而g (1)=0,故当x >0时,g (x )≤0, 即f (x )≤2x -2.12.解 当a =2时,f (x )=(-x 2+2x )e x ,f ′(x )=(-x 2+2)e x .当f ′(x )>0时,(-x 2+2)e x >0, 注意到e x >0,所以,函数f (x )的单调递增区间为(-2,2).同理可得,函数f (x )的单调递减区间为(-∞,-2)和(2,+∞). (2)因为函数f (x )在(-1,1)上单调递增, 所以f ′(x )≥0在(-1,1)上恒成立. 又f ′(x )=[-x 2+(a -2)x +a ]e x , 即[-x 2+(a -2)x +a ]e x ≥0, 注意到e x >0,因此-x 2+(a -2)x +a ≥0在(-1,1)上恒成立, 也就是a ≥x2+2x x +1=x +1-1x +1在(-1,1)上恒成立. 设y =x +1-1x +1,则y ′=1+错误!>0, 即y =x +1-1x +1在(-1,1)上单调递增, 则y <1+1-11+1=32,故a ≥32.§1.4 生活中的优化问题举例答案1.C 2.C 3.C 4.B 5.A 6.32米,16米 7.5 8.6 39.解 设广告的高和宽分别为x cm ,y cm ,则每栏的高和宽分别为x -20,y -252,其中x >20,y >25. 两栏面积之和为2(x -20)·y -252=18 000, 由此得y =18 000x -20+25. 广告的面积S =xy =x (18 000x -20+25)=18 000xx -20+25x . ∴S ′=错误!+25=错误!+25. 令S ′>0得x >140, 令S ′<0得20<x <140.∴函数在(140,+∞)上单调递增,在(20,140)上单调递减, ∴S (x )的最小值为S (140).当x =140时,y =175.即当x =140,y =175时,S 取得最小值24 500,故当广告的高为140 cm ,宽为175 cm 时,可使广告的面积最小. 10.解 (1)当x =1时,f (1)=p (1)=37;当2≤x ≤12时, f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12(x -1)x (41-2x ) =-3x 2+40x (x ∈N *,且2≤x ≤12). 验证x =1符合f (x )=-3x 2+40x , ∴f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12). (2)该商场预计销售该商品的月利润为 g (x )=(-3x 2+40x )(185-150-2x ) =6x 3-185x 2+1 400x (x ∈N *,1≤x ≤12), g ′(x )=18x 2-370x +1 400, 令g ′(x )=0,解得x =5,x =1409(舍去). 当1≤x <5时,g ′(x )>0; 当5<x ≤12时,g ′(x )<0, ∴当x =5时,g (x )max =g (5)=3 125(元).综上5月份的月利润最大是3 125元. 11.解 设速度为x km/h ,甲、乙两城距离为a km.则总费用f (x )=(kx 3+200)·a x=a (kx 2+200x). 由已知条件,得40=k ·203,∴k =1200, ∴f (x )=a (1200x 2+200x). 令f ′(x )=错误!=0, 得x =10320.当0<x <10320时,f ′(x )<0; 当10320<x <100时,f ′(x )>0. ∴当x =10320时,f (x )有最小值, 即速度为10320 km/h 时,总费用最少.12.解(1)设容器的容积为V,由题意知V=πr2l+43πr3,又V=80π3,故l=V-43πr3πr2=803r2-43r=43(20r2-r).由于l≥2r,因此0<r≤2.所以建造费用y=2πrl×3+4πr2c=2πr×43(20r2-r)×3+4πr2c,因此y=4π(c-2)r2+160πr,0<r≤2.(2)由(1)得y′=8π(c-2)r-160πr2=错误!(r3-错误!),0<r≤2. 由于c>3,所以c-2>0.当r3-20c-2=0时,r=320c-2.令320c-2=m,则m>0,所以y′=错误!(r-m)(r2+rm+m2).①当0<m<2,即c>92时,令y′=0,得r=m.当r∈(0,m)时,y′<0;当r∈(m,2]时,y′>0,所以r=m是函数y的极小值点,也是最小值点.②当m≥2,即3<c≤92时,当r∈(0,2]时,y′≤0,函数单调递减,所以r=2是函数y的最小值点.综上所述,当3<c≤92时,建造费用最小时r=2;当c>92时,建造费用最小时r=320c-2.1.5.1---1.5.2曲边梯形的面积汽车行驶的路程答案1.C 2.B3.D4.B5.D6.C7.n+1 28.[n+i-1n,n+in]9.5510.解令f(x)=x2.(1)分割将区间[0,2]n 等分,分点依次为x 0=0,x 1=2n ,x 2=4n ,…,x n -1=错误!,x n =2.第i 个区间为[2i -2n ,2i n ](i =1,2,…,n ),每个区间长度为Δx =2i n -2i -2n =2n. (2)近似代替、求和 取ξi =2in(i =1,2,…,n ),S n =∑n i =1f (2i n )·Δx =∑n i =1 (2i n )2·2n =8n3∑n i =1i 2=8n3(12+22+…+n 2)=8n3·错误! =43(2+3n +1n2). (3)取极限S =li m n→∞S n =li m n→∞ 43(2+3n +1n2)=83,即所求曲边梯形的面积为83.11.解 (1)分割:将时间区间[0,t ]分成n 等份.把时间[0,t ]分成n 个小区间,则第i 个小区间为[i -1n t ,itn](i =1,2,…,n ), 每个小区间所表示的时间段 Δt =it n -i -1n t =t n, 在各个小区间物体下落的距离记作Δs i (i =1,2,…,n ).(2)近似代替:在每个小区间上以匀速运动的路程近似代替变速运动的路程. 在[i -1n t ,itn]上任取一时刻ξi (i =1,2,…,n ), 可取ξi 使v (ξi )=g ·i -1n t 近似代替第i 个小区间上的速度,因此在每个小区间上自由落体Δt =tn 内所经过的距离可近似表示为Δs i ≈g ·i -1n t ·tn(i =1,2,…,n ).。
第一章导数及其应用练习题

第一章导数及其应用1.1变化率与导数1.1.1变化率问题1.1.2导数的概念1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy),则ΔyΔx等于().A.4 B.4x C.4+2Δx D.4+2(Δx)22.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是().A.4 B.4.1 C.0.41 D.33.如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在1.2 s末的瞬时速度为().A.-4.8 m/s B.-0.88 m/s C.0.88 m/s D.4.8 m/s4.已知函数y=2+1x,当x由1变到2时,函数的增量Δy=________.5.已知函数y=2x,当x由2变到1.5时,函数的增量Δy=________.6.利用导数的定义,求函数y=1x2+2在点x=1处的导数.7.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为().A.0.40 B.0.41 C.0.43 D.0.448.设函数f(x)可导,则limΔx→0f(1+Δx)-f(1)3Δx等于().A.f′(1) B.3f′(1) C.13f′(1) D.f′(3)9.一做直线运动的物体,其位移s与时间t的关系是s=3t-t2,则物体的初速度是________.10.某物体作匀速运动,其运动方程是s=v t,则该物体在运动过程中其平均速度与任何时刻的瞬时速度的关系是________.11.子弹在枪筒中的运动可以看作是匀变速运动,如果它的加速度是a=5×105 m/s2,子弹从枪口射出时所用的时间为t0=1.6×10-3s,求子弹射出枪口时的瞬时速度.12.(创新拓展)已知f(x)=x2,g(x)=x3,求满足f′(x)+2=g′(x)的x的值.导数练习题 2015年春第 3 页 共 16 页1.1.3 导数的几何意义1.已知曲线y =12x 2-2上一点P ⎝ ⎛⎭⎪⎫1,-32,则过点P 的切线的倾斜角为( ).A .30°B .45°C .135°D .165°2.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率等于( ). A .2 B .4 C .6+6Δx +2(Δx )2 D .63.设y =f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx=-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为( ). A .2 B .-1 C .1 D .-24.曲线y =2x -x 3在点(1,1)处的切线方程为________. 5.设y =f (x )为可导函数,且满足条件 lim x →0f (1)-f (1-x )2x=-2,则曲线y =f (x )在点(1,f (1))处的切线的斜率是________.6.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.7.设函数f (x )在x =x 0处的导数不存在,则曲线y =f (x )( ).A .在点(x 0,f (x 0))处的切线不存在B .在点(x 0,f (x 0))处的切线可能存在C .在点x 0处不连续D .在x =x 0处极限不存在 8.函数y =-1x 在⎝ ⎛⎭⎪⎫12,-2处的切线方程是( ).A .y =4xB .y =4x -4C .y =4x +4D .y =2x -49.若曲线y=2x2-4x+p与直线y=1相切,则p的值为________.10.已知曲线y=1x-1上两点A⎝⎛⎭⎪⎫2,-12、B(2+Δx,-12+Δy),当Δx=1时割线AB的斜率为________.11.曲线y=x2-3x上的点P处的切线平行于x轴,求点P的坐标.12.(创新拓展)已知抛物线y=ax2+bx+c通过点P(1,1),Q(2,-1),且在点Q 处与直线y=x-3相切,求实数a、b、c的值.导数练习题2015年春1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则第1课时基本初等函数的导数公式1.已知f(x)=x2,则f′(3)().A.0 B.2x C.6 D.92.f(x)=0的导数为().A.0 B.1 C.不存在D.不确定3.曲线y=x n在x=2处的导数为12,则n等于().A.1 B.2 C.3 D.44.设函数y=f(x)是一次函数,已知f(0)=1,f(1)=-3,则f′(x)=________. 5.函数f(x)=x x x的导数是________.6.在曲线y=x3+x-1上求一点P,使过P点的切线与直线y=4x-7平行.7.设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,f n+1(x)=f n′(x),n∈N,则f2010(x)=().A.sin x B.-sin x C.cos x D.-cos x第 5 页共16 页8.下列结论①(sin x )′=-cos x ;②⎝ ⎛⎭⎪⎫1x ′=1x 2;③(log 3x )′=13ln x ;④(ln x )′=1x .其中正确的有( ).A .0个B .1个C .2个D .3个 9.曲线y =4x 3在点Q (16,8)处的切线的斜率是________. 10.曲线y =9x 在点M (3,3)处的切线方程是________.11.已知f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值.12.(创新拓展)求下列函数的导数:(1)y =log 4x 3-log 4x 2;(2)y =2x 2+1x -2x ;(3)y =-2sin x 2(2sin 2x4-1).导数练习题 2015年春第 7 页 共 16 页第2课时 导数的运算法则及复合函数的导数1.函数y =cos x1-x的导数是( ). A.-sin x +x sin x (1-x )2B.x sin x -sin x -cos x (1-x )2C.cos x -sin x +x sin x (1-x )2D.cos x -sin x +x sin x 1-x2.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值为( ). A.193 B.103 C.133 D.163 3.已知f ⎝ ⎛⎭⎪⎫1x =x 1+x ,则f ′(x )等于( ).A.11+x B .-11+x C.1(1+x )2 D .-1(1+x )24.若质点的运动方程是s =t sin t ,则质点在t =2时的瞬时速度为________. 5.若f (x )=log 3(x -1),则f ′(2)=________.6.过原点作曲线y =e x 的切线,求切点的坐标及切线的斜率.7.函数y=(x-a)(x-b)在x=a处的导数为().A.ab B.-a(a-b) C.0 D.a-b8.当函数y=x2+a2x(a>0)在x=x0处的导数为0时,那么x0=().A.a B.±a C.-a D.a29.若f(x)=(2x+a)2,且f′(2)=20,则a=________.10.函数f(x)=x3+4x+5的图象在x=1处的切线在x轴上的截距为________.11.曲线y=e2x·cos 3x在(0,1)处的切线与直线L的距离为5,求直线L的方程.12.(创新拓展)求证:可导的奇函数的导函数是偶函数.导数练习题 2015年春第 9 页 共 16 页1.3 导数在研究函数中的应用1.3.1 函数的单调性与导数1.在下列结论中,正确的有( ). (1)单调增函数的导数也是单调增函数; (2)单调减函数的导数也是单调减函数; (3)单调函数的导数也是单调函数;(4)导函数是单调的,则原函数也是单调的. A .0个 B .2个 C .3个 D .4个 2.函数y =12x 2-ln x 的单调减区间是( ).A .(0,1)B .(0,1)∪(-∞,-1)C .(-∞,1)D .(-∞,+∞)3.若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围是( ). A .a ≥1 B .a =1 C .a ≤1 D .0<a <1 4.函数y =ln(x 2-x -2)的递减区间为________.5.若三次函数f (x )=ax 3+x 在区间(-∞,+∞)内是增函数,则a 的取值范围是________.6.已知x >1,证明:x >ln(1+x ).7.当x >0时,f (x )=x +2x 的单调递减区间是( ).A .(2,+∞)B .(0,2)C .(2,+∞)D .(0,2) 8.已知函数y =f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则y =f (x )的图象可能是( ).9.使y =sin x +ax 为R 上的增函数的a 的范围是________. 10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.11.已知函数f (x )=x 3+ax +8的单调递减区间为(-5,5),求函数y =f (x )的递增区间.12.(创新拓展)求下列函数的单调区间,并画出大致图象: (1)y =x +9x ; (2)y =ln(2x +3)+x 2.导数练习题 2015年春第 11 页 共 16 页1.3.2 函数的极值与导数1.下列函数存在极值的是( ).A .y =1xB .y =x -e xC .y =x 3+x 2+2x -3D .y =x 32.函数y =1+3x -x 3有( ).A .极小值-1,极大值1B .极小值-2,极大值3C .极小值-2,极大值2D .极小值-1,极大值33.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( ).A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点4.设方程x 3-3x =k 有3个不等的实根,则常数k 的取值范围是________.5.已知函数y =x 2x -1,当x =________时取得极大值________;当x =________时取得极小值________.6.求函数f (x )=x 2e -x 的极值.7.函数f (x )=2x 3-6x 2-18x +7( ).A .在x =-1处取得极大值17,在x =3处取得极小值-47B .在x =-1处取得极小值17,在x =3处取得极大值-47C.在x=-1处取得极小值-17,在x=3处取得极大值47D.以上都不对8.三次函数当x=1时有极大值4,当x=3时有极小值0,且函数过原点,则此函数是().A.y=x3+6x2+9x B.y=x3-6x2+9xC.y=x3-6x2-9x D.y=x3+6x2-9x9.函数f(x)=x3+3ax2+3(a+2)x+3既有极大值又有极小值,则实数a的取值范围是________.10.函数y=x3-6x+a的极大值为________,极小值为________.11.已知函数y=ax3+bx2,当x=1时函数有极大值3,(1)求a,b的值;(2)求函数y的极小值.12.(创新拓展)设函数f(x)=a3x3+bx2+cx+d(a>0),且方程f′(x)-9x=0的两个根分别为1,4.(1)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;(2)若f(x)在(-∞,+∞)内无极值点,求a的取值范围.导数练习题 2015年春第 13 页 共 16 页1.3.3 函数的最大(小)值与导数1.函数y =x e -x ,x ∈[0,4]的最大值是( ).A .0 B.1e C.4e 4 D.2e 22.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ).A .0≤a <1B .0<a <1C .-1<a <1D .0<a <123.设f (x )=x (ax 2+bx +c )(a ≠0)在x =1和x =-1处均有极值,则下列点中一定在x 轴上的是( ).A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c )4.函数y =x +2cos x 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值是________. 5.函数f (x )=sin x +cos x 在x ∈⎣⎢⎡⎦⎥⎤-π2,π2的最大、最小值分别是________. 6.求函数f (x )=x 5+5x 4+5x 3+1在区间[-1,4]上的最大值与最小值.7.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( ).A .-173B .-103C .-4D .-6438.已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为().A.-37 B.-29 C.-5 D.-119.函数f(x)=4xx2+1,x∈[-2,2]的最大值是________,最小值是________.10.如果函数f(x)=x3-32x2+a在[-1,1]上的最大值是2,那么f(x)在[-1,1]上的最小值是________.11.已知函数f(x)=-x3+3x2+9x+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.12.(创新拓展)已知函数f(x)=x2e-ax(a>0),求函数在[1,2]上的最大值.导数练习题 2015年春第 15 页 共 16 页1.4 生活中的优化问题举例1.如果圆柱截面的周长l 为定值,则体积的最大值为( ).A.⎝ ⎛⎭⎪⎫l 63πB.⎝ ⎛⎭⎪⎫l 33πC.⎝ ⎛⎭⎪⎫l 43πD.14⎝ ⎛⎭⎪⎫l 43π 2.若一球的半径为r ,作内接于球的圆柱,则其侧面积最大为( ).A .2πr 2B .πr 2C .4πr D.12πr 2 3.某公司生产一种产品, 固定成本为20000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧ -x 3900+400x ,0≤x ≤390,90 090,x >390,则当总利润最大时,每年生产产品的单位数是( ). A .150 B .200 C .250 D .3004.有矩形铁板,其长为6,宽为4,现从四个角上剪掉边长为x 的四个小正方形,将剩余部分折成一个无盖的长方体盒子,要使容积最大,则x =________.5.如图所示,某厂需要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为________.6.如图所示,已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线y =4-x 2在x 轴上方的曲线上,求这个矩形面积最大时的边长.7.设底为正三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为().A.3V B.32V C.34V D.23V8.把长为12 cm的细铁丝截成两段,各自摆成一个正三角形,那么这两个正三角形的面积之和的最小值是().A.32 3 cm2B.4 cm2 C.3 2 cm2D.2 3 cm29.在半径为r的圆内,作内接等腰三角形,当底边上的高为________时它的面积最大.10.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为________.11.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+x)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.(1)试写出y关于x的函数关系式;(2)当m=640米时,需新建多少个桥墩才能使y最小?12.(创新拓展)如图所示,在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?。
导数知识点总结及例题
导数知识点总结及例题一、导数的定义1.1 函数的变化率在生活中,我们经常会遇到函数随着自变量的变化而发生变化的情况,比如一辆汽车的速度随着时间的变化而变化、货物的销售量随着价格的变化而变化等。
这种情况下,我们就需要考虑函数在某一点处的变化率,也就是导数。
对于函数y=f(x),在点x处的变化率可以用函数的增量Δy和自变量的增量Δx的比值来表示:f'(x) = lim(Δx→0) (Δy/Δx)其中f'(x)表示函数f(x)在点x处的导数。
利用导数的定义,我们可以计算得到函数在某一点处的变化率。
1.2 导数的几何意义导数还有一个重要的几何意义,它表示了函数曲线在某一点处的切线的斜率。
例如,对于函数y=x^2,在点(1,1)处的导数就代表了曲线在这一点处的切线斜率。
这也意味着,导数可以帮助我们理解函数曲线在不同点处的形状和走向。
1.3 导数存在的条件对于一个函数f(x),它在某一点处的导数存在的条件是:在这一点处函数曲线的切线存在且唯一。
也就是说,如果函数在某一点处导数存在,那么这个点就是函数的可导点。
二、导数的性质2.1 导数与函数的关系导数是函数的一个重要属性,它可以帮助我们理解函数的性质。
例如,导数可以表示函数在某一点处的斜率,可以告诉我们函数曲线的凹凸性,还可以帮助我们找到函数的极值点等。
2.2 导数与导函数当一个函数在某一点处的导数存在时,我们可以使用导数的定义来求出函数在该点处的导数。
我们把这个过程称为求导,求出的导数称为导函数。
导函数的值就是原函数在对应点处的导数值。
2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、可导函数的和、差、积、商的导数求法则等。
这些性质是我们求解导数的问题时的重要依据,也是我们理解函数性质的基础。
三、求导法则3.1 基本求导法则基本求导法则是求解导数问题的基础,它包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等函数的导数求法。
人教a版数学【选修2-2】1.1.2《导数的概念》ppt课件
常数 叫做t0时刻的瞬时速度.即 常数 ,我们就把这个______ 于______
st0+Δt-st0 Δs lim Δt Δt→0 v= lim = ______________________. → Δt
Δt 0
故瞬时速度就是运动方程是S=-4t2+16t(S的单位为m;t的 单位为s),则该物体在t=2s时的瞬时速度为( ) A.3m/s B.2m/s C.1m/s D.0m/s [答案] D
Δx 0
典例探究学案
瞬时速度
1 2 已知自由落体的运动方程为s=2gt ,求: (1)落体在t0到t0+Δt这段时间内的平均速度; (2)落体在t0时的瞬时速度; (3)落体在t0=2秒到t1=2.1秒这段时间内的平均速度; (4)落体在t=2秒时的瞬时速度.
[分析] 平均速度 v 即平均变化率,而瞬时速度即是平均 速度 v 在Δt→0时的极限值,为此,要求瞬时速度,应先求出 平均速度,再求 v 当Δt→0时的极限值.
)
f1+Δx-f1 1 1 [解析] 原式=3 lim =3f ′(1). Δx Δx→0
4.(2013· 揭阳一中段考)若f(x)=x3,f ′(x0)=3,则x0的值 为( ) A.1 C.± 1 [答案] C B.-1 D.3 3
fx0+Δx-fx0 [解析] ∵f ′(x0)= lim Δx Δx→0 x0+Δx3-x3 0 = lim Δx Δx→0
3.对导数定义的理解要注意: 第一:Δx是自变量x在x0处的改变量,所以Δx可正可负,但 Δx≠0;Δy是函数值的改变量,可以为0; 第二:函数在某点的导数,就是在该点的函数值改变量与自 变量改变量之___的极限.因此,它是一个常数而不是变量 ; 比
1[1].1.1变化率问题
2
65 探究 计算运动员在0 t 这段时间 49 里的平均速度, 并思考下面的问题 :
1 运动员在这段时间里是静止的吗 ? 2 你认为用平均速 度描述 运动员运 动
状态有什么问题吗 ?
h t2 h t1 h v t t2 t1
探究过程:如图是函数h(t)= -4.9t2+6.5t+10 65 的图像,结合图形可知, h( ) h(0) , 49 所以, h
65 探究 : 计算运动员在 0 t 这段时间里的平均速度 49 并思考下面的问题 :
,
1 运动员在这段时间里是 静止的吗 ? 2你认为用平均速 度描述 运动员运 动状态有什么问
题吗 ?
探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合 65 图形可知: h( ) h(0)
题型三:平均变化率的应用 例3:试比较正弦函数y=sinx在x=0和 x 附近的平均变化率哪一个大?
2
练习
1.已知函数f(x)=-x2+x的图象上的一点A(-1,-2)及临 近一点B(-1+Δx,-2+Δy),则Δy/Δx=( A.3 )D
B 3Δx-(Δx)2 C . 3-(Δx)2 D . 3-Δx
第一章 导数及其应用
1.1.1 变化率问题
问题1 气球膨胀率
在吹气球的过程中, 可发现,随着气球内空气 容量的增加, 气球的半径增加得越来越慢. 从数 学的角度, 如何描述这种现象呢?
我们知道, 气球的体积V 单位 : L 与半径 r (单 4 3 位 : dm)之间的函数关系是V r r , 3
r 1 r 0 0.62cm ,
函数的导数与变化率知识点总结
函数的导数与变化率知识点总结函数的导数是微积分中一个重要的概念,它在研究函数的性质和变化规律时起到了重要的作用。
导数可以用于求函数的切线方程、最值、极值等性质,因此在许多实际问题中都有广泛的应用。
本文将对函数的导数与变化率的知识点进行总结,并介绍其基本概念、计算方法以及几个典型应用。
1. 导数的基本概念导数表示了函数在某一点的瞬时变化率,也可以理解为函数的斜率。
对于函数f(x),其在某一点x=a处的导数记为f'(a),可以通过下式进行计算:f'(a) = lim(h→0) [f(a+h) - f(a)] / h其中,h表示变化的增量。
导数的计算实际上是求取函数在某一点的极限。
若导数存在,则说明函数在该点可微,也就是函数在该点的图像是光滑的。
2. 导数的计算方法导数的计算方法有多种,根据函数的性质和表达式的不同而有所不同。
以下是几种常见的导数计算方法:2.1 基本初等函数的导数计算对于多项式函数、指数函数、对数函数、三角函数等基本初等函数,都有相应的导数公式可以直接使用。
例如,多项式函数f(x)=ax^n的导数为f'(x)=anx^(n-1),指数函数f(x)=e^x的导数为f'(x)=e^x,对数函数f(x)=ln(x)的导数为f'(x)=1/x,三角函数如sin(x)、cos(x)的导数分别为cos(x)和-sin(x)等。
2.2 导数的基本运算法则导数的计算还可以利用导数的基本运算法则,如和差法则、积法则、商法则等。
通过将复杂函数分解为基本初等函数的求导结果,并利用这些基本运算法则进行运算,可以较容易地求得复合函数的导数。
2.3 链式法则链式法则是求复合函数导数的常用方法。
对于函数y=f(u),u=g(x),则复合函数y=f(g(x))的导数可以通过以下公式进行计算:dy/dx = dy/du * du/dx3. 变化率与导数的关系导数不仅表示了函数在某一点的瞬时变化率,还可以用于描述函数在整个定义域上的变化规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把Δ x 看作是相对于 x1 的一个“增量”,可用 x1+Δ x 代替 x2;类似地,Δ y=f(x2)-f(x1),于是平均 Δy 变化率可以表示为 . Δx Δ y f(x2)-f(x1) f(x1+Δ x)-f(x1) 即 = = 称为函数在区间[x1,x2]上的平均变化率. Δx x2-x1 Δx 2.求函数 f(x)在 x0 到 x0+Δ x 之间的平均变化率的方法与步骤 1).先计算函数值的改变量 y f ( x2 ) f ( x1 ) ; 2).再计算自变量的改变量 x x2 x1 ; 3).求出平均变化率
☆预习案☆ (约
分钟)
依据课前预习案通读教材,进行知识梳理,完成预习自测题目,并将预习中不能解决的问题填写到后面 “我的疑惑”处。 【知识要点】 (阅读课文第 1-6 页,完成导学案) 一、 1.函数的平均变化率的定义: 函数 y=f(x)从 x1 到 x2 的平均变化率为
f ( x2 ) f ( x1 ) ,习惯上用Δ x 表示 x2-x1,即Δ x=x2-x1,可 x2 x1
3
☆训练案☆ (约
【基础训练】——把最简单的题做好就叫不简单! 2 1. 函数 y=x +x 在 x=1 到 x=1+Δ x 之间的平均变化率为( A.Δ x+2 B.2Δ x+(Δ x)
2 2
分钟)
).
2
C.Δ x+3
D.3Δ x+(Δ x)
2. 如果质点 M 按规律 s=3+t 运动,则在一小段时间[2,2.1]中相应的平均速度是( A.4 B.4.1
x 0
1
提示: 1. 函数 f(x)在 x=x0 处的导数与Δ x 趋近于 0 的方式无关。理由:无论Δ x 从一侧趋近于 0 还是从 两侧趋近于 0,其导数值应相同.否则 f(x)在该点处导数不存在,如函数 f(x)=|x|在 x=0 处 导数不存在. 2. 若 lim
x 0
y y 存在(惟一确定的值),则称函数 y=f(x)在 x=x0 处可导;若 lim 不存在,则函 x 0 x x s(t t ) s (t0 ) s lim 0 . t 0 t t 0 t
2
f(x0+Δ x)-f(x0) [3(x0+Δ x)2+2]-(3x2 0+2) = (x0+Δ x)-x0 Δx
6x0·Δ x+3(Δ x) = =6x0+3Δ x. Δx 当 x0=2,Δ x=0.1 时, 函数 y=3x +2 在区间[2,2.1]上的平均变化率为 6×2+3×0.1=12.3. 【基础训练】 1. 解析 Δ y f(1+Δ x)-f(1) (1+Δ x) +(1+Δ x)-(1 +1) = = =Δ x+3.答案 C Δx Δx Δx
f ( x0 x) f ( x0 ) y lim x 0 x x 0 x
f ( x0 x) f ( x0 ) y lim , 我们称它为函数 y=f(x) x 0 x x f ( x0 x) f ( x0 ) y lim ,即 f′(x0)= lim x 0 x x 0 x
(Δ x) -3Δ x = Δx
2
(Δ x-3)=-3.答案 C
(3-Δ t)=3.答案 3
f(1+x)-f(1) =f′(1)=1.答案 1 x
5
3.1.1 变化率问题-3.1.2 导数的概念
班别:____ 组别:____ 姓名:____ 评价:____
【学习目标】 1. 通过实例分析、了解函数平均变化率的意义. 2.(重点)掌握求函数 f(x)在 x0 到 x0+Δ x 之间的平均变化率及步骤. 3.了解导数的概念及实际背景,知道瞬时变化率就是导数. 4.(重点)会求函数在某一点处的导数. 5. 理解瞬时速度的意义,会求物体运动过程中某时刻 t0 的瞬时速度.
数 y=f(x)在 x=x0 处不可导. 3. 位移函数在某一时刻的瞬时变化率(导数)叫瞬时速度: 即 v lim
【预习自测】 2 1. 求函数 y=f(x)=3x +2 在区间[x0,x0+Δ x]上的平均变化率,并求当 x0=2,Δ x=0.1 时平均变化 率的值.
【我的疑惑】 请你将预习中未能解决或有疑惑的问题写下来,等待课堂上与老师和同学探究解决。
x 0
f (1 x) f (1) =________. x
【自主总结】——概念、定义、公式、定理、题型、方法„„ 1、学会了 2、掌握了 3、还有疑难
4
3.1.1 变化率问题-3.1.2 导数的概念答案
【知识要点】略 【典型例题】例题 1-课本第 75 页例题 1 【预习自测】 解 函数 y=f(x)=3x +2 在区间[x0,x0+Δ x]上的平均变化率为
2
☆探究案☆ (约
分钟)
【典型例题】 【例题 1】将原油精炼为汽油、柴油、塑胶等各种不同的产品,需要对原油进行冷却和加热.若第 x h 时, 原油的温度(单位: 0C )为 y f ( x) x2 7 x 15(0 x 8) .计算第 2h 和第 6h 时,原油温度的瞬时变 化率,并说明它们的意义.
y f ( x2 ) f ( x1 ) . x x2 x1
提示:1 .函数 y=f(x)在[x1,x2]内的平均变化率为 0,不能说明函数 y=f(x)没有发生变化。 理由:函数的平均变化率只能粗略地描述函数的变化趋势,增量Δ x 取值越小,越能准确地体现 函数的变化情况.在某些情况下,求出的平均变化率为 0,并不一定说明函数没有发生变化.如函 2 数 f(x)=x 在[-2,2]上的平均变化率为 0,但 f(x)的图象在[-2,2]上先减后增. Δ y f(x0+Δ x)-f(x0) 2. 平均变化率 = 中,Δ x、Δ y 的值不能是任意实数。 Δx Δx 理由:Δ x 是自变量 x2 相对于 x1 处的改变量。Δ x、Δ y 的值可正、可负,但Δ x 的值不能为 0, Δy Δ y 的值可以为 0.(特别地,当函数 f(x)为常数函数时,Δ y=0,则 =0.) Δx 3. 注意自变量与函数值的对应关系,公式中若Δ x=x2-x1,则Δ y=f(x2)-f(x1);若Δ x=x1-x2, 则Δ y=f(x1)-f(x2). 二、1.瞬时变化率的定义:函数 y=f(x)在 x=x0 处的瞬时变化率是函数 f(x)从 x0 到 x0+Δ x 的平均变化率 在Δ x→0 时的极限,即 lim 2. 函数 f(x)在 x=x0 处的导数: 函数 y=f(x)在 x=x0 处的瞬时变化率是 lim 在 x=x0 处的导数,记作
2 2 2 2 2 2
(3+2.1 )-(3+2 ) 2. 解 = =4.1.答案 B 0.1 3.解析 物体运动在 1.2 s 末的瞬时速度即为 s 在 1.2 处的导数,利用导数的定义即可求得.选 A 4. 解析 f′(0)= 5. 解析 v 初=s′|t=0= 6. 解析 根据导数的定义,
f(0+Δ x)-f(0) = Δx s(0+Δ t)-s(0) = Δt
2
).
C.0.41
D.3 ).
3. 若某物体的运动方程为 s=2(1-t )(s 的单位为 m, t 的单位为 s), 则其在 1.2 s 末的瞬时速度为( A.-4.8 m/s B.-0.88 m/s C.0.88 m/s D.4.8 m/s 2 4. 已知 f(x)=x -3x,则 f′(0)=( ). 2 A.Δ x-3 B.(Δ x) -3Δ x C.-3 D.0 2 5.一做直线运动的物体,其位移 s 与时间 t 的关系是 s=3t-t ,则物体的初速度是________. 6.已知函数 f(x)在 x=1 处可导,且 f′(1)=1,则 lim