四川省成都市石室中学2019-2020年度第二学期八年级 期中数学测试卷

合集下载

【三套打包】成都石室外语学校八年级下学期期中数学试题含答案

【三套打包】成都石室外语学校八年级下学期期中数学试题含答案

最新人教版八年级(下)期中模拟数学试卷(含答案)一、选择题(共10小题,每小题3分,共30分)下列各题均有四个备选选项,其中有且只有一个正确,请在答题卷上将正确答案的字母涂黑.1.在二次根式1x -中,x 的取值范围是A .1x ≥B . 1x > C. 1x ≤ D .1x < 2.下列计算错误..的是 A.25=10⨯ B. 2+5=7 C. 182=3÷ D. 12=233.下下下下下下下下下下下下下下下下下下下下下下下下下下下A. 3,4,5B. 6,8,10C. 1,1,2D. 3, 4, 54.点(3,-1)到原点的距离为 A .22B .3C .1D .105.已知实数x 、y 满足()2210x y -++=,则x ﹣y 等于A. 3B. ﹣3C. 1D. ﹣16.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠A BE 为A. 100B.150C.200D. 2507.()2331-计算的结果为A .2833-B .1033- C. 2863- D .1063- 8.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为 A .(3,1) B .(2,1)C .(2,3)D.(1,3)9.如图,任意四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A .当E ,F ,G ,H 是各边中点,且AC=BD 时,四边形EFGH 为菱形EB .当E ,F ,G ,H 是各边中点,且AC ⊥BD 时,四边形EFGH 为矩形 C .当E ,F ,G ,H 不是各边中点时,四边形EFGH 可以为平行四边形 D .当E ,F ,G ,H 不是各边中点时,四边形EFGH 不可能为菱形10.如图,三个相同的正方形拼成一个矩形ABCD ,点E 在BC 上,BE=2,EC=10,FM ⊥AE 交AB 于F ,交CD 的延长线于M ,则FM 的长为A .58B .56C .262D .372二、填空题(共6小题,每小题3分,共18分) 11.计算:4= .12.在实数范围内分解因式:52 x = .13.在菱形ABCD 中,对角线AC =2,BD =4, 则菱形ABCD 的周长是 . 14.如图,在矩形ABCD 中,∠DAC=65°,点E 是CD 上一点,BE 交AC 于点F ,将△BCE 沿BE 折叠,点C 恰好落在AB 边上的点C ′处,则∠AFC ′= .15.AD 是△ABC 的高,AB=4,AC=5,BC=6,则BD= .16.如图,在四边形ABCD 中,AD =CD ,∠D=60°,∠A =105°,∠B =120°,则ADBC 的值为__________.三、解答题(共8小题,共72分)ABCD第15题图17.(本题8分)计算:(1)29634x x +; (2))(8381412---.18.(本题8分)已知:21a =-,21b =+.求:(1)a b -的值;(2)ab 的值;(3)a bb a+的值.19.(本题8分)如图,某港口P 位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行163n mile,“海天”号每小时航行 4n mile.它们离开港口一个半小时后分别位于点Q 、R 处,且相距10n mile.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?20.(本题8分)已知:如图,在ABCD Y 中,延长线AB 至点E ,延长CD 至点F ,使得BE DF =.连接EF ,与对角线AC 交于点O .求证:OE OF =.21.(本题8分)如图,每个小正方形的边长都为1.PNRQE1 2 ABODFCE(1)请直接写出:四边形ABCD的面积是 ; (2)求点B 到AD 的距离.22.(本题10分)如图,在矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(1)若PCD ∆是等腰三角形时,求AP 的长; (2)求证:PC ⊥CF .23.(本题10分)已知在Rt △ABC 中,∠ACB=90°.(1)如图1,点O 是AB 的中点,OM ⊥AC 于M ,求证:AM=CM ;CBDA(2)如图2,若△A=30°,AB=8cm,动点P从点A出发,在AB边上以每秒2cm的速度向点运动时间为t秒(0<t<4),连接PQ.①若△APQ是直角三角形,直接写出t的值;②求证:PQ的中点D在△ABC的一条中人教版八年级(下)期中模拟数学试卷(答案)一、选择题:(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题意的,请把符合题意的序号号填在该题中的括号内)1.(3分)使二次根式的有意义的x的取值范围是()A.x>0B.x>1C.x≥1D.x≠12.(3分)方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是()A.1,2,3B.1,2,﹣3C.1,﹣2,3D.﹣1,﹣2,3 3.(3分)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=19D.(x﹣3)2=19 4.(3分)下列是勾股数的一组是()A.1,3,4B.3,4,5C.4,5,6D.5,7,12 5.(3分)一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2B.x1=1,x2=2C.x1=1,x2=﹣2D.x1=0,x2=2 6.(3分)下列根式中,不能与合并的是()A.B.C.D.7.(3分)已知,x=,y=,则(x+y)2的值为()A.2B.4C.5D.78.(3分)如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8cm B.5cm C.5.5cm D.1cm9.(3分)若关于x的方程x2+4x+a=0有两个相等的实数根,则a的值为()A.﹣4B.2C.4D.810.(3分)某小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A.x(x+10)=900B.(x﹣10)=900C.10(x+10)=900D.2[x+(x+10)]=90011.(3分)若方程x2﹣3x+2=0较小的根为p,方程3x2﹣2x﹣1=0较大的根为q,则p+q 等于()A.B.3C.2D.112.(3分)若,,以此类推,则的值为()A.2018B.2019C.2020D.2021二、填空题:(每小題3分.共18分,请将答案直接写在题中的横线上)13.(3分)计算=.14.(3分)已知关于x的方程x k﹣1﹣2x+3=0是一元二次方程,则k=.15.(3分)当k时,关于x的方程x2﹣3x+k=0没有实数根.16.(3分)一个圆锥形的漏斗,小李用三角板测得其高度的尺寸如图所示,那么漏斗的斜壁AB的长度为cm.17.(3分)已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2=.18.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在AB上,连接B′C,若∠ACB=∠AC′B′=90°,AC=BC =3,则B′C的长为.三、解答题:(本大题共8小题,共计66分;解答题要写出文字说明、演算步骤或证明过程.)19.(10分)计算(1)(2)20.(6分)先化简再求值:,其中x=﹣2.21.(6分)如图,已知在Rt△ABC中,∠C=90°,AC=9,BC=12,求点C到AB的距离.22.(8分)已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判断方程根的情况;(2)若方程有一个根为3,求m的值.23.(8分)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1,x2满足x1x2+x1+x2=3,求k的值.24.(8分)如图所示,在△ABC中,AC=8cm,BC=6cm;在△ABE中,DE为AB边上的高,DE=12cm,△ABE的面积S=60cm2.(1)求出AB边的长;(2)你能求出∠C的度数吗?请试一试.25.(10分)如图,为美化环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)用含a的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽.26.(10分)2016年,市区某楼盘以每平方米6000元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2018年的均价为每平方米4860元.(1)求平均每年下调的百分率;(2)假设2019年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金15万元,可以在银行贷款30万元,张强的愿望能否实现?请说明理由.(房价每平方米按照均价计算)2018-2019学年广西贺州市昭平县八年级(下)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题意的,请把符合题意的序号号填在该题中的括号内)1.(3分)使二次根式的有意义的x的取值范围是()A.x>0B.x>1C.x≥1D.x≠1【分析】根据中a≥0得出不等式,求出不等式的解即可.【解答】解:要使有意义,必须x﹣1≥0,解得:x≥1.故选:C.【点评】本题考查了二次根式有意义的条件,解一元一次不等式的应用,解此题的关键是得出关于x的不等式,难度适中.2.(3分)方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是()A.1,2,3B.1,2,﹣3C.1,﹣2,3D.﹣1,﹣2,3【分析】找出方程的二次项系数,一次项系数,以及常数项即可.【解答】解:方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是1,2,﹣3,故选:B.【点评】此题考查了一元二次方程的一般形式,其一般形式为ax2+bx+c=0(其中a,b,c为常数,且a≠0).3.(3分)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=19D.(x﹣3)2=19【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选:D.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.4.(3分)下列是勾股数的一组是()A.1,3,4B.3,4,5C.4,5,6D.5,7,12【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、∵12+32≠42,∴此选项不符合题意;B、∵42+32=52,∴此选项符合题意;C、∵42+52≠62,∴此选项符不合题意;D、∵52+72≠122,∴此选项不符合题意.故选:B.【点评】本题考查了勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数.一组勾股数必须同时满足两个条件:①三个数都是正整数,②两个较小正整数的平方和等于最大的正整数的平方,这两个条件同时成立,缺一不可.5.(3分)一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2B.x1=1,x2=2C.x1=1,x2=﹣2D.x1=0,x2=2【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选:D.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.6.(3分)下列根式中,不能与合并的是()A.B.C.D.【分析】将各式化为最简二次根式即可得到结果.【解答】解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项合题意;D、,本选项不合题意;故选:C.【点评】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.7.(3分)已知,x=,y=,则(x+y)2的值为()A.2B.4C.5D.7【分析】根据二次根式的性质进行化简解答即可.【解答】解:把x=,y=代入(x+y)2=,故选:C.【点评】此题考查二次根式的化简求值,关键是根据二次根式的性质进行化简.8.(3分)如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8cm B.5cm C.5.5cm D.1cm【分析】根据勾股定理计算出最长折痕即可作出判断.【解答】解:易知最长折痕为矩形对角线的长,根据勾股定理对角线长为:=≈7.8,故折痕长不可能为8cm.故选:A.【点评】考查了折叠问题,勾股定理,根据勾股定理计算后即可做出选择,难度不大.9.(3分)若关于x的方程x2+4x+a=0有两个相等的实数根,则a的值为()A.﹣4B.2C.4D.8【分析】根据根的判别式得出△=42﹣4×1×a=0,求出方程的解即可.【解答】解:∵关于x的方程x2+4x+a=0有两个相等的实数根,∴△=42﹣4×1×a=0,解得:a=4,故选:C.【点评】本题考查了根的判别式和解一元二次方程,能熟记根的判别式的内容是解此题的关键.10.(3分)某小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A.x(x+10)=900B.(x﹣10)=900C.10(x+10)=900D.2[x+(x+10)]=900【分析】先表示出矩形场地的长,再根据矩形的面积公式即可列出方程.【解答】解:设绿地的宽为x米,则长为(x+10)米,根据矩形的面积为900平方米可得:x(x+10)=900,故选:A.【点评】本题主要考查由实际问题列出一元二次方程,解题的关键是根据题意确定相等关系,并据此列出方程.11.(3分)若方程x2﹣3x+2=0较小的根为p,方程3x2﹣2x﹣1=0较大的根为q,则p+q 等于()A.B.3C.2D.1【分析】分别解两个方程得到p和q的值,然后计算它们的和即可.【解答】解:方程x2﹣3x+2=0的解为x1=1,x2=2,则p=1;方程3x2﹣2x﹣1=0的解为x1=1,x2=﹣,则q=1,所以p+q=2.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.(3分)若,,以此类推,则的值为()A.2018B.2019C.2020D.2021【分析】直接利用已知将原式变形进而利用平方差公式计算得出答案.【解答】解:原式=(﹣1+﹣+…+﹣)×(+1)=(﹣1)×(+1)=2020﹣1=2019.故选:B.【点评】此题主要考查了二次根式的性质与化简,正确将原式变形是解题关键.二、填空题:(每小題3分.共18分,请将答案直接写在题中的横线上)13.(3分)计算=1.【分析】根据二次根式的性质即可求出答案.【解答】解:原式=1,故答案为:1【点评】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.14.(3分)已知关于x的方程x k﹣1﹣2x+3=0是一元二次方程,则k=3.【分析】根据一元二次方程的定义:未知数的最高次数是2.【解答】解:依题意得:k﹣1=2.解得k=3.故答案是:3.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).15.(3分)当k>时,关于x的方程x2﹣3x+k=0没有实数根.【分析】根据根的判别式得出不等式,求出不等式的解集即可.【解答】解:x2﹣3x+k=0中当△=(﹣3)2﹣4k<0时,方程无实数根,解得:k>,故答案为:>.【点评】本题考查了解一元二次方程和根的判别式,能熟记根的判别式的内容是解此题的关键.16.(3分)一个圆锥形的漏斗,小李用三角板测得其高度的尺寸如图所示,那么漏斗的斜壁AB的长度为cm.【分析】根据题意及图形知本题是已知圆锥的底面半径及圆锥的高求圆锥的母线长,利用勾股定理即可求得.【解答】解:根据题意知:圆锥的底面半径为3cm,高为5cm,故圆锥的母线长AB==cm.故答案为:.【点评】本题考查了圆锥的计算,解题的关键是知道圆锥的底面半径、高及圆锥的母线构成直角三角形.17.(3分)已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2=25.【分析】由m与n为已知方程的解,利用根与系数的关系求出m+n与mn的值,将所求式子利用完全平方公式变形后,代入计算即可求出值.【解答】解:∵m,n是一元二次方程x2﹣4x﹣3=0的两个根,∴m+n=4,mn=﹣3,则m2﹣mn+n2=(m+n)2﹣3mn=16+9=25.故答案为:25.【点评】此题考查了一元二次方程根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.18.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在AB上,连接B′C,若∠ACB=∠AC′B′=90°,AC=BC =3,则B′C的长为.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB=3,∠CAB=45°,∵△ABC和△A′B′C′全等,∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,∴B′C==3,故答案为:3.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.三、解答题:(本大题共8小题,共计66分;解答题要写出文字说明、演算步骤或证明过程.)19.(10分)计算(1)(2)【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式和完全平方公式计算.【解答】解:(1)原式=2﹣=;(2)原式=(1+)2﹣()2=1+2+2﹣3=2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(6分)先化简再求值:,其中x=﹣2.【分析】根据二次根式的性质即可求出答案.【解答】解:原式==|x+2|,当x=﹣2时,原式=|﹣2+2|=0,【点评】本题考查二次根式的性质,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.21.(6分)如图,已知在Rt△ABC中,∠C=90°,AC=9,BC=12,求点C到AB的距离.【分析】首先根据勾股定理求出斜边AB的长,再根据三角形的面积为定值即可求出则点C到AB的距离.【解答】解:设点C到AB的距离为h,在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵AC=9,BC=12,∴AB==15,∵S△ABC=AC•BC=AB•h,∴h=.即点C到AB的距离为.【点评】本题考查了勾股定理在直角三角形中的应用,解本题的关键是正确的运用勾股定理,确定AB为斜边.22.(8分)已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判断方程根的情况;(2)若方程有一个根为3,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=4>0,由此可得出无论m 为何值,方程总有两个不相等的实数根;(2)将x=3代入原方程,即可得出关于m的一元二次方程,解之即可得出结论.【解答】解:(1)∵△=(2m)2﹣4(m2﹣1)=4>0,∴无论m为何值,方程总有两个不相等的实数根.(2)将x=3时,原方程为9+6m+m2﹣1=0,即(x+2)(x+4)=0,解得:m1=﹣2,m2=﹣4.【点评】本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)将x=3代入原方程求出m值.23.(8分)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1,x2满足x1x2+x1+x2=3,求k的值.【分析】(1)计算根的判别式,由题意得关于k的不等式,求解即可;(2)利用根与系数的关系,用含k的代数式表示出两根的和与积,代入关系式得关于k 的方程,求解即可.【解答】解:(1)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.∴△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5≥0,解得k≤.(2)∵x1+x2=1﹣2k,x1x2=k2﹣1,∴k2﹣1+1﹣2k=3即k2﹣2k﹣3=0,∴k1=﹣1,k2=3∵k≤,∴k=﹣1.【点评】本题考查了一元二次方程根的判别式、根与系数的关系,解(2)时,容易只注意解关于k的方程,忽略k的范围而出错.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.24.(8分)如图所示,在△ABC中,AC=8cm,BC=6cm;在△ABE中,DE为AB边上的高,DE=12cm,△ABE的面积S=60cm2.(1)求出AB边的长;(2)你能求出∠C的度数吗?请试一试.【分析】(1)由S△ABE=60,求得AB=10;(2)根据勾股定理的逆定理得出△ABC为直角三角形,从而得到∠C的度数.【解答】解:(1)∵DE=12,S△ABE=DE•AB=60,∴AB=10;(2)∵AC=8,BC=6,62+82=102,∴AC2+BC2=AB2,由勾股定理逆定理得∠C=90°.【点评】本题考查了利用三角形的面积公式和勾股定理的逆定理求解.25.(10分)如图,为美化环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)用含a的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽.【分析】(1)用含a的式子先表示出花圃的长和宽后利用其矩形面积公式列出式子即可;(2)根据通道所占面积是整个长方形空地面积的,列出方程进行计算即可;【解答】解:(1)由图可知,花圃的面积为(40﹣2a)(60﹣2a);(2)由已知可列式:60×40﹣(40﹣2a)(60﹣2a)=×60×40,解得:a1=5,a2=45(舍去).答:所以通道的宽为5米.【点评】本题考查了一次函数的应用以及一元二次方程的应用,解题的关键是表示出花圃的长和宽.26.(10分)2016年,市区某楼盘以每平方米6000元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2018年的均价为每平方米4860元.(1)求平均每年下调的百分率;(2)假设2019年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金15万元,可以在银行贷款30万元,张强的愿望能否实现?请说明理由.(房价每平方米按照均价计算)【分析】(1)设平均每年下调的百分率为x,根据题意得到6000(1﹣x)2=4860,然后可求得下调的百分比;(2)计算出2019年下调后每平方米的价格,然后求得住房的总价,然后与45元进行比较可得到答案.【解答】解:(1)设平均每年下调的百分率为x,依题意得:6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9=190%(不合题意,应舍去).答:平均每年下调的百分率为10%.(2)张强的愿望能够实现.理由如下:购买的住房费用:4860×(1﹣10%)×100=437400(元)现金及贷款为:15+30=45(万元).∵45万元>437400元,∴张强的愿望能够实现.【点评】本题主要考查的是一元二次方程的应用,根据2013年和2015年每平方米的价格列出方程是解题的关键.八年级(下)数学期中考试试题【含答案】一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)在Rt△ABC中,∠C=90°,∠A=70°,则∠B的度数为()A.20°B.30°C.40°D.70°2.(3分)在Rt△ABC中,斜边上的中线CD=2.5cm,则斜边AB的长是()A.2.5cm B.5cm C.7.5cm D.10cm3.(3分)以下列长度的线段为边,不能构成直角三角形的是()A.3,4,5B.5,12,13C.2,3,4D.8,15,17 4.(3分)如图,▱ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为()A.6cm B.12cm C.4cm D.8cm5.(3分)在线段、角、等腰三角形、平行四边形、矩形、菱形、正方形这几个图形中,既是轴对称图形又是中心对称图形的个数是()A.3个B.4个C.5个D.6个6.(3分)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6B.5C.4D.37.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.58.(3分)下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形9.(3分)菱形ABCD的对角线交于点O,则下列结论不一定正确的是()A.AB=BC B.OA=OC C.OA⊥OB D.AC=BD 10.(3分)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A 重合,则下列结论错误的是()A.AF=AE B.△ABE≌△AGF C.EF=2D.AF=EF 11.(3分)已知直角三角形两直角边的和为,斜边长为2,则这个直角三角形的面积是()A.B.C.3D.412.(3分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)在▱ABCD中,∠A,∠B的度数之比为5:4,则∠C等于度.14.(3分)在某直角三角形中,其中一个锐角为30°,斜边和较小的边的和为12cm,则较大的直角边的长为.15.(3分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=8,则PD的长为.16.(3分)如图,在菱形ABCD中,边长AB=6,∠ABD=30°,则菱形ABCD的面积是.17.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,P为AB边上不与A,B 重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是.18.(3分)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E 作EF∥BC,分别交BD,CD于点G,F两点,若M,N分别是DG,CE的中点,则MN 的长是.三、解答题(本大题共8小题,共计66分)19.(6分)已知一个多边形的内角和比其外角和的2倍多180°,求这个多边形的边数及对角线的条数?20.(6分)若a,b,c为△ABC的三边长,且a,b,c满足等式|a﹣3|+(4﹣b)2+=0,△ABC是直角三角形吗?请说明理由.21.(8分)已知:如图,在平行四边形ABCD中,E,F是对角线BD上的两点,且BF=DE.求证:(1)AE=CF;(2)四边形AECF是平行四边形.22.(6分)如图,求作一点P,使PM=PN,并且使点P到∠AOB的两边OA,OB的距离相等.23.(8分)已知:如图,一轮船一直由西向东航行,早上8点,在A处测得小岛P的方向是北偏东75°,以每小时15海里的速度继续向东航行,10点到达B处,并测得小岛P 的方向是北偏东60°,若小岛周围25海里内有暗礁,问该轮船一直向东航行是否有触礁的危险?24.(10分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.25.(10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN 交∠ACB的平分线于点E,交∠ACB的外角平分线于点F(1)若CE=12,CF=5,求OC的长;(2)当点O在边AC上运动到何处且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.26.(12分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.2017-2018学年广西贵港市桂平市八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.【解答】解:∵在Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∴∠B=90°﹣∠A=90°﹣70°=20°,故选:A.2.【解答】解:∵Rt△ABC中,斜边AB的中线CD=2.5cm,∴2CD=AB,∴AB=5cm.故选:B.3.【解答】解:在A中,32+42=252=52,故能构成直角三角形,故A不符合题意;在B中,52+122=169=132,故能构成直角三角形,故B不符合题意;在C中,22+32=13≠42,故不能构成直角三角形,故C符合题意;在D中,82+152=289=172,故能构成直角三角形,故D不符合题意;故选:C.4.【解答】解:∵▱ABCD的周长是28cm,∴AB+BC=14cm,∵AB+BC+AC=22cm,∴AC=22﹣14=8 cm.故选:D.5.【解答】解:既是轴对称图形又是中心对称图形的是:线段、矩形、菱形、正方形,共4个,故选:B.6.【解答】解:∵在Rt△ACB中,∠ACB=90°,AC=8,AB=10,∴BC=6.又∵DE垂直平分AC交AB于点E,∴DE∥BC,∴DE是△ACB的中位线,∴DE=BC=3.故选:D.7.【解答】解:作DH⊥AC于H,如图,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DH⊥AC,∴DH=DE=2,∵S△ABC=S△ADC+S△ABD,∴×2×AC+×2×4=7,∴AC=3.故选:A.8.【解答】解:A、两组对边分别相等的四边形是平行四边形,正确,故本选项错误;B、四个内角都相等的四边形是矩形,正确,故本选项错误;C、四条边都相等的四边形是菱形,正确,故本选项错误;D、两条对角线垂直且平分的四边形是正方形,错误,应该是菱形,故本选项正确.故选:D.9.【解答】解:∵四边形ABCD是菱形,∴AB=BC,OA=OC,OA⊥OB.故不一定正确的是AC=BD.故选:D.10.【解答】解:设BE=x,则CE=BC﹣BE=8﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=8﹣x,在Rt△ABE中,AB2+BE2=AE2,即42+x2=(8﹣x)2解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=5,∴A正确;在Rt△ABE和Rt△AGF中,,∴△ABE≌△AGF(HL),∴B正确;过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF﹣AH=5﹣3=2,在Rt△EFH中,EF=2,∴C正确;∵△AEF不是等边三角形,∴EF≠AF,故D错误;故选:D.11.【解答】解:设直角三角形两直角边分别为a、b,由题意得,a+b=,a2+b2=22,则2ab=(a+b)2﹣(a2+b2)=3,∴直角三角形的面积=ab=,故选:B.12.【解答】解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)13.【解答】解:根据平行四边形两邻角此补,可得:∠A+∠B=180°又∵∠A,∠B的度数之比为5:4,可得两角分别是100°,80°,∴平行四边形的对角相等,∴∠C等于100度.故答案为100.14.【解答】解:设较小直角边是xcm,则斜边是2xcm.根据题意,得x+2x=12,解得x=4.则2x=8.根据勾股定理,较大直角边==4(cm).故答案为4cm.15.【解答】解:作PE⊥OA于E,∵P是∠AOB平分线上一点,∴∠AOP=∠BOP=15°,∵PC∥OB,∴∠POD=∠OPC,∴∠PCE=∠POC+∠OPC=∠POC+∠POD=∠AOB=30°,∴PE=PC=4,∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=4,故答案为:4.16.【解答】解:连接CA交BD于点O,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC,BO=OD,在RT△ABO中,∵∠AOB=90°,AB=6,∠ABO=30°,∴AO=AB=3,BO=AO=3,∴AC=6,BD=6,∴S菱形ABCD=•BD•AC=18.故答案为18.17.【解答】解:如图,连接CP.∵∠C=90°,AC=6,BC=8,∴AB==10,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFPE是矩形,∴EF=CP,由垂线段最短可得CP⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CP,即×8×6=×10•CP,解得CP=4.8.故答案为:4.818.【解答】解:过M作MK⊥CD于K,过N作NP⊥CD于P,过M作MH⊥PN于H,则MK∥EF∥NP,∵∠MKP=∠MHP=∠HPK=90°,∴四边形MHPK是矩形,∴MK=PH,MH=KP,∵NP∥EF,N是EC的中点,∴=1,==∴PF=FC=BE=2,NP=EF=3,同理得:FK=DK=1,∵四边形ABCD为正方形,∴∠BDC=45°,∴△MKD是等腰直角三角形,∴MK=DK=1,NH=NP﹣HP=3﹣1=2,∴MH=2+1=3,在Rt△MNH中,由勾股定理得:MN==;故答案为:.三、解答题(本大题共8小题,共计66分)19.【解答】解:设这个多边形的边数为n,根据题意,得:(n﹣2)×180°=360°×2+180°,解得n=7,则这个多边形的边数是7,七边形的对角线条数为:×7×(7﹣3)=14(条),答:所求的多边形的边数为7,这个多边形对角线为14条.20.【解答】解:△ABC是直角三角形.理由是:∵|a﹣3|+(4﹣b)2+=0,∴a﹣3=0,4﹣b=0,c﹣5=0,∴a=3,b=4,c=5,∴a2+b2=32+42=25,c2=52=25,∴a2+b2=c2,由勾股定理的逆定理可知,△ABC是直角三角形.21.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD∠ABE=∠CDF.又∵BF=DE,∴BF﹣EF=DE﹣EF,即:BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS).∴AE=CF.。

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学八年级第二学期期中数学试卷一、选择题1.(3分)下列运算正确的是()A.=﹣2B.C.=x D.2.(3分)下列式子是最简二次根式的是()A.B.C.D.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x<﹣2B.x>﹣2C.x≤﹣2D.x≥﹣24.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.5.(3分)下列计算正确的是()A.=±2B.C.2﹣=2D.6.(3分)下列计算正确的是()A.=x B.x2•x5=x10C.(x2)3=x6D.=+ 7.(3分)下列各组数据不是勾股数的是()A.2,3,4B.3,4,5C.5,12,13D.6,8,10 8.(3分)如图,正方形ABCD的面积是()A.5B.25C.7D.19.(3分)如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.210.(3分)由下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.AB:BC:AC=3:4:5C.∠A+∠B=∠C D.AB2=BC2+AC211.(3分)如图,△ABC中,∠ACB=90°,AC=2,BC=3.设AB的长是m,下列关于m的四种说法,其中,所有正确说法的序号是()①m是无理数②m是13的算术平方根③2<m<3④m可以用数轴上的一个点来表示A.①②B.①③C.①②④D.②③④12.(3分)如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EB的长是()kmA.4B.5C.6D.二、填空题(本大题共6小题,每小题3分,共18分)请把答案填在答题卷指定的位置上.13.(3分)将二次根式化为最简二次根式.14.(3分)化简:=.15.(3分)如果最简二次根式与是同类二次根式,那么a=.16.(3分)已知a=﹣1,则a2+2a+2的值是.17.(3分)如图,两树高分别为10米和4米,相距8米,一只鸟从一树的树梢飞到另一树的树梢,问小鸟至少飞行米.18.(3分)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.三、解答题(本大题共9小题,共66分)请在答题卷指定位置上写出解答过程.19.(6分)计算:(1);(2).20.(6分)计算:(1);(2).21.(8分)计算:(3﹣)(3+)+(2﹣)22.(8分)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.23.(8分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)直接写出点A,B,C的坐标;(2)试判断△ABC是不是直角三角形,并说明理由.24.(10分)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?25.(10分)如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.26.(5分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C 到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.27.(5分)如图,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m.(1)试判断以点A,B,C为顶点的三角形的形状,并说明理由;(2)求该图的面积.参考答案一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,请用2B铅笔在答题卷上将选定的答案代号涂黑.1.(3分)下列运算正确的是()A.=﹣2B.C.=x D.解:A.=|﹣2|=2,此选项错误;B.与不是同类二次根式,不能合并,此选项错误;C.=|x|,此选项错误;D.==×=2,此选项正确;故选:D.2.(3分)下列式子是最简二次根式的是()A.B.C.D.解:A、=2,则不是最简二次根式,故此选项不合题意;B、是最简二次根式,故此选项符合题意;C、==,则不是最简二次根式,故此选项不合题意;D、=,则不是最简二次根式,故此选项不合题意;故选:B.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x<﹣2B.x>﹣2C.x≤﹣2D.x≥﹣2解:由题意,得x+2≥0,解得x≥﹣2.故选:D.4.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.解:A、=2,与不是同类二次根式,故本选项错误;B、=3,与不是同类二次根式,故本选项错误;C、=,与是同类二次根式,故本选项正确;D、与不是同类二次根式,故本选项错误.故选:C.5.(3分)下列计算正确的是()A.=±2B.C.2﹣=2D.解:A、原式=2,所以A选项错误;B、原式==,所以B选项正确;C、原式=,所以C选项错误;D、与不能合并,所以D选项错误.故选:B.6.(3分)下列计算正确的是()A.=x B.x2•x5=x10C.(x2)3=x6D.=+解:A、,错误;B、x2•x5=x7,错误;C、(x2)3=x6,正确;D、,错误;故选:C.7.(3分)下列各组数据不是勾股数的是()A.2,3,4B.3,4,5C.5,12,13D.6,8,10解:A、12+32≠42 ,不能构成直角三角形,所以不是勾股数,故符合题意;B、32+42=52,能构成直角三角形,所以是勾股数,故不符合题意;C、52+122=132,能构成直角三角形,所以是勾股数,故不符合题意;D、62+82=102,能构成直角三角形,所以是勾股数,故不符合题意;故选:A.8.(3分)如图,正方形ABCD的面积是()A.5B.25C.7D.1解:设正方形的边长为c,由勾股定理可知:c2=32+42,∴c2=25,故选:B.9.(3分)如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.2解:由题意可得,AB=3,BC=2,AB⊥BC,∴AC===,∴AD=.∴点D表示数为﹣2.故选:C.10.(3分)由下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.AB:BC:AC=3:4:5C.∠A+∠B=∠C D.AB2=BC2+AC2解:A、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,可求得∠C≠90°,故△ABC不是直角三角形;B、不妨设AB=3x,BC=4x,AC=5x,此时AB2+BC2=25x2=AC2,故△ABC是直角三角形;C、∠A+∠B=∠C,且∠A+∠B+∠C=180°,可求得∠C=90°,故△ABC是直角三角形;D、AB2=BC2+AC2,满足勾股定理的逆定理,故△ABC是直角三角形;故选:A.11.(3分)如图,△ABC中,∠ACB=90°,AC=2,BC=3.设AB的长是m,下列关于m的四种说法,其中,所有正确说法的序号是()①m是无理数②m是13的算术平方根③2<m<3④m可以用数轴上的一个点来表示A.①②B.①③C.①②④D.②③④解:由勾股定理可知:m===,故①②④正确,∵3<<4,∴3<m<4,故③错误,故选:C.12.(3分)如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EB的长是()kmA.4B.5C.6D.解:设BE=x,则AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由题意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4km.所以,EB的长是4km.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)请把答案填在答题卷指定的位置上.13.(3分)将二次根式化为最简二次根式5.解:原式=5,故答案为:514.(3分)化简:=.解:原式===,故答案为.15.(3分)如果最简二次根式与是同类二次根式,那么a=1.解:∵最简二次根式与是同类二次根式,∴1+a=4a﹣2,解得a=1.故答案为1.16.(3分)已知a=﹣1,则a2+2a+2的值是12.解:∵a=﹣1,∴a2+2a+2=(a+1)2+1=(﹣1+1)2+1=11+1=12.故答案为:12.17.(3分)如图,两树高分别为10米和4米,相距8米,一只鸟从一树的树梢飞到另一树的树梢,问小鸟至少飞行10米.解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,则EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6(m),在Rt△AEC中,AC═=10(m),答:小鸟至少飞行10米.故答案为:10.18.(3分)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为10.解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.三、解答题(本大题共9小题,共66分)请在答题卷指定位置上写出解答过程.19.(6分)计算:(1);(2).解:(1)原式=7﹣25=﹣18;(2)原式==.20.(6分)计算:(1);(2).解:(1)原式=2+2×2=+4=5;(2)原式=+6﹣=2+6﹣4=2+2.21.(8分)计算:(3﹣)(3+)+(2﹣)解:原式=9﹣7+2﹣2=2.22.(8分)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.解:(1)∵a=3+,b=3﹣,∴a+b=3++3﹣=6,a﹣b=3+﹣3+=2,则a2﹣b2=(a+b)(a﹣b)=6×=12;(2)由(1)知a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=(2)2=8.23.(8分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)直接写出点A,B,C的坐标;(2)试判断△ABC是不是直角三角形,并说明理由.解:(1)A(﹣1,5),B(﹣5,2),C(﹣3,1);(2)△ABC是直角三角形.证明:∵AB=,BC=,AC=,∴.由勾股定理的逆定理可知,△ABC是直角三角形,∠ACB=90°.24.(10分)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.25.(10分)如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.解:设旗杆的高度为x米,根据勾股定理,得x2+92=(x+3)2,解得:x=12;答:旗杆的高度为12米26.(5分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C 到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.解:过A作CD⊥AB,垂足为D,∵6002+8002=10002,∴AC2+BC2=AB2,∴∠ACB=90°,S△ACB=AB•CD=AC•BC,×600×800=×1000×DB,解得:BD=480,∴新建的路的长为480m.27.(5分)如图,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m.(1)试判断以点A,B,C为顶点的三角形的形状,并说明理由;(2)求该图的面积.解:(1)以点A,B,C为顶点的三角形的形状是直角三角形,理由是:∵∠ADC=90°,AD=4m,CD=3m,∴由勾股定理得:AC==5cm,∵AB=13m,BC=12m,∴AC2+BC2=AB2,∴∠ACB=90°,即以点A,B,C为顶点的三角形的形状是直角三角形;(2)图形的面积S=S△ACB﹣S△ADC===24(cm)2.。

2019-2020(二)八年级数学期中考试试卷

2019-2020(二)八年级数学期中考试试卷

2019—2020学年第二学期期中考试八年级数学试卷 本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第2页至第4页。

试卷满分120分。

考试时间100分钟。

答卷前,请务必将班级、姓名、考场号、座位号填写在试卷的指定位置。

祝各位同学考试顺利! 第Ⅰ卷(选择题 共36分) 一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的) (1)下列式子中,属于最简二次根式的是( ) (A )9 (B )7 (C )20 (D )13 (2)以下列各组数为边长,能构成直角三角形的是( ) (A )2,3,4 (B )3,4,6 (C )5,12,13 (D )6,7,11 (3)下列计算错误的是( ) (A )25=10⨯ (B )2+5=7 (C )182=3÷ (D )12=23 (4)如图,下列各曲线中能够表示y 是x 的函数的是( ). (A )(B )(C )(D ) (5)下列命题中,正确的是( ) 题号 一 二 三 总分 (19) (20) (21) (22) (23) (24) (25) 分数 班级 姓名 考场号 座位号 学生编号 ………………………………………………………………………………………………………………………………………………………………………………第(9)题图 第(12)题图(A )四边相等的四边形是正方形 (B )四角相等的四边形是正方形(C )对角线垂直的平行四边形是正方形 (D )对角线相等的菱形是正方形(6)菱形具有而矩形不具有的性质是( )(A )对角相等(B )四边相等 (C )对角线互相平分 (D )四角相等 (7)估计的值在( )(A )1和2之间 (B )2和3之间 (C )3和4之间 (D )4和5之间(8)如图,在Rt ABC V 中,90C ∠=︒,23AB =,3AC =,则BC 的长为( ) (A )15 (B )3 (C )3 (D )15 (9)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走路程为s(米),s与t 之间的函数关系如图所示,则下列说法中,错误的是( )(A )小明中途休息用了20分钟 (B )小明休息前爬山的速度为每分钟60米(C )小明在上述过程中所走路程为7200米(D )小明休息前后爬山的平均速度相等(10)已知一个正比例函数的图象经过()2,4A -和(),6n -两点,则n 的值为( )(A )12- (B ) 12 (C )3- (D )3(11)我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形,矩形的中点四边形是( )(A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形(12)如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,CE =5,F 为DE 的中点.若△CEF 的周长为18,则OF 的长为( )(A) 3(B)4 (C)52 (D)72第Ⅱ卷(非选择题 共84分)二、填空题(每小题3分,共18分)(13)已知函数24y x =-在实数范围内有意义,则自变量x 的取值范围是__________. (14)计算:18842-+=__________.(15)两边..长为,,则第三边长为_______. 第(8)题图第(17)题图 第(18)题图(16)已知正比例函数的图像经过点M( )、、,如果,那么 .(填“>”、“=”、“<”)(17)如图,在正方形ABCD 外侧作等边△ADE ,则∠BED 的度数为_____°.(18)如图,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为________.三、解答题(本大题共7小题,共66分,应写出文字说明、演算步骤或推理过程)(19)(本题8分)计算:818162 (2154232-.(20)(本题8分)如图,在边长为1的小正方形组成的网格中,四边形ABCD 的四个顶点都在格点上,请按要求完成下列各题:(Ⅰ)线段AB 的长为________,BC 的长为________,CD 的长为________;(Ⅱ)连接AC ,通过计算说明△ACD 和△ABC 各是什么特殊三角形.(21)(本题10分)如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BC 相交于点N ,连接,BM DN 。

成都市2019-2020学年八年级下学期期中数学试题C卷

成都市2019-2020学年八年级下学期期中数学试题C卷

成都市2019-2020学年八年级下学期期中数学试题C卷姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,在菱形ABCD中,AC与BD相交于点O,AB=4,BD=4,E为AB的中点,点P为线段AC上的动点,则EP+BP的最小值为()A.4B.2C.2D.82 . 把根号外的因式移入根号内,其结果是()A.B.﹣C.D.﹣3 . 已知等腰三角形的两边长为m和n.且m、n满足=0,则这个三角形的周长是().A.13或17B.17C.13D.14或174 . 一副三角板如图所示放置,则∠AOB等于()A.120°B.90°C.105°D.60°5 . 下列命题正确的是()A.对角线相等的四边形是平行四边形B.一条对角线平分另一条对角线的四边形是平行四边形C.对角线互相垂直的平行四边形是矩形D.对角线相等的菱形是正方形6 . 下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.对角线相等的菱形是正方形7 . 正方形ABCD的边长为1,其面积记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S2,…按此规律继续下去,则S2019的值为()A.B.C.D.8 . 某工厂的厂门形状如图(厂门上方为半圆形拱门),现有四辆装满货物的卡车,外形宽都是2.0米,高分别为2.8米,3.1米,3.4米,3.7米,则能通过该工厂厂门的车辆数是()(参考数据:,,)A.1B.2C.3D.49 . 如图,已知,点,,,在射线上,点,,,在射线上,,,,均为等边三角形.若,则的边长为()A.B.C.D.10 . 等式有意义,则的取值范围为()A.3B.C.D.11 . 以下各组数为三角形的三边长,能构成直角三角形的是()A.1,2,3B.4,5,6C.1,1,D.5,12,7二、填空题12 . 如果,那么的取值范围是______.13 . 如图,在平行四边形中,度,,,则______.14 . 如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1、l2之间的距离为2,l2、l3之间的距离为3,则AC的长是_________;15 . 如图,把边长为1的正方形放在数轴上,以数1表示的点为圆心,正方形的对角线长为半径作圆,交数轴于点、(点在点左边),则点表示的数是___.16 . 如图,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F.若AE=2,AF=3,且□ABCD的周长为20,则□ABCD的面积为________.17 . 如图在中,,,的平分线交于,交的延长线于,则的值等于_________.18 . 菱形ABCD的边长为4cm,∠A=120°,则菱形ABCD的面积为______.三、解答题19 . 如图,在ABCD中,分别过两点作对角线BD的垂线,垂足分别为M、N,连结AN、CM.求证:(1) ;(2)四边形AMCN为平行四边形.20 . 如图,在中,,,是的中点,是线段延长线上一点,过点作,与线段的延长线交于点,连结、.求证:;若,试判断四边形是什么样的四边形,并证明你的结论;若为的中点,求证:.21 . 已知a、b均为正数,且a-b=5,a2+b2=29,求a+b的值.22 . 如图,在中,点0是与的交点,过点O的直线与的延长线,的延长线分别交于点E,A.(1)求证:;(2)连接,,若与相等,则四边形是什么特殊四边形?请说明理由.23 . 如图,纸上有5个边长为1的小正方形组成的纸片.可以用下面的方法把它剪拼成一个正方形.(1)拼成的正方形的面积是多少,边长是多少.(2)你能在3×3的正方形方格图3中,连接四个点组成面积为5的正方形吗?(3)如图4,你能把这十个小正方形组成的图形纸,剪开并拼成一个大正方形吗?若能,请画出示意图,并写出边长为多少.24 . △ABC中,AD为BC边上的中线,已知AB=5,AC=3,求线段AD的长的取值范围。

2019-2020学年度第二学期八年级数学期中试卷及答案

2019-2020学年度第二学期八年级数学期中试卷及答案
1.C2.A3.D4.B5.B6.C 7.C8.D
二、填空题(本大题共8小题,每小题3分,共24分)
9. 10. 11. 12.
13.114.6015.616.
三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)
17.(6分)解:(1) × = = =4―――2分
(2) ―――2分
(第14题)(第15题)(第16题)
三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)
17.(6分)计算:(1) × (2) (3) ÷
18.(6分)计算:(1) × (2)
19.(8分)作出反比例函数 的图象,结合图象回答:
(1)当 时, 的值;
(2)当 时, 的取值范围.
根据题意,得 ―――3分
解得:
经检验 是原方程的解,且符合题意,―――3分
答:第一批某品牌盒装粽子每盒的进价是 元.―――2分
(过程不规范不整齐的,酌情扣1-2分.文字书写不一定要完备,但要有)
26.(12分)解:(1)由题意得: , ,代入反比例函数关系 中,
解得: ,
所以函数关系式为: .―――6分
(3) ―――2分
18.(6分)解:(1)原式= × +2 × = +6 ―――2分
(2)原式= 2- 2=3-2=1―――2分
19.(8分)解:(1)图略. .―――6分(图4分)
(2) .―――2分
20.(8分)解:(1) ―――2分
(2) ―――2分
(3) · = ―――2分
(4) ÷ = பைடு நூலகம் ―――2分
1.下面图形中,不是中心对称图形的是(▲)
A. B. C. D.

四川省成都市青羊区成都市石室中学2023-2024学年八年级下学期期中数学试题

四川省成都市青羊区成都市石室中学2023-2024学年八年级下学期期中数学试题

四川省成都市青羊区成都市石室中学2023-2024学年八年级下学期期中数学试题一、单选题1.中国“二十四节气”已被列入联合国教科文组织人类非物质文化遗产代表作名录,下列四幅作品分别代表“立春”、“立夏”、“芒种”、“大雪”,其中既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 2.若a b <,则下列结论正确的是( )A .11+<+a bB .22a b −>−C .33a b −<−D .44a b > 3.下列从左边到右边的变形,属于因式分解的是( )A .22632a b ab ab =⋅B .()()2111x x x +−=−C .()22442x x x −+=−D .()2412x x x x −−=−−4.使分式211x x −+的值为0,这时x 应为( ) A .x =±1 B .x =1 C .x =1 且 x ≠﹣1 D .x 的值不确定 5.如图,△ABC 沿BC 方向平移后的得到△DEF ,已知BC =5,EC =2,则平移的距离是( )A .1B .2C .3D .46.如图所示,直线l 1:y =kx +b 与直线l 2:y =mx +n 交于点P (﹣2,3),不等式kx +b ≤mx +n 的解集是( )A .x >﹣2B .x ≥﹣2C .x <﹣2D .x ≤﹣27.电商经济的蓬勃发展,物流配送体系建设的不断完善,推动我国快递行业迅速崛起.某快递公司的甲、乙两名快递员从公司出发分别到距离公司2400米和1000米的两地派送快件,甲快递员的速度是乙快递员速度的1.2倍,乙快递员比甲快递员提前10分钟到达派送地点.若设乙快递员的速度是x 米/分,则下列方程正确的是( )A .24001000101.2x x −= B .1.21024001000x x −= C .10002400101.2x x −= D . 1.21024001000x x −= 8.如图,点B 在第一象限,点A 在x 轴的正半轴上∠AOB =∠B =30°,OA =2,将△AOB 绕点O 逆时针旋转90°,则点B 的对应点B ′的坐标是( )A .3) B .(﹣3 C . D .(﹣2,3)二、填空题9.若二次三项式26x mx +−可分解为()()3x x n −+,则m 的值为 .10.若关于x 的不等式322x x k −>−的解集是0x >,则k 的值为 .11.如图,在平面直角坐标系xOy 中,线段CD 是由线段AB 平移得到的,小颖不小心将墨汁滴到点B 的坐标上,已知A ,C ,D 三点的坐标分别为()()()214234,,,,,,则点B 的坐标为 .12.某电器商场促销,海尔某型号冰箱的售价是2500元,进价是1800元,商场为保证利润率不低于5%,则海尔该型号冰箱最多降价 元.13.在Rt ABC △中,9030C B ∠=︒∠=︒,,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AC AB 、于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在BAC ∠内交于点O ,作射线AO ,交BC 于点D ,则CD BD的值为 .三、解答题14.解方程和不等式组: (1)21133x x−=−−; (2)311123x x x +>⎧⎪⎨−+≤⎪⎩①②.15.先化简21121()112x x x x x−++⋅+−,再从1−,0,1,2中选择一个恰当的数代入求值. 16.如图,在平面直角坐标系中,ABC 的三个顶点的坐标分别为()3,4A −,()4,1B −,()1,3C −.(1)画出ABC 关于原点成中心对称的111A B C △,并写出点1C 的坐标;(2)画出将ABC 绕点B 顺时针旋转90︒所得的22A BC ;(3)在(2)的条件下,求线段BC 扫过图形的面积.17.如图,在ABC 中,边AB 的垂直平分线分别交BC ,AB 于点E ,M ,边AC 的垂直平分线交BC ,AC 于点F ,N ,AEF △的周长是12.(1)求BC 的长;(2)若45B C ∠+∠=︒,4AF =,求AEF △的面积.18.在等腰直角ABC 中,90ACB ∠=︒,AC =,将直角边AC 绕点A 顺时针旋转得到AP ,旋转角为()0180αα︒<<︒,连接CP ,PB .(1)如图1,当45α=︒时,求BP 的长;(2)如图2,若135CPB ∠=︒,且D 为AB 中点,连接PD ,猜想CP 和DP 的数量关系,并说明理由;(3)在旋转过程中,当CP BP =时,求旋转角α的度数.四、填空题19.若70x y −−=,则代数式2214x y y −−的值为 .20.分式方程233x k x x −=−−的解大于1时,k 的取值范围是 . 21.如图,△ABC 的面积为4cm 2,BP 平分∠ABC ,且AP ⊥BP 于点P ,则△PBC 的面积为 cm 222.如图,ABC 中60CAB ∠=︒,2AC AB +=,AD 平分CAB ∠交BC 于点D ,当ABD △为等腰三角形时,线段AD 的值为 .23.在ABC 中,45ABC ∠=︒,60A ∠=︒,1AC =,点D 和点E 分别是射线BA 和射线CA 上的动点,且满足BD CE =,则DE CD +的最小值为 .五、解答题24.国庆期间,某商家用3200元购进了一批纪念衫,上市后果然供不应求,商家又用7200元购进了第二批这种纪念衫,所购数量是第一批购进量的2倍,但每件贵了10元.(1)该商家购进的第一批纪念衫单价是多少元?(2)若两批纪念衫按相同的标价销售,最后剩下20件按标价八折优惠卖出,如果两批纪念衫全部售完利润不低于3520元(不考虑其他因素),那么每件纪念衫的标价至少是多少元? 25.【模型建立】如图1,等腰直角三角形ABC 中,90ACB ∠=︒,CB CA =,直线ED 经过点C ,过点A 作AD ED ⊥于点D ,过点B 作BE ED ⊥于点E ,易证明BEC CDA ≌(无需证明),我们将这个模型称为“K 形图”.接下来我们就利用这个模型来解决一些问题:【模型运用】(1)如图2,在平面直角坐标系中,等腰Rt ACB ,90ACB ∠=︒,AC BC =,AB 与y 轴交点D ,点C 的坐标为(0,2)−,A 点的坐标为(4,0),求B ,D 两点坐标;(2)如图3,在平面直角坐标系中,直线l 函数关系式为:44y x =+,它交y 轴于点A ,交x 轴于点C ,在x 轴上是否存在点B ,使直线AB 与直线l 的夹角为45°?若存在,求出点B 的坐标;若不存在,请说明理由.【模型拓展】(3)如图4,在Rt ABC 中,90C ∠=︒,6AC =,8BC =,点D 在AC 上,点E 在BC 上,2CD =,分别连接BD ,AE 交于F 点.若45BFE ∠=︒,请直接写出CE 的长.26.给出如下定义:线段AB 上有两个点M 和点N ,如果AM ,MN ,BN 边的三角形是直角三角形则称点M ,点N 为线段AB 的勾股点,(1)如图,4AM =,3MN =,点M ,点N 为AB 的勾股点,则BN = ;(2)如图2,点M ,点N 为等腰Rt ABC △斜边AB 的勾股点()MN MA BN >≥,连接CM ,CN ,求MCN ∠的度数;(3)如图3,在(2)的基础上,过点A 垂直于CA 的直线与过点B 垂直于BC 的直线相交于点D,延长CM ,CN 分别与AD ,BD 相交于点F 和点E ,且CF =,10CE =,求线段MN 的长.。

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学年八年级第二学期期中数学试卷一、填空题(共6小题).1.(3 分)计算6X24^=.2.(3分)已知一个直角三角般的两直角边长分别为3和4,则斜边长是.3.(3分)要使式子J市有意义,则x的取值范围是.4.(3分)如国,在ZUBC中,。

、E分别为A3、4c边的中点,若DE=2,则8c边的长为.5.(3分)如图,一棵大树在离地面3加、5加两处折成三段,中间一段43恰好与地面平行,大树顶部落在离大树底部6加处,则大树折断前的高度是.6.(3分)菱形A3CO的对角线AC=4, 30=2,以AC为边作正方形ACEF,则3尸的长为____ 二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.任B.C. V2QD./8.(4分)判断下列各组数能作为直角三角形三边的是()A. 3, 4, 6B. 4, 5, 7C. 2, 3, ^7D. 7, 6, A/139.(4分)如图,已知菱形A3CD的对角线交于点O, DB=6f AD=5,则菱形A3CD的面积为()10. (4 分)在 RtAABC 中,ZABC=90° , 0 为斜边 AC 的中点,30=5,则 AC=()11. (4分)下列计算中,正确的是( A.收-3) 2二 ±3 B.历+ 如二9C.D.卑一心V 212. (4分)不能判定四边形A3CD 为平行四边形的条件是(13. (4分)如图,延长翅形A5co 的边BC 至点E,使CE=CA,连接AE,若N5AC=三、解答题(本大题共9小题,共70分)15. (6分)计算:倔+(证-3)°-导(2%)216. (6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60々加小,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m 处有一个车速检测仪, 过了 4s 后,测得小汽车距禺测速仪65m.这辆小汽车超速了吗?通过计算说明理由(lw/s=3.6k”i/h)17. (8分)如图,四边形43。

四川省成都市石室中学初中数学八年级下期中经典测试题(培优)

一、选择题1.(0分)[ID :9930]下列运算中,正确的是( ) A .235+=; B .2(32)32-=-; C .2a a =;D .2()a b a b +=+.2.(0分)[ID :9929]如右图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角△ABC ,使∠BAC=90°,如果点B 的横坐标为x ,点C 的纵坐标为y ,那么表示y 与x 的函数关系的图像大致是( )A .B .C .D .3.(0分)[ID :9912]如图,数轴上点A ,B 表示的数分别是1,2,过点B 作PQ ⊥AB ,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 表示的数是( )A 3B 5C 6D 74.(0分)[ID :9908]下列四组线段中,可以构成直角三角形的是( ) A .1,2,3B .2,3,4C .23D 2,3,55.(0分)[ID :9895]如图,在5×5的正方形网格中,从在格点上的点A ,B ,C ,D 中任取三点,所构成的三角形恰好是直角三角形的个数为( )A .1B .2C .3D .46.(0分)[ID :9894]实数a ,b 在数轴上的位置如图所示,则化简()()2212a b +--的结果是( )A .3a b -+B .1a b +-C .1a b --+D .1a b -++7.(0分)[ID :9876]△ABC 的三边分别是 a ,b ,c ,其对角分别是∠A ,∠B ,∠C ,下列条件不能判定△ABC 是直角三角形的是( )A .∠B = ∠A - ∠C B .a : b : c = 5 :12 :13 C .b 2- a 2= c 2D .∠A : ∠B : ∠C = 3 : 4 : 5 8.(0分)[ID :9875]下列说法正确的有几个( )①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形. A .1个 B .2个 C .3个 D .4个9.(0分)[ID :9845]下列各组数是勾股数的是( )A .3,4,5B .1.5,2,2.5C .32,42,52D .3 ,4,510.(0分)[ID :9926]如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T 如何随时间t 的变化而变化,下列从图象中得到的信息正确的是( )A .0点时气温达到最低B .最低气温是零下4℃C .0点到14点之间气温持续上升D .最高气温是8℃11.(0分)[ID :9834]下列运算正确的是( ) A 532=B 822=C 114293= D ()22525-=-12.(0分)[ID :9833]下列各式中一定是二次根式的是( ) A 23-B 2(0.3)-C 2-D x 13.(0分)[ID :9872]下列计算正确的是( )A .a 2+a 3=a 5B .3221=C .(x 2)3=x 5D .m 5÷m 3=m 214.(0分)[ID :9851]下列各组数据中,不可以构成直角三角形的是( ) A .7,24,25 B .2223,4,5 C .53,1,44D .1.5,2,2.515.(0分)[ID :9847]如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形的是( )A .AC=BDB .AB ⊥BC C .∠1=∠2D .∠ABC=∠BCD二、填空题16.(0分)[ID :10010]若由你选择一个喜欢的数值m ,使一次函数()2y m x m =-+的图象经过第一、二、四象限,则m 的值可以是___________.17.(0分)[ID :10006]如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=_______.18.(0分)[ID :9996]如果482x ⨯是一个整数,那么x 可取的最小正整数为________.19.(0分)[ID :9992]计算:(62)(62)+-=________.20.(0分)[ID :9949]如图所示,图中所有三角形都是直角三角形,所有四边形都是正方形,123916144S ===,S ,S ,则4S =_____.21.(0分)[ID :9948]比较大小:231322.(0分)[ID :9947]如图,矩形ABCD 中,15cm AB =,点E 在AD 上,且9cm AE =,连接EC ,将矩形ABCD 沿直线BE 翻折,点A 恰好落在EC 上的点A'处,则'A C =____________cm .23.(0分)[ID :9946]如图,在平行四边形ABCD 中,P 是CD 边上一点,且AP 和BP 分别平分∠DAB 和∠CBA ,若AD=5,AP=8,则△APB 的周长是 .24.(0分)[ID :9943]果字成熟后从树上落到地面,它落下的高度与经过的时间有如下的关系: 时间t (秒) 0.50.60.70.80.91 落下的高度h (米)50.25⨯ 50.36⨯ 50.49⨯ 50.64⨯ 50.81⨯51⨯如果果子经过2秒落到地上,那么此果子开始落下时离地面的高度大约是__________米. 25.(0分)[ID :9934]如图,已知▱ABCO 的顶点A 、C 分别在直线x =2和x =7上,O 是坐标原点,则对角线OB 长的最小值为_____.三、解答题26.(0分)[ID :10101]计算:123101010234+-. 27.(0分)[ID :10094]如图,矩形ABCD 的对角线相交于点O ,分别过点C 、D 作CE ∥BD 、DE ∥AC ,CE 、DE 交于点E .(1)求证:四边形OCED 是菱形.(2)将矩形ABCD改为菱形ABCD,其余条件不变,连结OE.若AC=10,BD=24,则OE的长为____.28.(0分)[ID:10055]阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗.小敏在思考问题时,有如下思路:连接AC.结合小敏的思路作答:(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由,参考小敏思考问题的方法解决一下问题;(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.29.(0分)[ID:10044]鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长的对应数值:鞋长16192427鞋码22283844(1)分析上表,“鞋码”与鞋长之间的关系符合你学过的哪种函数;(2)设鞋长为x,“鞋码”为y,求y与x之间的函数关系式;(3)如果你需要的鞋长为26cm,那么应该买多大码的鞋?30.(0分)[ID:10038]小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50分才乘上缆车,缆车的平均速度为180米/分,设小亮出发x分后行走的路程为y米.图中的折线表示小亮在整个行走过程中y随x的变化关系.(1)小亮行走的总路程是_________米,他途中休息了___________分;(2)分别求出小亮在休息前和休息后所走的路程段上的步行速度;(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.B4.C5.C6.A7.D8.C9.A10.D11.B12.B13.D15.C二、填空题16.(答案不唯一满足均可)【解析】【分析】一次函数的图象经过第一二四象限列出不等式组求解即可【详解】解:一次函数的图象经过第一二四象限解得:m的值可以是1故答案为:1(答案不唯一满足均可)【点睛】此题主17.【解析】【分析】连接FC根据三角形中位线定理可得FC=2MN继而根据四边形ABCD 四边形EFGB是正方形推导得出GBC三点共线然后再根据勾股定理可求得FC的长继而可求得答案【详解】连接FC∵MN分别18.6【解析】【分析】直接利用二次根式的性质化简再利用二次根式乘法运算法则求出答案【详解】解:∵是一个整数∴∴是一个整数∴x可取的最小正整数的值为:6故答案为:6【点睛】此题主要考查了二次根式的乘除正确19.2【解析】试题解析:原式=()2-22=6-4=220.169【解析】【分析】利用正方形的基本性质和勾股定理的定义进行解答即可【详解】解:S1=9S2=16S3=144∴所对应各边为:3412∴中间未命名的正方形边长为5∴最大的直角三角形的面积52+1221.<【解析】试题解析:∵∴∴22.8【解析】【分析】设A′C=xcm先根据已知利用AAS证明△A′BC≌△DCE得出A′C=DE=xcm则BC=AD=(9+x)cmA′B=AB=15cm然后在Rt△A′BC中由勾股定理可得BC2=A23.【解析】试题分析:∵四边形ABCD是平行四边形∴AD∥CBAB∥CD∴∠DAB+∠CBA=180°又∵AP和BP分别平分∠DAB和∠CBA∴∠PAB=∠DAB∠PBA=∠ABC∴∠PAB+∠PBA=24.20【解析】【分析】分析表格中数据得到物体自由下落的高度随着时间的增大而增大与的关系为:把代入再进行计算即可【详解】解:由表格得用时间表示高度的关系式为:当时所以果子开始落下时离地面的高度大约是2025.9【解析】【分析】过点B作BD⊥直线x=7交直线x=7于点D过点B作BE⊥x轴交x轴于点E则OB=由于四边形OABC是平行四边形所以OA=BC又由平行四边形的性质可推得∠OAF=∠BCD则可证明△O三、解答题26.28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.D 解析:D 【解析】2=-误;a =,故错误; D.()2a b =+,正确;故选D.2.A解析:A 【解析】 【分析】先做出合适的辅助线,再证明△ADC 和△AOB 的关系,即可建立y 与x 的函数关系,从而确定函数图像. 【详解】解:由题意可得:OB=x ,OA=1,∠AOB=90°,∠BAC=90°,AB=AC ,点C 的纵坐标是y ,作AD ∥x 轴,作CD ⊥AD 于点D ,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,∠AOB=∠ADC,∠OAB=∠DAC,AB=AC∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选A.【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键.3.B解析:B【解析】【分析】先依据勾股定理可求得OC的长,从而得到OM的长,于是可得到点M对应的数.【详解】解:由题意得可知:OB=2,BC=1,依据勾股定理可知:22OB BC5.∴5故选:B.【点睛】本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.4.C解析:C【解析】【分析】求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A.∵12+22≠32,∴以1,2,3为边组成的三角形不是直角三角形,故本选项错误;B .∵22+32≠42,∴以2,3,4为边组成的三角形不是直角三角形,故本选项错误;C .∵12+(2)2=(3)2,∴以1,2,3为边组成的三角形是直角三角形,故本选项正确;D .∵(2)2+32≠52,∴以2,3,5为边组成的三角形不是直角三角形,故本选项错误. 故选C . 【点睛】本题考查了勾股定理的逆定理的应用,能熟记勾股定理的逆定理的内容是解答此题的关键.5.C解析:C 【解析】 【分析】先求出每边的平方,得出AB 2+AC 2=BC 2,AD 2+CD 2=AC 2,BD 2+AB 2=AD 2,根据勾股定理的逆定理得出直角三角形即可. 【详解】理由是:连接AC 、AB 、AD 、BC 、CD 、BD , 设小正方形的边长为1, 由勾股定理得:AB 2=12+22=5,AC 2=22+42=20,AD 2=12+32=10,BC 2=52=25,CD 2=12+32=10,BD 2=12+22=5, ∴AB 2+AC 2=BC 2,AD 2+CD 2=AC 2,BD 2+AB 2=AD 2,∴△ABC 、△ADC 、△ABD 是直角三角形,共3个直角三角形, 故选C. 【点睛】本题考查了勾股定理的逆定理,解题的关键是掌握勾股定理.6.A解析:A 【解析】 【分析】先根据数轴上两点的位置确定1a +和2b -2a . 【详解】观察数轴可得,1a >-,2b >, 故10a +>,20b ->,∴()12a b =+--12a b =+-+3a b =-+故选:A.【点睛】. 7.D解析:D【解析】【分析】根据三角形内角和定理判断A 、D 即可;根据勾股定理的逆定理判断B 、C 即可.【详解】A 、∵∠B=∠A-∠C ,∴∠B+∠C=∠A ,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,即△ABC 是直角三角形,故本选项错误;B 、∵52+122=132,∴△ABC 是直角三角形,故本选项错误;C 、∵b 2-a 2=c 2,∴b 2=a 2+c 2,∴△ABC 是直角三角形,故本选项错误;D 、∵∠A :∠B :∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC 不是直角三角形,故本选项正确;故选D .【点睛】本题考查了三角形内角和定理,勾股定理的逆定理的应用,主要考查学生的计算能力和辨析能力.8.C解析:C【解析】【分析】根据对角线互相平分的四边形是平行四边形;对角线互相平分且垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形;对角线互相平分且相等的四边形是矩形进行分析即可.【详解】(1)对角线互相平分的四边形是平行四边形,说法正确;(2)对角线互相垂直的四边形是菱形,说法错误;(3)对角线互相垂直且相等的平行四边形是正方形,说法正确;(4)对角线相等的平行四边形是矩形,说法正确.正确的个数有3个,故选C.【点睛】此题主要考查了命题与定理,关键是掌握平行四边形、菱形、矩形和正方形的判定方法.9.A解析:A【解析】【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证较小两数的平方和是否等于最大数的平方.【详解】A.32+42=52,是勾股数;B.1.5,2,2.5中,1.5,2.5不是正整数,故不是勾股数;C.(32)2+(42)2≠(52)2,不是勾股数;D2+22故选A.【点睛】本题考查了勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.10.D解析:D【解析】【分析】根据气温T如何随时间t的变化而变化图像直接可解答此题.【详解】A.根据图像4时气温最低,故A错误;B.最低气温为零下3℃,故B错误;C.0点到14点之间气温先下降后上升,故C错误;D描述正确.【点睛】本题考查了学生看图像获取信息的能力,掌握看图像得到有用信息是解决此题的关键. 11.B解析:B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A .≠A 错误;B .=,故B 正确;C .=,故C 错误;D .2=,故D 错误.故选:B .【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.12.B解析:B【解析】二次根式要求被开方数为非负数,易得B 为二次根式.故选B.13.D解析:D【解析】分析:直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.详解:A 、a 2与a 3不是同类项,无法计算,故此选项错误;B 、,故此选项错误;C 、(x 2)3=x 6,故此选项错误;D 、m 5÷m 3=m 2,正确.故选:D .点睛:此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.14.B解析:B【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A 、72+242=625=252,故是直角三角形,不符合题意;B 、222222(3)(4)81256337(5)+=+=≠,故不是直角三角形,符合题意;C 、12+(34)2=2516=(54)2,故是直角三角形,不符合题意; D 、1.52+22=6.25=2.52,故是直角三角形,不符合题意;故选:B .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.C解析:C【解析】【分析】根据矩形的判定定理逐项排除即可解答.【详解】解:由对角线相等的平行四边形是矩形,可得当AC=BD 时,能判定口ABCD 是矩形; 由有一个角是直角的平行四边形是矩形,可得当AB ⊥BC 时,能判定口ABCD 是矩形; 由平行四边形四边形对边平行,可得AD//BC ,即可得∠1=∠2,所以当∠1=∠2时,不能判定口ABCD 是矩形;由有一个角是直角的平行四边形是矩形,可得当∠ABC=∠BCD 时,能判定口ABCD 是矩形.故选答案为C .【点睛】本题考查了平行四边形是矩形的判定方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线互相平分且相等的四边形是矩形.二、填空题16.(答案不唯一满足均可)【解析】【分析】一次函数的图象经过第一二四象限列出不等式组求解即可【详解】解:一次函数的图象经过第一二四象限解得:m 的值可以是1故答案为:1(答案不唯一满足均可)【点睛】此题主解析:(答案不唯一,满足02m <<均可)【解析】【分析】一次函数()2y m x m =-+的图象经过第一、二、四象限,列出不等式组200,m m -<⎧⎨>⎩求解即可.【详解】解:一次函数()2y m x m =-+的图象经过第一、二、四象限, 200m m -<⎧⎨>⎩解得:02m <<m 的值可以是1.故答案为:1(答案不唯一,满足02m <<均可).【点睛】此题主要考查了一次函数图象,一次函数y kx b =+的图象有四种情况:①当0,0k b >>时,函数y kx b =+的图象经过第一、二、三象限;②当0,0k b ><时,函数y kx b =+的图象经过第一、三、四象限;③当0,0k b <>时,函数y kx b =+的图象经过第一、二、四象限;④当0,0k b <<时,函数y kx b =+的图象经过第二、三、四象限.17.【解析】【分析】连接FC 根据三角形中位线定理可得FC=2MN 继而根据四边形ABCD 四边形EFGB 是正方形推导得出GBC 三点共线然后再根据勾股定理可求得F C 的长继而可求得答案【详解】连接FC ∵MN 分别 解析:132 【解析】【分析】连接FC ,根据三角形中位线定理可得FC=2MN ,继而根据四边形ABCD ,四边形EFGB 是正方形,推导得出G 、B 、C 三点共线,然后再根据勾股定理可求得FC 的长,继而可求得答案.【详解】连接FC ,∵M 、N 分别是DC 、DF 的中点,∴FC=2MN ,∵四边形ABCD ,四边形EFGB 是正方形,∴∠FGB=90°,∠ABG=∠ABC=90°,FG=BE=5,BC=AB=7,∴∠GBC=∠ABG+∠ABC=180°,即G 、B 、C 三点共线,∴GC=GB+BC=5+7=12,∴FC=22FG GC +=13,∴MN=132, 故答案为:132.【点睛】本题考查了正方形的性质,三角形中位线定理,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.18.6【解析】【分析】直接利用二次根式的性质化简再利用二次根式乘法运算法则求出答案【详解】解:∵是一个整数∴∴是一个整数∴x 可取的最小正整数的值为:6故答案为:6【点睛】此题主要考查了二次根式的乘除正确解析:6【解析】【分析】直接利用二次根式的性质化简,再利用二次根式乘法运算法则求出答案.【详解】==∴∴x可取的最小正整数的值为:6.故答案为:6.【点睛】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.19.2【解析】试题解析:原式=()2-22=6-4=2解析:2【解析】试题解析:原式=)2-22=6-4=2.20.169【解析】【分析】利用正方形的基本性质和勾股定理的定义进行解答即可【详解】解:S1=9S2=16S3=144∴所对应各边为:3412∴中间未命名的正方形边长为5∴最大的直角三角形的面积52+12解析:169【解析】【分析】利用正方形的基本性质和勾股定理的定义进行解答即可.【详解】解:S 1=9,S2=16,S3=144,∴所对应各边为:3,4,12.∴中间未命名的正方形边长为5.∴最大的直角三角形的面积4S=52+122=169.故答案为169.【点睛】本题考查了勾股定理的定义和正方形的基本性质,分析图形得到正方形和勾股定理的联系是解答本题的关键.21.<【解析】试题解析:∵∴∴解析:<【解析】试题解析:∵∴22.8【解析】【分析】设A′C=xcm 先根据已知利用AAS 证明△A′BC≌△DCE 得出A′C=DE=xcm 则BC=AD=(9+x )cmA′B=AB=15cm 然后在Rt△A′BC 中由勾股定理可得BC2=A解析:8【解析】【分析】设A ′C=xcm ,先根据已知利用AAS 证明△A ′BC ≌△DCE ,得出A ′C=DE= xcm ,则BC=AD=(9+x )cm ,A ′B=AB=15cm ,然后在Rt △A ′BC 中,由勾股定理可得BC 2=A ′B 2+A ′C 2,即可得方程,解方程即可求得答案【详解】解:∵四边形ABCD 是矩形,∴AB=CD=15cm ,∠A=∠D=90°,AD ∥BC ,AD=BC ,∴∠DEC=∠A ′CB ,由折叠的性质,得:A ′B=AB=15cm ,∠BA ′E=∠A=90°,∴A ′B=CD ,∠BA ′C=∠D=90°,在△A ′BC 和△DCE 中,BA C D A CB DEC A B CD ∠=∠⎧⎪∠=∠=''⎨'⎪⎩∴△A ′BC ≌△DCE (AAS ),∴A ′C=DE ,设A ′C=xcm ,则BC=AD=DE+AE=x+9(cm ),在Rt △A ′BC 中,BC 2=A ′B 2+A ′C 2,即(x+9)2=x 2+152,解得:x=8,∴A ′C=8cm .故答案为:8.【点睛】此题考查了矩形的性质、全等三角形的判定与性质、勾股定理以及折叠的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意掌握折叠前后图形的对应关系.23.【解析】试题分析:∵四边形ABCD 是平行四边形∴AD∥CBAB∥CD∴∠DAB+∠CBA=180°又∵AP 和BP 分别平分∠DAB 和∠CBA∴∠PAB=∠DAB∠PBA=∠ABC∴∠PAB+∠PBA=解析:【解析】试题分析: ∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB ∥CD ,∴∠DAB+∠CBA=180°,又∵AP 和BP 分别平分∠DAB 和∠CBA ,∴∠PAB=∠DAB ,∠PBA=∠ABC ,∴∠PAB+∠PBA=(∠DAB+∠CBA )=90°,∴∠APB=180°﹣(∠PAB+∠PBA )=90°;∵AB ∥CD ,∴∠PAB=∠DPA ,∴∠DAP=∠DPA ,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt △APB 中,AB=10,AP=8,∴BP==6,∴△APB 的周长=6+8+10=24.考点:1平行四边形;2角平分线性质;3勾股定理;4等腰三角形. 24.20【解析】【分析】分析表格中数据得到物体自由下落的高度随着时间的增大而增大与的关系为:把代入再进行计算即可【详解】解:由表格得用时间表示高度的关系式为:当时所以果子开始落下时离地面的高度大约是20 解析:20【解析】【分析】分析表格中数据,得到物体自由下落的高度h 随着时间t 的增大而增大,h 与t 的关系为:25h t =,把2t =代入25h t =,再进行计算即可.【详解】解:由表格得,用时间()t s 表示高度()h m 的关系式为:25h t =,当2t =时,2525420h =⨯=⨯=.所以果子开始落下时离地面的高度大约是20米.故答案为:20.【点睛】本题考查了根据图表找规律,并应用规律解决问题,要求有较强的分析数据和描述数据的能力.能够正确找到h 和t 的关系是解题的关键.25.9【解析】【分析】过点B 作BD⊥直线x =7交直线x =7于点D 过点B 作BE⊥x 轴交x 轴于点E 则OB =由于四边形OABC 是平行四边形所以OA =BC 又由平行四边形的性质可推得∠OAF=∠BCD 则可证明△O解析:9【解析】【分析】过点B 作BD ⊥直线x =7,交直线x =7于点D ,过点B 作BE ⊥x 轴,交x 轴于点E .则OB 22OE BE +.由于四边形OABC 是平行四边形,所以OA =BC ,又由平行四边形的性质可推得∠OAF =∠BCD ,则可证明△OAF ≌△BCD ,所以OE 的长固定不变,当BE 最小时,OB 取得最小值,即可得出答案.【详解】解:过点B 作BD ⊥直线x =7,交直线x =7于点D ,过点B 作BE ⊥x 轴,交x 轴于点E ,直线x =2与OC 交于点M ,与x 轴交于点F ,直线x =7与AB 交于点N ,如图:∵四边形OABC是平行四边形,∴∠OAB=∠BCO,OC∥AB,OA=BC,∵直线x=2与直线x=7均垂直于x轴,∴AM∥CN,∴四边形ANCM是平行四边形,∴∠MAN=∠NCM,∴∠OAF=∠BCD,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC,在△OAF和△BCD中,FOA DBC OA BCOAF BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△OAF≌△BCD(ASA).∴BD=OF=2,∴OE=7+2=9,∴OB =22OE BE+.∵OE的长不变,∴当BE最小时(即B点在x轴上),OB取得最小值,最小值为OB=OE=9.故答案为:9.【点睛】本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.三、解答题26.51012【解析】【分析】本题考查了同类二次根式的加法,系数相加二次根式不变.【详解】原式123234⎛=+-= ⎝【点睛】本题主要考查了实数中同类二次根式的运算能力,.27.(1)见解析;(2)13【解析】【分析】(1)首先由平行判定四边形OCED 是平行四边形,然后由矩形性质得出OC=OD ,即可判定四边形OCED 是菱形;(2)首先由平行判定四边形OCED 是平行四边形,然后由菱形性质得出AC ⊥BD ,AD=CD ,即可判定四边形OCED 是矩形,再利用勾股定理即可得解.【详解】(1)∵DE ∥AC 、CE ∥BD ,∴四边形OCED 是平行四边形.∵四边形ABCD 是矩形,∴AC =BD ,12OC AC =,12OD BD =. ∴OC =OD .∴四边形OCED 是菱形.(2)∵DE ∥AC 、CE ∥BD ,∴四边形OCED 是平行四边形.∵四边形ABCD 是菱形,∴AC ⊥BD ,AD=CD∴∠COD=90°∴四边形OCED 是矩形∴OE=CD∵AC =10,BD =24,∴OD=12,OC=5∴13==【点睛】此题主要考查菱形的判定与性质,熟练掌握,即可解题. 28.(1)是平行四边形;(2)①AC=BD ;证明见解析;②AC ⊥BD .【解析】【分析】(1)如图2,连接AC ,根据三角形中位线的性质及平行四边形判定定理即可得到结论;(2)①由(1)知,四边形EFGH是平行四边形,且FG=12BD,HG=12AC,于是得到当AC=BD时,FG=HG,即可得到结论;②若四边形EFGH是矩形,则∠HGF=90°,即GH⊥GF,又GH∥AC,GF∥BD,则AC⊥BD.【详解】解::(1)是平行四边形.证明如下:如图2,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=12AC,同理HG∥AC,HG=12AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形;(2)①AC=BD.理由如下:由(1)知,四边形EFGH是平行四边形,且FG=12BD,HG=12AC,∴当AC=BD时,FG=HG,∴平行四边形EFGH是菱形;②当AC⊥BD时,四边形EFGH为矩形.理由如下:同(1)得:四边形EFGH是平行四边形,∵AC⊥BD,GH∥AC,∴GH⊥BD,∵GF∥BD,∴GH⊥GF,∴∠HGF=90°,∴四边形EFGH为矩形.【点睛】此题主要考查了中点四边形,关键是掌握三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.29.(1)一次函数;(2)y=2x﹣10;(3)应该买42码的鞋.【解析】【分析】(1)由表格可知,给出了四对对应值,鞋长每增加3cm ,鞋码增加6,即鞋码与鞋长之间的关系是一次函数关系;(2)设y kx b =+,把表中任意两对值代入即可求出y 与x 的关系;(3)当26x cm =时,代入函数关系式即可计算出鞋码的值.【详解】解:(1)根据表中信息得“鞋码”与鞋长之间的关系是一次函数;(2)设y kx b =+则由题意得22162819k b k b=+⎧⎨=+⎩ 解得:210k b =⎧⎨=-⎩∴210y x =-;(3)当26x cm =时,2261042y =⨯==答:应该买42码的鞋.【点睛】本题考查了识表能力、利用待定系数法求一次函数解析式、利用函数解决实际问题的能力,难度不大属于简单题型.30.(1)3600 ,20;(2)65(米/分),55(米/分);(3)1100(米).【解析】【分析】(1)根据图象可知小亮走的总路程和中途休息的时间;(2)根据图象可知休息前走了30分钟,1950米,休息后走了30分钟,3600-1950米,由此根据速度公式进行求解即可;(3)先求出缆车到达终点所需时间,从而求出小亮行走的时间,最后根据题意求出当小颖到达缆车终点时,小亮离缆车终点的路程 .【详解】(1)根据图象可知:小亮行驶的总路程为3600m ,中途休息时间为:50﹣30=20min , 故答案为;3600,20;(2)观察图象可知小亮休息前走了30分钟,1950米,所以小亮休息前的速度为:19506530=(米/分), 小亮休息后的速度为:36001950558050-=-(米/分), 答:小亮休息前的速度为65米/分,休息后的速度为55米/分;(3)缆车到山顶的线路长为3600÷2=1800米,缆车到达终点所需时间为1800÷180=10分钟,小颖到达缆车终点时,小亮行走的时间为10+50=60分钟,80-60=20(分),∴小颖到达终点时,小亮离缆车终点的路程为:20 55=1100(米),答:当小颖到达缆车终点时,小亮离缆车终点的路程是1100米.【点睛】本题考查了函数的图象,弄清题意,读懂图象,根据图象提供的信息进行解答是关键.。

2020-2021四川省成都市石室中学八年级数学下期中试卷(含答案)

2020-2021四川省成都市石室中学八年级数学下期中试卷(含答案)一、选择题1.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示: 决赛成绩/分95 90 85 80 人数 4 6 8 2那么20名学生决赛成绩的众数和中位数分别是( )A .85,90B .85,87.5C .90,85D .95,902.估计26的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间3.如图,在菱形ABCD 中,AB =6,∠ABC =60°,M 为AD 中点,P 为对角线BD 上一动点,连接PA 和PM ,则PA +PM 的最小值是( )A .3B .2C .3D .64.如图,直线y x m =-+与3y x 的交点的横坐标为-2,则关于x 的不等式30x m x -+>+>的取值范围( )A .x>-2B .x<-2C .-3<x<-2D .-3<x<-15.如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60︒,得到线段BM .连接AM 并延长交CD 于点N ,连接MC ,则MNC ∆的面积为( )A 231-B 221-C 231-D 221- 6.下列计算正确的是( )A .a 2+a 3=a 5B .3221=C .(x 2)3=x 5D .m 5÷m 3=m 27.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°8.如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AB,BC边上的中点,EF=,BD=4,则菱形ABCD的周长为()连接EF.若3A.4B.46C.47D.289.若一次函数y=(k-3)x-k的图象经过第二、三、四象限,则k的取值范围是() A.k<3B.k<0C.k>3D.0<k<310.如图所示□ABCD,再添加下列某一个条件, 不能判定□ABCD是矩形的是()A.AC=BD B.AB⊥BCC.∠1=∠2D.∠ABC=∠BCD11.已知一次函数y=﹣x+m和y=2x+n的图象都经过A(﹣4,0),且与y轴分别交于B、C两点,则△ABC的面积为()A.48B.36C.24D.1812.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为()A.82﹢x2 = (x﹣3)2B.82﹢(x+3)2= x2C.82﹢(x﹣3)2= x2D.x2﹢(x﹣3)2= 82二、填空题13.一次函数的图像经过点A(3,2),且与y轴的交点坐标是B(0,2-),则这个一次函数的函数表达式是________________.14.如图,在矩形ABCD 中,2AB =,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为__________.15.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .16.已知一个三角形的周长是48cm ,以这个三角形三边中点为顶点的三角形的周长为_______cm .17.化简|25|-=_____;计算384-+=_____.18.在平行四边形ABCD 中,若∠A+∠C=140°,则∠B= .19.已知11510.724=,若 1.0724x =,则x 的值是__________.20.如图,在∠MON 的两边上分别截取OA 、OB ,使OA =OB ;分别以点A 、B 为圆心,OA 长为半径作弧,两弧交于点C ;连接AC 、BC 、AB 、OC .若AB =2cm ,四边形OACB 的面积为4cm 2.则OC 的长为_____cm .三、解答题21.已知方程组2313x y m x y m +=--⎧⎨-=+⎩的解满足x 为负数,y 为非正数 (1)求m 的取值范围;(2)化简()2m 3m 2-+(3)在第(1)小题的取值范围内,当m 为何整数时,不等式2mx-x<2m-1的解集为x>1?22.某学校为改善办学条件,计划采购A 、B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39000元;4台A 型空调比5台B 型空调的费用多6000元. (1)求A 型空调和B 型空调每台各需多少元;(2)若学校计划采购A 、B 两种型号空调共30台,且A 型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案? (3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?23.端午节期间,甲、乙两人沿同一路线行驶,各自开车同时去离家560千米的景区游玩,甲先以每小时60千米的速度匀速行驶1小时,再以每小时m 千米的速度匀速行驶,途中体息了一段时间后,仍按照每小时m 千米的速度匀速行驶,两人同时到达目的地,图中折线、线段分别表示甲、乙两人所走的路程()y km 甲,()y km 乙与时间()x h 之间的函数关系的图象.请根据图象提供的信息,解决下列问题:()1图中E 点的坐标是______,题中m =______km/h ,甲在途中休息______h ; ()2求线段CD 的解析式,并写出自变量x 的取值范围;()3两人第二次相遇后,又经过多长时间两人相距20km ?24.如图,菱形ABCD 的边长为2,60DAB ︒∠=,点E 为BC 边的中点,点P 为对角线AC 上一动点,则PB+PE 的最小值为_____.25.已知:如图,在四边形ABCD 中,∠B =90°,AB =BC =2,CD =3,AD =1,求∠DAB 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B.考点:1.众数;2.中位数2.D解析:D【解析】【分析】寻找小于26的最大平方数和大于26的最小平方数即可.【详解】<<,即:解:小于26的最大平方数为25,大于26的最小平方数为36,故252636<<,故选择D.5266【点睛】本题考查了二次根式的相关定义.3.C解析:C【解析】【分析】首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM的最小值.【详解】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,PA=PC,∵M 为AD 中点,∴DM=AD=3,CM ⊥AD ,∴CM==3, ∴PA+PM=PC+PM=CM=3. 故选:C .【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P 的位置是解此题的关键. 4.C解析:C【解析】【分析】【详解】解:∵直线y x m =-+与3y x 的交点的横坐标为﹣2,∴关于x 的不等式3x m x -+>+的解集为x <﹣2,∵y=x+3=0时,x=﹣3,∴x+3>0的解集是x >﹣3,∴3x m x -+>+>0的解集是﹣3<x <﹣2,故选C .【点睛】本题考查一次函数与一元一次不等式.5.C解析:C【解析】【详解】如图,作MG ⊥BC 于G ,MH ⊥CD 于H ,则BG=GC ,AB ∥MG ∥CD ,∴AM=MN ,∵MH ⊥CD ,∠D=90°,∴MH ∥AD ,∴NH=HD ,由旋转变换的性质可知,△MBC 是等边三角形,∴MC=BC=a ,∠MCD=30°,∴MH=12MC=12a ,3,∴DH=a ﹣2a ,∴CN=CH ﹣﹣(a )=﹣1)a ,∴△MNC 的面积=12×2a ×﹣1)a 2. 故选C. 6.D解析:D【解析】分析:直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.详解:A 、a 2与a 3不是同类项,无法计算,故此选项错误;B 、,故此选项错误;C 、(x 2)3=x 6,故此选项错误;D 、m 5÷m 3=m 2,正确.故选:D .点睛:此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.7.A解析:A【解析】解:∵把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′处,点B 落在点B ′处,∴∠BFE =∠EFB ',∠B '=∠B =90°.∵∠2=40°,∴∠CFB '=50°,∴∠1+∠EFB '﹣∠CFB '=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A .8.C解析:C【解析】【分析】首先利用三角形的中位线定理得出AC ,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【详解】解:∵E ,F 分别是AB ,BC 边上的中点,∴∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=12OB=12BD=2,∴AB=22=7,OA OB∴菱形ABCD的周长为47.故选C.9.D解析:D【解析】【分析】由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于k的一元一次不等式组,解之即可得出结论.【详解】∵一次函数y=(k-3)x-k的图象经过第二、三、四象限,∴,解得:0<k<3,故选:D.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.10.C解析:C【解析】【分析】根据矩形的判定定理逐项排除即可解答.【详解】解:由对角线相等的平行四边形是矩形,可得当AC=BD时,能判定口ABCD是矩形;由有一个角是直角的平行四边形是矩形,可得当AB⊥BC时,能判定口ABCD是矩形;由平行四边形四边形对边平行,可得AD//BC,即可得∠1=∠2,所以当∠1=∠2时,不能判定口ABCD是矩形;由有一个角是直角的平行四边形是矩形,可得当∠ABC=∠BCD时,能判定口ABCD是矩形.故选答案为C.【点睛】本题考查了平行四边形是矩形的判定方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线互相平分且相等的四边形是矩形.11.C解析:C【解析】【分析】把A(﹣4,0)分别代入一次函数y=﹣x+m和y=2x+n中,求得m和n的值,根据所得的两个解析式,求得点B和点C的坐标,以BC为底,点A到BC的垂线段为高,求出△ABC的面积即可.【详解】把点A(﹣4,0)代入一次函数y=﹣x+m得:4+m=0,解得:m=﹣4,即该函数的解析式为:y=﹣x﹣4,把点A(﹣4,0)代入一次函数y=2x+n得:﹣8+n=0,解得:n=8,即该函数的解析式为:y=2x+8,把x=0代入y=﹣x﹣4得:y=0﹣4=﹣4,即B(0,﹣4),把x=0代入y=2x+8得:y=0+8=8,即C(0,8),则边BC的长为8﹣(﹣4)=12,点A到BC的垂线段的长为4,S△ABC11242=⨯⨯=24.故选C.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握代入法求一次函数的解析式是解题的关键.12.C解析:C【解析】【分析】设绳索长为x尺,根据勾股定理列出方程解答即可.【详解】解:设绳索长为x尺,可列方程为(x-3)2+82=x2,故选:C.【点睛】本题考查了勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题13.y=x-2【解析】【分析】一次函数关系式y=kx+b将AB两点坐标代入解一元一次方程组可求kb的值确定一次函数关系式【详解】设一次函数关系式y=kx+b将A(32)B(0-2)代入得解得一次函数解析解析:y=43x-2.【解析】【分析】一次函数关系式y=kx+b,将A、B两点坐标代入,解一元一次方程组,可求k、b的值,确定一次函数关系式.【详解】设一次函数关系式y=kx+b ,将A (3,2)、B (0,-2)代入,得322k b b +⎧⎨-⎩==,解得432k b ⎧⎪⎨⎪-⎩==, 一次函数解析式为y=43x-2. 故答案为:y=43x-2. 【点睛】此题考查利用待定系数法求一次函数解析式,解题关键在于利用待定系数法进行求解. 14.【解析】【分析】由矩形的性质和线段垂直平分线的性质证出OA=OB=AB=2得出BD=2OB=4由勾股定理求出AD 即可【详解】解:∵四边形ABCD 是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵A解析:【解析】【分析】由矩形的性质和线段垂直平分线的性质证出OA =OB =AB =2,得出BD =2OB =4,由勾股定理求出AD 即可.【详解】解:∵四边形ABCD 是矩形,∴OB =OD ,OA =OC ,AC =BD ,∴OA =OB ,∵AE 垂直平分OB ,∴AB =AO ,∴OA =OB =AB =2,∴BD =2OB =4,∴AD故答案为:【点睛】此题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.15.40【解析】【分析】作出辅助线因为△ADF 与△DEF 同底等高所以面积相等所以阴影图形的面积可解【详解】如图连接EF ∵△ADF 与△DEF 同底等高∴S=S 即S−S=S−S 即S=S=15cm 同理可得S=S解析:40【解析】【分析】作出辅助线,因为△ADF与△DEF同底等高,所以面积相等,所以阴影图形的面积可解.【详解】如图,连接EF∵△ADF与△DEF同底等高,∴SADF=S DEF即SADF−S DPF =S DEF−S DPF,即S APD =S EPF =15cm2,同理可得S BQC =S EFQ =25cm2,∴阴影部分的面积为S EPF +S EFQ =15+25=40cm2.故答案为40.【点睛】此题考查平行四边形的性质,解题关键在于进行等量代换.16.【解析】【分析】根据三角形中位线定理得到DE=BCDF=ACEF=AB根据三角形的周长公式计算得到答案【详解】解:根据题意画出图形如图所示点DEF分别是ABACBC的中点∴DE=BCDF=ACEF=解析:24【解析】【分析】根据三角形中位线定理得到DE=12BC,DF=12AC,EF=12AB,根据三角形的周长公式计算,得到答案.【详解】解:根据题意,画出图形如图所示,点D、E、F分别是AB、AC、BC的中点,∴DE=12BC,DF=12AC,EF=12AB,∵原三角形的周长为48,∴AB+AC+BC=48,则新三角形的周长=DE+DF+EF=12×(AB+AC+BC)=24(cm)故答案为:24cm.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.【解析】【分析】(1)根据是负数根据负数绝对值等于它的相反数可得到答案;(2)根据立方根和算术平方根的求法可得到答案【详解】==﹣2+2=0故答案为:;0【点睛】去绝对值要考虑绝对值符号内的正负正数-【解析】【分析】(1)根据是负数,根据负数绝对值等于它的相反数可得到答案;(2)根据立方根和算术平方根的求法可得到答案【详解】+2+2=0,0.【点睛】去绝对值要考虑绝对值符号内的正负,正数的绝对值等于其本身,负数的绝对值等于其相反数;立方根的符号与原数相同,算术平方根为非负数18.110°【解析】试题解析:∵平行四边形ABCD∴∠A+∠B=180°∠A=∠C∵∠A+∠C=140°∴∠A=∠C=70°∴∠B=110°考点:平行四边形的性质解析:110°【解析】试题解析:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°.考点:平行四边形的性质.19.15【解析】【分析】根据得出将根号外的数化到根号里即可计算【详解】∵且∴∴∴故答案为:【点睛】本题考查二次根号的转化寻找倍数关系是解题关键解析:15【解析】【分析】根据10.724=10 1.0724⨯,将根号外的数化到根号里即可计算.【详解】10.724= 1.0724=,且10.724=10 1.0724⨯100100x=∴100115x=∴ 1.15x=故答案为:1.15【点睛】本题考查二次根号的转化,寻找倍数关系是解题关键.20.【解析】【分析】根据作法判定出四边形OACB是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC=BC=OA∵OA=OB∴OA=OB=BC=AC∴四边形OACB是菱形∵AB解析:【解析】【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴12AB•OC=12×2×OC=4,解得OC=4cm.故答案为:4.【点睛】本题考查菱形的判定与性质,菱形的面积.解决本题的关键是能根据题目中作图的过程得出线段的等量关系.三、解答题21.(1)4m 25-≤<;(2)1-2m ;(3)0 【解析】【分析】 (1)解方程组用m 的代数式表示出x 、y ,根据x 为负数,y 为非正数列出关于m 的不等式组,解之求得m 的范围;(2)根据绝对值的性质去绝对值符号,再合并即可得;(3)根据不等式的性质得出2m-1<0,求得m 的范围,结合m 为整数及(1)中m 的范围可得答案.【详解】解:(1)解方程组2313x y m x y m +=--⎧⎨-=+⎩得:m 225m 42x y -⎧=⎪⎪⎨--⎪=⎪⎩, ∵x 为负数,y 为非正数, ∴m 2025m 402-⎧<⎪⎪⎨--⎪≤⎪⎩, 解得:4m 25-≤<; (2)当4m 25-≤<时,m 3m 3m 23m m 212m -=--+=---=-;(3)()2m 12m 1x -<-的解是x 1>,∴2m 10-<,∴12m <, ∵4m 25-≤<, ∴m=0.【点睛】 本题考查了解二元一次方程组和一元一次不等式,解决本题的关键是得出关于m 的不等式组并求解.22.(1)A 型空调和B 型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,案三:采购A 型空调12台,B 型空调18台;(3)采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.【解析】分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A 型空调和B 型空调每台各需x 元、y 元,3239000456000x y x y +⎧⎨-⎩==,解得,90006000x y ⎧⎨⎩==, 答:A 型空调和B 型空调每台各需9000元、6000元;(2)设购买A 型空调a 台,则购买B 型空调(30-a )台,()()13029000600030217000a a a a ⎧≥-⎪⎨⎪+-≤⎩, 解得,10≤a≤1213, ∴a=10、11、12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;(3)设总费用为w 元,w=9000a+6000(30-a )=3000a+180000,∴当a=10时,w 取得最小值,此时w=210000,即采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.23.()()12,160,100,1;()2直线CD 的解析式为:()y 100x 1405x 7=-≤≤;()3两人第二次相遇后,又经过0.25时或1.5时两人相距20km.【解析】【分析】(1)根据速度和时间列方程:60×1+m=160,可得m=100,根据D 的坐标可计算直线OD 的解析式,从图中知E 的横坐标为2,可得E 的坐标,根据点E 到D 的时间差及速度可得休息的时间;(2)利用待定系数法求直线CD 的解析式;(3)先计算第二次相遇的时间:y=360时代入y=80x 可得x 的值,再计算x=5时直线OD 的路程,可得路程差为40km ,所以存在两种情况:两人相距20km ,列方程可得结论.【详解】()1由图形得()D 7,560,设OD 的解析式为:y kx =,把()D 7,560代入得:7k 560=,k 80=,OD ∴:y 80x =,当x 2=时,y 280160=⨯=,()E 2,160∴,由题意得:601m 160⨯+=,m 100=,()725601601001---÷=,故答案为()2,160,100,1;()()2A 1,60,()E 2,160,∴直线AE :y 100x 40=-,当x 4=时,y 40040360=-=,()B 4,360∴,()C 5,360∴,()D 7,560,∴设CD 的解析式为:y kx b =+,把()C 5,360,()D 7,560代入得:{5k b 3607k b 560+=+=,解得:{k 100b 140==-, ∴直线CD 的解析式为:()y 100x 1405x 7=-≤≤;()3OD 的解析式为:()y 80x 0x 7=≤≤,当x 5=时,y 580400=⨯=,40036040-=,∴出发5h 时两个相距40km ,把y 360=代入y 80x =得:x 4.5=,∴出发4.5h 时两人第二次相遇,①当4.5x 5<<时,80x 36020-=,x 4.75=,()4.75 4.50.25h -=,②当x 5>时,()80x 100x 14020--=,x 6=,()6 4.5 1.5h -=,答:两人第二次相遇后,又经过0.25时或1.5时两人相距20km.【点睛】本题考查了一次函数的应用,读懂函数图象,理解横、纵坐标表示的含义,熟练掌握一次函数的相关知识、利用数形结合思想是解题的关键.24.【解析】【分析】根据ABCD 是菱形,找出B 点关于AC 的对称点D ,连接DE 交AC 于P ,则DE 就是PB+PE 的最小值,根据勾股定理求出即可.【详解】解:如图,连接DE 交AC 于点P ,连接DB ,∵四边形ABCD 是菱形,∴点B 、D 关于AC 对称(菱形的对角线相互垂直平分),∴DP=BP ,∴PB+PE 的最小值即是DP+PE 的最小值(等量替换),又∵ 两点之间线段最短,∴DP+PE 的最小值的最小值是DE ,又∵60DAB ︒∠=,CD=CB,∴△CDB 是等边三角形,又∵点E 为BC 边的中点,∴DE ⊥BC (等腰三角形三线合一性质),菱形ABCD 的边长为2,∴CD=2,CE=1, 由勾股定理得22(1) DE=213-=, 3.【点睛】本题主要考查轴对称、最短路径问题、菱形的性质以及勾股定理(两直角边的平方和等于斜边的平方),确定P 点的位置是解题的关键.25.135º.【解析】【分析】在直角△ABC 中,由勾股定理求得AC 的长,在△ACD 中,因为已知三角形的三边的长,可用勾股定理的逆定理判定△ACD 是不是直角三角形.【详解】解:∵∠B =90°,AB =BC =2,∴AC 22AB BC +2,∠BAC =45°, 又∵CD =3,DA =1,∴AC2+DA2=8+1=9,CD2=9,∴AC2+DA2=CD2,∴△ACD是直角三角形,∴∠CAD=90°,∴∠DAB=45°+90°=135°.。

2019-2020学年度第二学期八年级期中数学试题

2019~2020学年度下学期八年级期中测试数 学 试 题一、选择题(本大题共16个小题,1~10题每小题3分,11~16题每2题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1x 的取值范围是( ) A .x ≥1且x ≠2 B .x ≤1 C .x >1且x ≠2 D .x <1 2.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1,2C .6,8,11D .5,12,23 3.在□ABCD 中,∠A =70°,则∠B 的度数为( )A .110°B .100°C .70°D .20°4)A .﹣4B .4C .±4D .25.在平行四边形ABCD 中,已知AB =5,BC =3,则它的周长为( )A .8B .10C .14D .16 6.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分 7.下列式子中,为最简二次根式的是( )ABCD8.已知直角三角形的一个锐角为60度,斜边长为2,那么此直角三角形的周长是( )A .2.5B .3 C2 D39.如图1,在□ABCD 中,已知AD =12cm ,AB =8cm ,AE 平分∠BAD 交BC 边于点E ,则CE 的长等于( ) A .8cm B .6cm C .4cm D .2cm 10.如图2,点E 在正方形ABCD 的边AB 上,若EB =1,EC =2,那么正方形ABCD 的面积为( ) AB .3CD .511.等腰三角形腰长为13,底边长为10,则它的面积高为( ) A .90 B .60 C .30 D .25 12.如图3,在△ABC 中,∠C =90°,AC =2,点D 在BC∠ADC =2∠B ,AD BC 的长为( )A .3﹣1B .3 +1C .5﹣1D .5 +1图3 DABE2 1 图2A B E CD 图113.如图4,将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,设筷子露在杯子外面的长度h cm,则h的取值范围是()A.h≤17cm B.h≥8cmC.7cm≤h≤16cm D.15cm≤h≤16cm14.如图5,把一个长方形的纸片对折两次,然后剪下一个角.要得到一个正方形,剪口与折痕所成锐角的大小为()A.30°B.45°C.60°D.90°15.如图6,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是()A.(0,-5)B.(0,-6)C.(0,-7)D.(0,-8)16.如图7所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC的中点,若EF=1,则AB=(A.6 B.4C.2 D二、填空题(本大题共4个小题;每小题3分,共12分.把正确答案填在横线上)17.18.如图8,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积和为19.在平面直角坐标系xOy中,若A的坐标为(1OA为边长的菱形的周长为.20.如图9,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为.三.解答题(本大题共6个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)21.(每小题6分,满分12分)(1)计算:2122⎛⎫-⎪⎝⎭.图5A BFCM图7 EA BCDF图9E(2)已知2x =2y =+22x xy y ++的值. 22.(每小题满分8分)已知a 、b 、c 是△ABC 的三边,且满足422422a b c b a c +=+,试判断△ABC 的形状.阅读下面解题过程:解:由422422a b c b a c +=+得:442222a b a c b c -=-①2222222()()()a b a b c a b +-=-②即222a b c +=③∴△ABC 为Rt △.④试问:以上解题过程是否正确: .若不正确,请指出错在哪一步? (填代号) 错误原因是 . 本题的结论应为 .23.(每题满分10分) 如图10,□ABCD 中,以B 为圆心,BA 的长为半径画弧,交BC 于点F ,作∠BAC的角平分线,交AD 于点E ,连接EF . (1)求证:四边形ABFE 是菱形;(2)若AB =4,∠ABC =60°,求四边形ABFE 的面积.A B C F图10 E24.(本题满分10分)如图11,在△ABC 中,AB =AC ,△ABC 的高BD ,CE 交于点F . (1)求证:FB =FC .(2)若FB =5,FD =3,求AB .A BCD F 图11 E如图12,点E 在□ABCD 内部,AF ∥BE ,DF ∥CE . (1)求证:△BCE ≌△ADF ; (2)设□ABCD 的面积为S ,四边形AEDF 的面积为T ,求ST 的值.ABCF图12E已知:如图13,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.图13AB C备用图1AB C备用图2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档