四川省成都市石室中学数学分式填空选择(篇)(Word版 含解析)
成都石室天府中学八年级数学上册第十五章《分式》经典习题(提高培优)

一、选择题1.关于分式2634m nm n--,下列说法正确的是()A.分子、分母中的m、n均扩大2倍,分式的值也扩大2倍B.分子、分母的中m扩大2倍,n不变,分式的值扩大2倍C.分子、分母的中n扩大2倍,m不变,分式的值不变D.分子、分母中的m、n均扩大2倍,分式的值不变D解析:D【分析】根据分式的基本性质即可求出答案.【详解】解:A、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m、n均扩大2倍,分式的值不变,故该说法不符合题意;B、22623=23432m n m nm n m n⨯--⨯--,故分子、分母的中m扩大2倍,n不变,分式的值没有扩大2倍,故该说法不符合题意;C、226212=32438m n m nm n m n-⨯--⨯-,故分子、分母的中n扩大2倍,m不变,分式的值发生变化,故该说法不符合题意;D、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m、n均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.2.若关于x的一元一次不等式组()()1112232321x xx a x⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y的分式方程3133y ayy y++=--有正整数解,则所有满足条件的整数a的值之和是()A.4 B.5 C.6 D.3A解析:A【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a的值,求出之和即可.【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩, ∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解, ∴2015a +<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a =, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3∴所有满足条件的整数a 的值之和是4,故选A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.3.化简分式2xy x x +的结果是( ) A .y x B .1y x + C .1y + D .y x x+ B 解析:B【分析】先把分子因式分解,再约分即可.【详解】 解:22(1)1xy x x y y x x x+++==. 故选:B .【点睛】 本题考查了分式的约分,解题关键是先把分子因式分解,再和分母约分.4.下列各分式中,最简分式是( )A .6()8()x y x y -+ B .22y x x y -- C .2222x y x y xy ++ D .222()x y x y -+ C 解析:C【分析】 分式的分子和分母没有公因式的分式即为最简分式,根据定义解答.【详解】A 、6()8()x y x y -+=3()4()x y x y -+,故该项不是最简分式; B 、22y x x y--=-x-y ,故该项不是最简分式; C 、2222x y x y xy++分子分母没有公因式,故该项是最简分式; D 、222()x y x y -+=x y x y -+,故该项不是最简分式; 故选:C .【点睛】此题考查最简分式定义,化简分式,掌握方法将分式的化简是解题的关键.5.下列运算正确的是( )A .236a a a ⋅=B .22a a -=-C .572a a a ÷=D .0(2)1(0)a a =≠ D 解析:D【分析】运用同底数幂乘法、负整数次幂、同底数幂除法以及零次幂的知识逐项排查即可.【详解】解:A. 235a a a ⋅=,故A 选项不符合题意; B. 221a a -=,故B 选项不符合题意; C. 572a a a -÷=,故C 选项不符合题意;D. 0(2)1(0)a a =≠,故D 选项符合题意.故填:D .【点睛】本题主要考查了同底数幂乘法、负整数次幂、同底数幂除法、零次幂等的知识点,灵活运用相关运算法则是解答本题的关键.6.若分式293x x -+的值为0,则x 的值为( ) A .4B .4-C .3或-3D .3D 解析:D【分析】先根据分式的值为0可得290x ,再利用平方根解方程可得3x =±,然后根据分式的分母不能为0即可得.【详解】 由题意得:2903x x -=+, 则290x ,即29x =,由平方根解方程得:3x=±,分式的分母不能为0,30x∴+≠,解得3x≠-,则x的值为3,故选:D.【点睛】本题考查了分式的值、分式有意义的条件、利用平方根解方程,掌握理解分式的值是解题关键.7.计算23211x xx x+-++的结果为()A.1 B.3 C.31x+D.31xx++C解析:C【分析】直接进行同分母的加减运算即可.【详解】解:23211x xx x+-++=2321x xx+-+=31x+,故选C.【点睛】本题考查了同分母的分式的运算,解题的关键是熟练掌握分式的运算法则.8.下列式子的变形正确的是()A.22b ba a=B.22+++a ba ba b=C.2422x y x yx x--=D.22m nnm-=- C解析:C【分析】根据分式的性质逐一判断即可.【详解】解:A.22b ba a=不一定正确;B.22+++a ba ba b=不正确;C. 2422x y x yx x--=分子分母同时除以2,变形正确;D.22m nnm-=-不正确;故选:C.【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.9.3333x a a y x y y x+--+++等于( ) A .33x y x y-+ B .x y - C .22x xy y -+ D .22x y + A解析:A【分析】按同分母分式相减的法则计算即可.【详解】 333333x a a y x y x y y x x y+---+=+++ 故选:A【点睛】本题考查同分母分式相加减法则:分母不变,分子相加减.10.下列各式计算正确的是( )A .33x x y y= B .632m m m = C .22a b a b a b +=++ D .32()()a b a b b a -=-- D 解析:D【分析】 根据分式的基本性质进行判断即可得到结论.【详解】解:A 、33x y 是最简分式,所以33x x y y≠,故选项A 不符合题意; B 、624m m m=,故选项B 不符合题意; C 、22a b a b++是最简分式,所以22a b a b a b +≠++,故选项C 不符合题意; D 、3322()()()()a b a b a b b a a b --==---,正确, 故选:D .【点睛】此题考查了分式的约分,以及最简分式的判断,分式的约分关键是找公因式,约分时,分式分子分母出现多项式,应先将多项式分解因式后再约分,最简分式即为分式的分子分母没有公因式.二、填空题11.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.6【分析】先设第一组有x 人则第二组人数是15x 人根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1根据等量关系列出方程即可【详解】解:设第一组有解析:6【分析】先设第一组有x 人,则第二组人数是1.5x 人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方程即可.【详解】解:设第一组有x 人. 根据题意,得242711.5x x -=, 解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人,故答案为6.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验.12.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________.(2)方程{}3min 2,322x x x --=---的解为_________________. (3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________.-3【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程求解即可;(3)根据题中的新定义化简求出分式方程的解检验即可【详解】解:(1)根据题意;(2)原方程为:去分母得解得:经检验是该解析:-3 34x =0x = 【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程,求解即可;(3)根据题中的新定义化简,求出分式方程的解,检验即可.【详解】解:(1)根据题意,{}min 2,33--=-;(2)原方程为:3322x x x-=---, 去分母得33(2)x x +=--, 解得:34x =,经检验34x =是该方程的根, 故{}3min 2,322x x x --=---的解为:34x =; (3)当1322x x <--时,x >2,方程变形得:11222x x x -=---, 去分母得:1=x-1-2x+4,解得:x=2,不符合题意; 当1322x x >--时,即x <2,方程变形得:31222x x x -=---, 解得:x=0,经检验x=0是分式方程的解,综上,所求方程的解为x=0. 故答案为:-3,34x =,0x =. 【点睛】本题考查新定义的实数运算,解分式方程.能将题目新定义的运算化为一般运算是解题关键.13.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 14.若x =2是关于x 的分式方程31k x x x -+-=1的解,则实数k 的值等于_____.4【分析】将x=2代入求解即可【详解】将x=2代入=1得解得k=4故答案为:4【点睛】此题考查分式方程的解解一元一次方程正确理解方程的解是解题的关键 解析:4【分析】将x=2代入求解即可.【详解】将x=2代入31k x x x -+-=1,得112k -=, 解得k=4,故答案为:4.【点睛】此题考查分式方程的解,解一元一次方程,正确理解方程的解是解题的关键.15.若32a b =,则22a b a+=____.2【分析】将代入式子化简即可得到答案【详解】∴原式故答案为:2【点睛】此题考查分式的化简求值解题的关键是正确代入及掌握分式化简方法解析:2【分析】将32a b =代入式子化简即可得到答案.【详解】23b a =,∴原式34222a a a a a+===. 故答案为:2.【点睛】 此题考查分式的化简求值,解题的关键是正确代入及掌握分式化简方法.16.已知实数a 、b 满足32a b =,则a b a b +-_________.5【分析】根据已知用b 表示a 然后把a 的值代入所求的代数式分子分母约掉b 后可以得到解答【详解】∴∴故答案为:5【点睛】本题考查分式的化简与求值熟练掌握分式化简与求值的各种方法是解题关键解析:5【分析】根据已知用b 表示a ,然后把a 的值代入所求的代数式,分子分母约掉b 后可以得到解答.【详解】 32a b =, ∴32a b = ∴32532b ba b a b b b ++==--, 故答案为:5.【点睛】本题考查分式的化简与求值,熟练掌握分式化简与求值的各种方法是解题关键.17.当2x =,3y =-时,代数式22222-⋅++x y x x x xy y的值为________.-5【分析】根据平方差公式完全平方公式和分式运算的性质先化简代数式;再将代入到代数式计算即可得到答案【详解】∵∴故答案为:-5【点睛】本题考查了乘法公式分式运算代数式的知识;解题的关键是熟练掌握分式解析:-5【分析】根据平方差公式、完全平方公式和分式运算的性质,先化简代数式;再将2x =,3y =-代入到代数式计算,即可得到答案.【详解】22222-⋅++x y x x x xy y 2()()()x y x y x x x y +-=⋅+ x y x y-=+ ∵2x =,3y =-∴22222-⋅++x y x x x xy y x y x y-=+2(3)23--=- 5=-故答案为:-5.【点睛】本题考查了乘法公式、分式运算、代数式的知识;解题的关键是熟练掌握分式运算、乘法公式的性质,从而完成求解.18.化简:(﹣2y x)3÷(223⋅y x x y )=_______________.﹣【分析】按照先乘方再乘除的运算顺序进行计算即可得到结论;【详解】解:原式=﹣÷=﹣•=﹣故答案为:﹣【点睛】本题考查分式的混合运算按照正确的运算顺序进行运算并及时化简是解题的关键解析:﹣25y x【分析】按照先乘方再乘除的运算顺序进行计算即可得到结论;【详解】 解:原式=﹣36y x ÷y x=﹣36y x •x y=﹣25y x, 故答案为:﹣25y x. 【点睛】本题考查分式的混合运算,按照正确的运算顺序进行运算并及时化简是解题的关键.19.计算:201(1)2|2π-⎛⎫++-= ⎪⎝⎭_____.【分析】先利用零次幂绝对值负整数次幂化简然后再计算即可【详解】解:故答案为:【点睛】本题主要考查了零次幂绝对值负整数次幂以及实数的运算灵活应用相关知识点成为解答本题的关键解析:1--【分析】先利用零次幂、绝对值、负整数次幂化简,然后再计算即可.【详解】解:21 (1)|2|2π-⎛⎫++- ⎪⎝⎭124=+1=-.故答案为:1-【点睛】本题主要考查了零次幂、绝对值、负整数次幂以及实数的运算,灵活应用相关知识点成为解答本题的关键.20.若关于x的分式方程11222mxx x-=---无解,则m =______.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m的值即可【详解】解:方程两边同时乘以(x﹣2)得:1﹣mx=-1﹣2(x﹣2)整理得:(2﹣m)x=2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m的值即可.【详解】解:方程11222mxx x-=---两边同时乘以(x﹣2)得:1﹣mx=-1﹣2(x﹣2),整理得:(2﹣m)x=2,∵无解,∴当2﹣m=0,即m=2时,方程无解;当x﹣2=0时,方程也无解,此时x=2,则2(2﹣m)=2,解得m=1.故答案为:2或1.【点睛】本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键.三、解答题21.某社区为了落实“惠民工程”,计划将社区的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?解析:(1)这项工程的规定时间是30天;(2)该工程的费用为225000元【分析】(1)设这项工程的规定时间是x 天,根据甲、乙队先合做15天,余下的工程由甲队单独需要10天完成,可得出方程解答即可;(2)先计算甲、乙合作需要的时间,然后计算费用即可.【详解】(1)设这项工程的规定时间是x 天,根据题意得:1110()1513x x x+⨯+=, 解得:x =30.经检验x =30是原分式方程的解.答:这项工程的规定时间是30天;(2)该工程由甲、乙队合做完成,所需时间为:111()22.530303÷+=⨯(天), 则该工程施工费用是:()22.565003500225000⨯+=(元).答:该工程的费用为225000元.【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.22.先化简,再求值:213(1)211x x x x x +--÷-+-,其中4x =-. 解析:1x x -;45【分析】 分式的混合运算,注意先算乘除,然后算加减,有小括号先算小括号里的,然后代入求值即可.【详解】 解:213(1)211x x x x x +--÷-+- =2221(1)1(1)3x x x x x x -+-+-⨯-- =222111(1)3x x x x x x -+---⨯-- 2231(1)3x x x x x --=⨯-- 2(3)1(1)3x x x x x --=⨯--1x x =- 当4x =-时,原式441415x x -===---. 【点睛】 本题考查分式的混合运算,分式的化简求值,掌握运算顺序和计算法则正确计算是解题关键.23.(1)先化简,再求值:22228424m m m m m m +-⎛⎫+÷ ⎪--⎝⎭,其中m 满足2430m m ++=.(2)如图,在等边ABC 中,D .E 分别在边BC 、AC 上,且//DE AB ,过点E 作EF DE ⊥交BC 的延长线于点F .若3cm CD =,求DF 的长.解析:(1)()212m +,1;(2)6cm【分析】 (1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将已知方程变形后代入计算即可求出值(2) 先求得CD =DE ,然后由Rt△DEF 中30°所对的边等于斜边的一半进行求解即可.【详解】(1)解:原式()2(2)28(2)(2)(2)m m m m m m m m +-⎛⎫+=+÷⎪--+⎝⎭ ()()()()()()()()()()()2222822222222212m m m m m m m m m m m m m m m m +-=⨯-++--=⨯+-+-=+ 2430m m ++=∴22(2)44341m m m +=++=-+=∴原式1=;(2)∵ABC 是等边三角形,∴60B A ︒∠=∠=,∵//DE AB ,∴60EDC B ︒∠=∠=,60DEC A ︒∠=∠=,∴EDC △是等边三角形.∵EF DE ⊥,∴90DEF ︒∠=,∴9030F EDC ︒︒∠=-∠=;∴26cm DF DE ==.【点睛】本题有两个问题第(1)题考查了分式的化简求值,以及分式的乘除法,熟练掌握运算法则是解本题的关键. 第(2)题主要考查的是等边三角形的性质和30°所对的边等于斜边的一半,熟练掌握相关知识是解题的关键.24.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 解析:(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+, 方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.25.解下列方程.(1)21133x x x -+=-- (2)2216124x x x --=+- 解析:(1)2x =;(2)无解【分析】(1)去分母,化成整式方程求解即可;(2)去分母,化成整式方程求解即可;【详解】(1)分式两边同时乘以()3x -得,213x x --=-,解得2x =,把2x =代入()3x -中得2310-=-≠,∴2x =是分式方程的解;(2)分式方程两边同时乘以()()22x x +-得,()()()222216x x x ---+=, 2244416x x x -+-+=,解得:2x =-,把2x =-代入()()22x x +-中得()()220x x +-=,∴分式方程无解.【点睛】本题主要考查了分式方程的求解,准确计算是解题的关键.26.某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价6元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1680元所购该书的数量比第一次多50本,当按定价售出300本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?解析:(1)第一次购书的进价是4元;(2)该老板两次售书总体上是赚钱了,共赚了840元【分析】(1)设第一次购书的进价为x 元,列分式方程1200168050(120%)x x+=+解答; (2)根据利润=销售数量乘以每本书的利润分别求出两次购书所赚钱数,相加确定赔赚即可.【详解】解:(1)设第一次购书的进价为x 元,根据题意得:1200168050(120%)x x+=+ 解得: 4x =.经检验,4x =原方程的解,答:第一次购书的进价是4元;(2)第一次购书为12004300÷= (本),第二次购书300+50=350(本).第一次嫌钱()30064600⨯-= (元),第二次嫌钱()()30064 1.25060.44 1.2240⨯-⨯+⨯⨯-⨯= (元)所以两次共赚钱600+240=840(元),答:该老板两次售书总体上是赚钱了,共赚了840元.【点睛】此题考查分式方程的实际应用,有理数的混合运算,正确理解题意是解题的关键.27.计算:0212|( 3.14)()2π---+-解析:5【分析】先计算绝对值、0指数、负指数,再加减.【详解】解: 0212|( 3.14)()2π---+-214=+5=【点睛】本题考查了包含绝对值、0指数和负指数的实数计算,准确应用各种法则,熟练计算是解题关键.28.新冠肺炎疫情暴发后,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂工作,为了应对疫情,在每个工人每小时完成的工作量不变的前提下,已复工的工人加班生产,每天的工作时间由原来8个小时增加到10个小时.该公司原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求该公司原来生产防护服的工人有多少人?(2)复工10天后,未到的7名工人到岗且同时加入了生产,每天生产时间仍然为10小时.为了支援灾区,公司复工后决定生产15500套防护服,问至少还需要多少天才能完成任务?解析:(1)原来生产防护服的工人有20人;(2)至少还需要生产9天才能完成任务.【分析】(1)设原来生产防护服的工人有x人,根据每人每小时完成的工作量不变列出关于x的方程,求解即可;(2)设还需要生产y天才能完成任务.根据前面10天完成的工作量+后面y天完成的工作量≥15500列出关于y的不等式,求解即可.【详解】解:(1)设原来生产防护服的工人有x人,由题意得,800650810(7)x x=-,解得:x=20.经检验,x=20是原方程的解.答:原来生产防护服的工人有20人;(2)设还需要生产y天才能完成任务.每人每小时生产防护服的数量为:8005 820=⨯套,106502051015500y⨯+⨯⨯≥,解得x≥9,答:至少还需要生产9天才能完成任务.【点睛】本题考查分式方程的应用,一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.。
成都数学分式填空选择(篇)(Word版 含解析)

成都数学分式填空选择(篇)(Word 版 含解析)一、八年级数学分式填空题(难)1.已知关于x 的分式方程1a x +-221a x x x--+=0无解,则a 的值为____________. 【答案】-1或0或12【解析】若关于x 的分式方程1a x +-221a x x x--+=0无解,则最简公分母为零或所化成的整式方程无解.解:去分母方程两边同乘(1)x x + 得, (21)0ax a x ---=210ax a x -++=(1)210a x a +-+=(1)21a x a +=-当10a += 即1a =-时,整式方程无解,即分式方程无解;当10a +≠时,有0x =或1x =-时,分式方程无解,此时12a =或0a = 故答案为-1或0或12点睛:本题主要考查分式方程无解问题.本题的易错点在于只考虑到了最简公分母为零的情况,而忽略了化为整式方程后,整式方程无解这一情况,从而导致答案不全.2.若以x 为未知数的方程()22111232a a x x x x +-=---+无解,则a =______. 【答案】1-或32-或2-. 【解析】【分析】首先解方程求得x 的值,方程无解,即所截方程的解是方程的增根,应等于1或2,据此即可求解a 的值.【详解】去分母得()()()2121x a x a -+-=+,整理得()134a x a +=+,①当1a =-时,方程①无解,此时原分式方程无解;当1a ≠-时,原方程有增根为1x =或2x =.当增根为1x =时,3411a a +=+,解得32a =-; 当增根为2x =时,3421a a +=+,解得2a =-. 综上所述,1a =-或32a =-或2a =-. 【点睛】本题主要考查了方程增根产生的条件,如果方程有增根,则增根一定是能使方程的分母等于0的值.3.已知113-=a b ,则分式232a ab b a ab b+-=--__________. 【答案】34 【解析】【分析】 首先把113-=a b两边同时乘以ab ,可得3b a ab -= ,进而可得3a b ab -=-,然后再利用代入法求值即可.【详解】 解:∵113-=a b, ∴3b a ab -= ,∴3a b ab -=-, ∴2323263334a b ab a ab b ab ab a ab b a b ab ab ab 故答案为:34【点睛】 此题主要考查了分式化简求值,关键是掌握代入求值时,有直接代入法,整体代入法等常用方法.4.八年级数学教师邱龙从家里出发,驾车去离家180km 的风景区度假,出发一小时内按原计划的速度匀速行驶,一小时后以原速的1.5倍匀速行驶,并提前40分钟到达风景区;第二天返回时以去时原计划速度的1.2倍行驶回到家里.那么来回行驶时间相差_________分钟.【答案】10【解析】【分析】设从家到风景区原计划行驶速度为x km/h ,根据“实际时间=计划时间-4060”得出方程,求出原计划的行驶速度,进而计算出从家到风景区所用的时间以及回家所用的时间,即可得出结论.【详解】设从家到风景区原计划行驶速度为x km/h ,根据题意可得:1801.5x x -+11804060x =-, 解得:x =60,检验得:x =60是原方程的根. ∴第一天所用的时间601804060=-=73(小时), 第二天返回时所用时间=180÷(60×1.2)=2.5(小时),时间差=2.5-73=16(小时)=10(分钟). 故答案为:10.【点睛】 本题考查了分式方程的应用,正确得出方程是解答本题的关键.5.已知x 为正整数,当时x=________时,分式62x -的值为负整数. 【答案】3、4、5、8【解析】由题意得:2﹣x <0,解得x >2,又因为x 为正整数,讨论如下:当x=3时,62x -=﹣6,符合题意; 当x=4时,62x -=﹣3,符合题意; 当x=5时,62x -=﹣2,符合题意; 当x=6时,62x -=﹣32,不符合题意,舍去; 当x=7时,62x -=﹣65,不符合题意,舍去; 当x=8时, 62x-=﹣1,符合题意; 当x≥9时,﹣1<62x-<0,不符合题意.故x 的值为3,4,5,8. 故答案为:3、4、5、8.6.当x =1时,分式x b x a -+无意义;当x =2时,分式23x b x a-+的值为0,则a +b =_____. 【答案】3【解析】【分析】 先根据分式无意义的条件可求出a 的值,再根据分式值为0的条件可求出b 的值,最后将求出的a,b 代入计算即可.【详解】因为当1x =时,分式x b x a -+无意义, 所以10a +=,解得: 1a =-,因为当2x =时,分式23x b x a -+的值为零, 所以4020b a -=⎧⎨+≠⎩, 解得: 4b =,所以143,a b +=-+=故答案为:3.【点睛】本题主要考查分式无意义和分式值为0的条件,解决本题的关键是要熟练掌握分式无意义和分式值为0的条件.7.使分式的值为0,这时x=_____. 【答案】1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法8.若关于x 的分式方程3x x --2=3m x -有增根,则增根为________,m =________. 【答案】x =3 3【解析】【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m 的值.【详解】方程两边都乘(x-3),得 x-2(x-3)=m ,∵原方程有增根,∴最简公分母x-3=0,即增根是x=3, 把x=3代入整式方程,得m=3,故答案为x=3,3.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.9.若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 【答案】3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.如果关于x 的不等式组0{243(2)x m x x ->-<-的解集为,且关于的分式方程有非负整数解,则符合条件的所有m 的取值之积为( )A .B .C .D .15-【答案】C【解析】试题解析:()-0{2-43-2x m x x ⋯⋯>①<②, 解①得x >m ,解②得x >1.不等式组的解集是x >1,则m ≤1.解方程1322x m x x -+=--, 去分母,得1-x -m =3(2-x ),去括号,得1-x -m =6-3x ,移项,得-x +3x =6-1+m ,合并同类项,得2x =5+m ,系数化成1得x =5+m 2. ∵分式方程1322x m x x -+=--有非负整数解, ∴5+m ≥0,∴m >-5,∴-5≤m ≤1,∴m =-5,-3,1,∴符合条件的m 的所有值的积是15,故选C .二、八年级数学分式解答题压轴题(难)11.阅读下面材料并解答问题 材料:将分式322231x x x x --++-+拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为21x -+,可设()322231()x x x x x a b --++=-+++,则323223x x x x ax x a b --++=--+++∵对任意x 上述等式均成立,∴2a =且3a b +=,∴2a =,1b = ∴()2322221(2)12312111x x x x x x x x x -+++--++==++-+-+-+ 这样,分式322231x x x x --++-+被拆分成了一个整式2x +与一个分式211x -+的和 解答:(1)将分式371x x +-拆分成一个整式与一个分式(分子为整数)的和的形式 (2)求出422681x x x --+-+的最小值. 【答案】(1)3+101x -;(2)8 【解析】【分析】(1)直接把分子变形为3(x-1)+10解答即可;(2)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a)+b ,按照题意,求出a 和b 的值,即可把分式422681x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式. 【详解】解:(1)371x x +-=33101x x -+- =()31101x x -+- =3+101x -; (2)由分母为21x -+,可设4268x x --+()()221x x a b =-+++,则4268x x --+ ()()221x x a b =-+++422x ax x a b =--+++ 42(1)()x a x a b =---++.∵对于任意的x ,上述等式均成立,∴168a a b -=⎧⎨+=⎩解得71a b =⎧⎨=⎩ ∴422681x x x --+-+ ()()2221711x x x -+++=-+ ()()222217111x x x x -++=+-+-+ 22171x x =++-+. ∴当x=0时,22171x x ++-+取得最小值8,即 422681x x x --+-+的最小值是8. 【点睛】 本题主要考查分式的混合运算,解答本题的关键是理解阅读材料中的方法,并能加以正确应用.12.一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式.例如:a b c ++,abc ,22a b +,含有两个字母a ,b 的对称式的基本对称式是+a b 和ab ,像22a b +,(2)(2)a b ++等对称式都可以用+a b 和ab 表示,例如:222()2a b a b ab +=+-.请根据以上材料解决下列问题:(1)式子①22a b ,②22a b -,③11a b +中,属于对称式的是__________(填序号).(2)已知2()()x a x b x mx n ++=++.①若m =-n =,求对称式b a a b+的值. ②若4n =-,直接写出对称式442211a b a b+++的最小值. 【答案】(1)①③.(2)①2.②172【解析】试题分析:(1)由对称式的定义对三个式子一一进行判断可得属于对称式的是①、③;(2)①将等号左边的式子展开, 由等号两边一次项系数和常数项对应相等可得a +b =m ,ab =n ,已知m 、n 的值,所以a +b 、ab 的值即求得,因为b a +a b =22a b ab +=()22a b ab ab +-,所以将a +b 、ab 的值整体代入化简后的式子计算出结果即可;②421a a ++421b b+= a 2+21a +b 2+21b =(a +b )2-2ab ()2222a b ab a b+-+=m 2+8+2816m +=21716m +172,因为1716m 2≥0,所以1716m 2+172≥172,所以421a a ++421b b +的最小值是172. 试题解析:(1)∵a 2b 2=b 2a 2,∴a 2b 2是对称式,∵a 2-b 2≠b 2-a 2,∴a 2-b 2不是对称式, ∵1a +1b =1b +1a ,∴1a +1b是对称式, ∴①、③是对称式;(2)①∵(x +a )(x +b )=x 2+(a +b )x +ab =x 2+mx +n ,∴a +b =m ,ab =n ,∵m =-n, ∴b a +a b =22a b ab +=()22a b ab ab +-22--2;②421a a ++421b b+, =a 2+21a +b 2+21b, =(a +b )2-2ab +()2222a b ab a b +-,=m 2+8+2816m +, =21716m +172, ∵1716m 2≥0, ∴1716m 2+172≥172, ∴421a a ++421b b+的最小值是172. 点睛:本题关键在于理解对称式的定义,并利用分式的性质将分式变形求解.13.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式, 如:112122111111x x x x x x x x +-+-==+=+-----; 2322522552()11111x x x x x x x x -+-+-==+=+-+++++. (1)下列分式中,属于真分式的是:____________________(填序号) ①21a a -+; ②21x x +; ③223b b +; ④2231a a +-. (2)将假分式4321a a +-化成整式与真分式的和的形式为: 4321a a +-=______________+________________. (3)将假分式231a a +-化成整式与真分式的和的形式: 231a a +-=_____________+______________. 【答案】(1)③;(2)2,521a -;(3)a +1+41a - .【解析】试题分析:(1)认真阅读题意,体会真分式的特点,然后判断即可;(2)根据题意的化简方法进行化简即可;(3)根据题意的化简方法进行化简即可.试题解析:(1)①中的分子分母均为1次,②中分子次数大于分母次数,③分子次数小于分母次数,④分子分母次数一样,故选③.(2)4321a a +-=42552212121a a a a -+=+---,故答案为2,5221a +-; (3)231a a +-=214(1)(1)4111a a a a a a -++-=+---=411a a ++-,故答案为a+1+41a -.14.按要求完成下列题目.()1求:()11111223341n n +++⋯+⨯⨯⨯+的值. 对于这个问题,可能有的同学接触过,一般方法是考虑其中的一般项,注意到上面和式的每一项可以写成()11n n +的形式,而()11111n n n n =-++,这样就把()11n n +一项(分)裂成了两项. 试着把上面和式的每一项都裂成两项,注意观察其中的规律,求出上面的和,并直接写出111112233420162017+++⋯+⨯⨯⨯⨯的值. ()2若()()()()()112112A B n n n n n n n =++++++①求:A 、B 的值:②求:()()11112323412n n n ++⋯+⨯⨯⨯⨯++的值. 【答案】()()()3412n n n n +++ 【解析】【分析】(1)根据题目的叙述的方法即可求解;(2)①把等号右边的式子通分相加,然后根据对应项的系数相等即可求解;②根据()()()()()11111..1221212n n n n n n n =-+++++把所求的每个分式化成两个分式的差的形式,然后求解.【详解】解:(1)112⨯+123⨯+134⨯+…+120161017⨯=1-12+12-13+13-14+…+12016-12017 =1-12017 =20162017; (2)①∵()1A n n ++()()12B n n ++=()()()2n 12A B n A n n ++++ =()()1n 12n n ++, ∴120A B B ⎧=⎪⎨⎪+=⎩, 解得1212A B ⎧=⎪⎪⎨⎪=-⎪⎩. ∴A 和B 的值分别是12和-12; ②∵()()1n 12n n ++=12•()11n n +-12•()()1n 12n n ++ =12•(1n -1n 1+)-12(11n +-12n +) ∴原式=12•112⨯-12•123⨯+12•123⨯-12•134⨯+…+12•()11n n +-12•()()112n n ++ =12•112⨯-12•()()112n n ++ =14-()()1212n n ++ =()()()3412n n n n +++.【点睛】本题考查了分式的化简求值,正确理解()()1n 12n n ++=12•()1n 1n +-12•()()112n n ++是关键.15.某商场计划销售A ,B 两种型号的商品,经调查,用1500元采购A 型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?【答案】(1)B型商品的进价为120元, A型商品的进价为150元;(2)5500元.【解析】分析:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+30)元,根据“用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍”,这一等量关系列分式方程求解即可;(2)根据题意中的不等关系求出A商品的范围,然后根据利润=单价利润×减数函数关系式,根据函数的性质求出最值即可.详解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+30)元.由题意: =×2,解得x=120,经检验x=120是分式方程的解,答:一件B型商品的进价为120元,则一件A型商品的进价为150元.(2)因为客商购进A型商品m件,销售利润为w元.m≤100﹣m,m≤50,由题意:w=m(200﹣150)+(100﹣m)(180﹣120)=﹣10m+6000,∵﹣10<0,∴m=50时,w有最小值=5500(元)点睛:此题主要考查了分式方程和一次函数的应用等知识,解题关键是理解题意,学会构建方程或一次函数解决问题,注意解方式方程时要检验.。
四川省成都市石室中学2023-2024学年高三上学期开学考试文科数学试题(含解析)

四川省成都市石室中学2023-2024学年高三上学期开学考试文科数学试题学校:___________姓名:___________班级:___________考号:___________. .. ..已知实数,x y 满足x a ,则下列关系式恒成立的是(.221111x y >++ln 2(1)x +>ln 2(yA .14B .128.已知函数()sin(4)(0f x A x ϕ=+<于直线π24x =-对称,将()f x 图象上所有点的纵坐标保持不变,得到函数()g x 的图象,则()g x 在区间A .12B .1二、填空题三、解答题(1)求证:AP CP ⊥;(2)求三棱锥P ADE -的体积.19.已知某绿豆新品种发芽的适宜温度在究温度x (℃)与绿豆新品种发芽数其中24y =,71()()70i i i x x y y =--=∑(1)运用相关系数进行分析说明,是否可以用线性回归模型拟合参考答案:8.C【分析】根据已知条件求得求法求得正确答案.sin πA ϕ⎧=⎪因为M 为双曲线右支上一点,设12,MF m MF n ==,则m -故222224,m n mn a m +-=∴+在12F MF △中,2121|||F F MF =15.0【分析】设()()1122,,,A x y B x y ,联立直线与抛物线方程可得积的坐标运算公式求MA MB ⋅的值【详解】解:如图,设()11,,A x y B y y -317.(1)见解析(2)n T =【详解】试题分析:(1)题中所给的递推关系整理可得:{}n a n -是首项为2,公比为19.(1)可以用线性回归方程模型拟合(2)5722ˆyx =-,种子的发芽颗数为【分析】(1)根据已知数据代入相关系数公式计算即可作出判断;。
四川省成都市石室中学八年级数学上册第五单元《分式》测试题(包含答案解析)

一、选择题1.化简221x x x ++÷(1-11x +)的结果是( ) A .11x + B .11x - C .x+1 D .x-12.关于x 的一元一次不等式组31,224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,且关于y 的分式方程13122my y y y--+=--有整数解,则符合条件的所有整数m 的和为( ) A .9 B .10 C .13 D .143.分式293x x --等于0的条件是( ) A .3x = B .3x =- C .3x =± D .以上均不对4.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N 5.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,重庆某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱口罩.根据题意可列方程为( )A .6000600052x x-= B .6000600052x x -= C .6000600052x x -=+ D .6000600052x x-=+ 6.化简分式2xy x x +的结果是( ) A .y x B .1y x+ C .1y + D .y x x + 7.若关于x 的方程1044m x x x--=--无解,则m 的值是( ) A .2- B .2 C .3- D .38.下列变形不正确...的是( )A .1a b a b a b-=-- B .1a b a b a b +=++ C .221a b a b a b +=++ D .221-=-+a b a b a b 9.下列各式计算正确的是( )A .()23233412ab a b -=- B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a b a b b -÷=-D .()325339a b a b -=-10.若实数a 使关于x 的不等式组313212x x a xx +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4 B .3 C .2 D .111.下列各式中正确的是( )A .263333()22=x x y yB .222224()=++a a a b a bC .22222()--=++x y x y x y x y D .333()()()++=--m n m n m n m n 12.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1 C .2 D .1二、填空题13.符号“a bc d ”称为二阶行列式,规定它的运算法则为:a bc d =ad ﹣bc ,请你根据上述规定求出下列等式中x 的值.若2111111xx =--,那么x =__.14.观察给定的分式,探索规律:(1)1x ,22x ,33x ,44x ,…其中第6个分式是__________; (2)2x y ,43x y -,65x y ,87x y-,…其中第6个分式是__________;(3)2b a -,52b a ,83b a -,114b a,…其中第n 个分式是__________(n 为正整数). 15.计算211()(1)11m m m -⨯--+的结果是______. 16.H 7N 9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小为________米.17.若关于x 的方程2144416m x x x +=-+-无解,则m 的值为__________. 18.已知关于x 的分式方程211a x +=+的解是负数,则a 的取值范围_____________. 19.若关于x 的分式方程11222mx x x-=---无解,则m =______. 20.已知:4a b +=,2210a b +=,求11a b+=______. 三、解答题21.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 22.计算(1)2201920200112202132-⎛⎫⎛⎫---⨯+ ⎪ ⎪⎝⎭⎝⎭;(2)22224122x x x x x x x--+---. 23.先化简,再求值:22141244x x x x x ,其中3x =-24.秋冬来临之际,天气开始慢慢变冷,某商家抓住商机,在十一月份力推甲、乙两款儿童棉服.已知十一月份甲款棉服的销售总额为8400元,乙款棉服的销售总额为9000元,乙款棉服的单价是甲款棉服单价的1.2倍,乙款棉服的销售数最比甲款棉服的销售数量少6件.(1)求十一月份甲款棉服的单价是多少元?(2)十二月份,为了加大推销力度,该商家将甲款棉服的单价在十一月份的基础上下调了%a ,结果甲款棉服的销量比十一月份多卖了24件;乙款棉服的单价在十一月份的基础上下调3%2a ,结果乙款棉服的销量比十一月份多卖了50件.要使十二月份的总销售额不低于22200元,求a 的最大值,25.先化简,再求值:2222224414y x x xy y x x x y ⎛⎫+-++-÷ ⎪-⎝⎭,其中x ,y 满足()2230x y ++-=.26.先化简,再求值:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中a 与2,3构成ABC 的三边长,且a 为整数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式=22211(1)1(1)1(1)1x x x x x x x x x +-+÷=⋅=++++ , 故选A.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键. 2.A解析:A【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可.【详解】 解:31224x m x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得x≤2m+2,解②得x≤4,∵不等式组31224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4,∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得my-1+y-2=3y , ∴32y m =-, ∵m≥1,分式方程13122my y y y--+=--有整数解, ∴m=1,3,5,∵y-2≠0,∴y≠2, ∴322m ≠-, ∴m≠72, ∴m=1,3,5,符合题意,1+3+5=9.故选A .【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键. 3.B解析:B【分析】根据分式等于0的条件:分子为0,分母不为0解答.【详解】由题意得:290,30x x -=-≠,解得x=-3,故选:B .【点睛】此题考查分式的值等于0的条件,熟记计算方法是解题的关键. 4.C解析:C【分析】先进行分式化简,再确定在数轴上表示的数即可.【详解】 解:2224411424x x x x x x-++÷-+ 2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M ,故选:C .【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键. 5.A解析:A【分析】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天列分式方程.【详解】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 根据题意得:6000600052x x -=, 故选:A .【点睛】此题考查分式方程的实际应用,正确理解题意找到等量关系从而列出方程是解题的关键. 6.B解析:B【分析】先把分子因式分解,再约分即可.【详解】 解:22(1)1xy x x y y x x x+++==. 故选:B .【点睛】 本题考查了分式的约分,解题关键是先把分子因式分解,再和分母约分.7.D解析:D【分析】 根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 8.C解析:C【分析】A 、B 两项利用同分母分式的加减法法则计算,约分即可得到结果;C 、D 通过能否继续进行因式分解,继续化简,即可得到答案.【详解】 A.=1a b a b a b a b a b --=---,故此项正确; B.=1a b a b a b a b a b ++=+++,故此项正确; C. 22a b a b ++为最简分式,不能继续化简,故此项错误; D. ()()221a b a b a b a b a b a b--==-+-+,故此项正确; 故选C .【点睛】此题考查了分式的加减法、约分,熟练掌握运算法则是解本题的关键.9.A解析:A【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可.【详解】A 、()23233412a b a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误;C 、()24222842a b a bb -÷=-,故这个选项错误; D 、()3263327a ba b -=-,故这个选项错误;故选:A .【点睛】 本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.10.D解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】 解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.11.D解析:D【分析】根据分式的乘法法则计算依次判断即可.【详解】A、2633327()28=x xy y,故该项错误;B、22224()()=++a aa b a b,故该项错误;C、222()()()--=++x y x yx y x y,故该项错误;D、333()()()++=--m n m nm n m n,故该项正确;故选:D.【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.12.C解析:C【分析】先根据分式为零的条件列出不等式组,然后再求解即可.【详解】解:∵2221x xx---=0∴222=010x xx⎧--⎨-≠⎩,解得x=2.故答案为C.【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题13.4【分析】首先根据题意由二阶行列式得到一个分式方程解分式方程即得问题答案【详解】解:∵=1∴方程两边都乘以x﹣1得:2+1=x﹣1解得:x=4检验:当x=4时x﹣1≠01﹣x≠0即x=4是分式方程的【分析】首先根据题意由二阶行列式得到一个分式方程,解分式方程即得问题答案 .【详解】解:∵211111xx --=1, ∴21111x x-=--, 方程两边都乘以x ﹣1得:2+1=x ﹣1,解得:x =4,检验:当x =4时,x ﹣1≠0,1﹣x≠0,即x =4是分式方程的解,故答案为:4.【点睛】本题考查分式方程与新定义实数运算的综合运用,通过观察所给运算式子归纳出运算规律并得到分式方程再求解是解题关键.14.【分析】(1)分子是连续正整数分母是以x 为底指数是连续正整数第六个分式的分子是6分母是x6(2)分子是以x 为底指数是连续偶数分母是以y 为底指数是连续奇数第奇数个分式符号是正第偶数个分式符号为负第六个 解析:66x 1211x y - 31(1)n n nb a -- 【分析】(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,第六个分式的分子是6,分母是 x 6(2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,第六个分式是负号,分子是x 12,分母是 y 11,(3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个分式的符号是(-1)n , 分子是b 3n-1,分母是 a n ,【详解】解:(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,所以,第六个分式是66x , (2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,所以,第六个分式是1211x y -,(3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个符号为(-1)n ,所以,第六个分式是31(1)n nnb a -- 【点睛】 本题考查了数字之间的规律,连续正整数、奇数、偶数和依次递增3的数字规律,包括符号依次变化规律,熟练掌握特殊数字之间的规律是解题关键15.2【分析】利用乘法分配律展开括号再计算加减法【详解】故答案为:2【点睛】此题考查分式的混合运算掌握乘法分配律计算法则是解题的关键 解析:2【分析】利用乘法分配律展开括号,再计算加减法.【详解】()211()(1)11211m m m m m -⨯-=+--=-+. 故答案为:2.【点睛】 此题考查分式的混合运算,掌握乘法分配律计算法则是解题的关键.16.【分析】根据题意列得这个病毒直径为计算并用科学记数法表示即可【详解】故答案为:【点睛】此题考查实数的乘法计算科学记数法正确理解题意列式并会用科学记数法表示结果是解题的关键解析:8310-⨯【分析】根据题意列得这个病毒直径为93010-⨯,计算并用科学记数法表示即可.【详解】983010310--⨯=⨯,故答案为:8310-⨯ .【点睛】此题考查实数的乘法计算,科学记数法,正确理解题意列式并会用科学记数法表示结果是解题的关键.17.-1或-【分析】直接解分式方程再利用一元一次方程无解和分式方程无解分别分析得出答案【详解】解:去分母得:(x+4)+m(x-4)=4可得:(m+1)x=4m 当m+1=0时分式方程无解此时m=-1当m解析:-1或-12【分析】直接解分式方程,再利用一元一次方程无解和分式方程无解分别分析得出答案.【详解】解:2144416m x x x +=-+-, 去分母得:(x+4)+m(x-4)=4,可得:(m+1)x=4m ,当m+1=0时,分式方程无解,此时m=-1, 当m+1≠0时,则x=41m m +=±4, 当41m m +=4时,此时方程无解; 当41m m +=-4时,解得:m=-12, 经检验,m=-12是方程41m m +=-4的解, 综上所述:m=-1或-12. 故答案为:-1或-12. 【点睛】 此题主要考查了分式方程的解,正确分类讨论是解题关键.18.且【分析】先解分式方程得到x=a+1根据方程的解是负数列不等式a+1<0且a+20求解即可得到答案【详解】解:a+2=x+1x=a+1∵方程的解是负数x≠-1∴a+1<0且a+20解得a<-1且a-解析:1a <-且2a ≠-【分析】先解分式方程得到x=a+1,根据方程的解是负数,列不等式a+1<0,且a+2≠0,求解即可得到答案.【详解】 解:211a x +=+ a+2=x+1x=a+1, ∵方程的解是负数,x≠-1∴a+1<0,且a+2≠0,解得a<-1,且a ≠-2,故答案为:1a <-且2a ≠-.【点睛】此题考查解分式方程,根据分式方程的解的情况求参数的取值范围,解题中考虑分式的分母不等于0的情况.19.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】 解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】 本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键. 20.【分析】根据a2+b2=(a+b )2-2ab 把相应数值代入即可求解【详解】解:∵a+b=4∴a2+b2=(a+b )2-2ab=10即42-2ab=10解得ab=3∴故答案为:【点睛】本题主要考查了完 解析:43【分析】根据a 2+b 2=(a+b )2-2ab ,把相应数值代入即可求解.【详解】解:∵a+b=4,∴a 2+b 2=(a+b )2-2ab=10,即42-2ab=10,解得ab=3. ∴1143a b a b ab ++== 故答案为:43. 【点睛】 本题主要考查了完全平方公式以及分式的运算,熟记公式是解答本题的关键.三、解答题21.(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =,经检验, = 5x 是原方程的解,且符合题意, 1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.22.(1)12;(2)3x. 【分析】(1)先分别计算负整数指数幂,逆运用同底数幂的乘法和计算零指数幂,再将结果相加即可;(2)将原分式的分子分母分别因式分解后约分,再计算同分母分式的减法运算即可.【详解】解:(1)原式=2019122921⎛⎫--⨯⨯+ ⎪⎝⎭=()9121--⨯+=9+2+1=12; (2)原式=2(1)(2(2))(1))(2x x x x x x x -+---- =12x xx x +-- =21x xx +-+ =3x. 【点睛】 本题考查零指数幂和负整数指数幂,同底数幂的乘法,分式的减法等.(1)中能逆运用同底数幂的乘法正确计算是解题关键;(2)中注意分式加减时,能约分,先给各自分别约分,再进行加减运算.23.32x +,3-. 【分析】 先算括号里面的,再算除法,最后将x 的值代入进行计算即可.【详解】 解:22141244x x x x x 22212=222x x x x x x x23=22x x x 23=22x x x 3=2x当3x =-时,原式3=332. 【点睛】本题考查的是分式的化简求值,熟悉相关运算法则是解题的关键.24.(1)十一月份甲款棉服的单价是150元;(2)20【分析】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意列方程即可得到结论;(2)根据不等量关系,列出关于a 的不等式,即可得到结论.【详解】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意得,8400900061.2x x-=, 解得:x =150,经检验:x =150是原方程的根, 答:十一月份甲款棉服的单价是150元;(2)由题意得:150(1-%a )(8400÷150+24)+1.2×150(1-3%2a )(8400÷150-6+50)≥22200,解得:a≤20,∴a 的最大值为20.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意,列出方程和不等式,是解题的关键. 25.2x y x+,-2 【分析】 先算括号里的加减法运算,再把除法化为乘法,约分化简,最后代入求值,即可求解.【详解】原式=2222(2)(2)(2)x x y x x y x x y x y +---÷-+ =222x y x y x x y --÷+ =222x y x y x x y -+⋅- =2x y x+, ∵()2230x y ++-=,∴()22030x y +=-=,, ∴x=-2,y=3,∴原式=2x y x +=22322-+⨯-=-. 【点睛】 本题主要考查分式的化简求值,掌握分式的混合运算法则,通分和约分,是解题的关键. 26.224a a -,6【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出a 的值,代入计算即可求出值.【详解】 解:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭ ()22244422a a a a a a ---=÷-- ()()224224a a a a a --=⋅-- 224a a =-.∵a 与2,3构成ABC 的三边长,∴ 3232a -<<+,即15a <<.∵ a 为整数,∴ a 为2或3或4.当2a =时,分母20a -=(舍去);当4a =时,分母40a -=(舍去).故a 的值只能为3.∴当3a =时,222423436a a -=⨯-⨯=.【点睛】此题主要考查了分式的化简求值,正确化简分式是解题关键.。
四川省成都市石室中学八年级数学上册第五单元《分式》测试(含答案解析)

一、选择题1.若整数a 使得关于x 的方程3222ax x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .282.若关于x 的方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >-B .1m ≠C .1mD .1m >-且1m ≠3.关于x 的分式方程5222m x x +=--有增根,则m 的值为( ) A .2m =B .2m =-C .5m =D .5m =-4.世界上数小的开花结果植物是激大利亚的出水浮萍,这种植物的果实像一个微小的无花架,质做只有0.000000076克,0.000000076用科学记数法表示正确的是( ) A .-60.7610⨯ B .-77.610⨯C .-87.610⨯D .-97.610⨯5.已知分式34x x -+的值为0,则x 的值是( ) A .3B .0C .-3D .-46.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,则张明平均每分钟清点图书( ) A .20本B .25本C .30本D .35本7.大爱无疆,在爆发新冠病毒疫情后,甲,乙两家单位分别组织了员工捐款.已知甲单位捐款7500元,乙单位捐款9800元,甲单位捐款人数比乙单位少10人,且甲单位人均捐款额比乙单位多20元,若设甲单位的捐款人数为x ,则可列方程为( ) A .7500980020x x 10-=- B .9800750020x 10x-=- C .7500980020x x 10-=+D .9800750020x 10x-=+ 8.下列计算正确的是( )A .22a a a ⋅=B .623a a a ÷=C .2222a b ba a b-=-D .3339()28a a-=-9.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯=B .6608400147660840010x x⨯=++C .660840014147660840010x x⨯=⨯++ D .7840066010146608400x x++⨯=10.下列各式计算正确的是( )A .()23233412a b a b-=-B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba bb -÷=- D .()325339a ba b -=-11.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++B .222()x y x y +-C .222()x y x y -+D .222()x y x y ++12.2a ab b a ++-的结果是( ).A .2a-B .4aC .2b a b--D .b a- 二、填空题13.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 14.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店抓住商机购进甲、乙、丙三种口罩进行销售.已知销售每件甲种口罩的利润率为30%,每件乙种口罩的利润率为20%,每件丙种口罩的利润率为5%.当售出的甲、乙、丙口罩件数之比为1:3:2时,药店得到的总利润率为20%;当售出的甲、乙、丙口罩件数之比为3:2:2时,药店得到的总利润率为24%.因丙种口罩利润较低,现药店准备只购进甲、乙两种口罩进行销售,若该药店想要获得的总利润率为28%,则该药店应购进甲、乙两种口罩的数量之比是______.15.规定一种新的运算“ JXx AB→+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JXx A B →+∞=;当A 的次数等于B 的次数时, JXx A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JXx A B →+∞不存在,例如: 201JXx x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JXx A B →+∞的值为__________. 16.若32a b =,则22a ba+=____. 17.当2x =,3y =-时,代数式22222-⋅++x y xx x xy y 的值为________. 18.计算:222213699211-+-+⋅⋅=--++x x x x x x x x ___________.19.已知215a a+=,那么2421a a a =++________. 20.分式2(1)(3)32m m m m ---+的值为0,则m =______________. 三、解答题21.先化简:2214(1)221x x x x •-+--+,再选一个合适的数作为x 的值代入求值. 22.计算.(1)因式分解:243x y xy y ++.(2)解方程:22312442x x x x-=--+-. 23.秋冬来临之际,天气开始慢慢变冷,某商家抓住商机,在十一月份力推甲、乙两款儿童棉服.已知十一月份甲款棉服的销售总额为8400元,乙款棉服的销售总额为9000元,乙款棉服的单价是甲款棉服单价的1.2倍,乙款棉服的销售数最比甲款棉服的销售数量少6件.(1)求十一月份甲款棉服的单价是多少元?(2)十二月份,为了加大推销力度,该商家将甲款棉服的单价在十一月份的基础上下调了%a ,结果甲款棉服的销量比十一月份多卖了24件;乙款棉服的单价在十一月份的基础上下调3%2a ,结果乙款棉服的销量比十一月份多卖了50件.要使十二月份的总销售额不低于22200元,求a 的最大值,24.计算:0212|( 3.14)()2π---+-25.分式计算与解方程:(1)21211a a a a----; (2)121221xx x +=-+. 26.“圣诞节”前期,某水果店用1000元购进一批苹果进行销售,由于销售良好,该店又以2500元购进同一种苹果,第二次进货价格比第一次每千克贵了1元,第二次所购进苹果的数量恰好是第一次购进苹果数量的2倍.求该水果店第一次购进苹果的单价.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和. 【详解】解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩,不等式组整理得:2y y a -⎧⎨≤⎩>,由不等式组至少有3个整数解,得到-2<y≤a , 解得:a≥1,即整数a=1,2,3,4,5,6,…,3222ax x-=--, 去分母得:2(x-2)-3=-a , 解得:x=72a-,∵72a -≥0,且72a-≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25. 故选:B . 【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.2.D解析:D 【分析】分式方程去分母转化为整式方程,表示出解,由解为正数确定出m 的范围即可. 【详解】去分母得:m-1=2x-2, 解得:x=12+m , 由方程的解为正数,得到12+m >0,且12+m ≠1, 解得:1m >-且1m ≠, 故答案为:1m >-且1m ≠ 【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.3.D解析:D 【分析】先把分式方程化为整式方程,再把增根代入整式方程,即可求解. 【详解】5222mx x+=-- 去分母得:52(2)x m +-=-,∵关于x 的分式方程5222m x x+=--有增根,且增根x=2, ∴把x=2代入52(2)x m +-=-得,5m =-,即:m=-5,故选D . 【点睛】本题主要考查分式方程的增根,掌握分式方程增根的定义:使分式方程的分母为零的根,叫做分式方程的增根,是解题的关键.4.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】0.000000076=87.610-⨯,故选:C【点睛】此题考查了科学记数法,注意n的值的确定方法,当原数小于1时,n是负整数,n等于原数左数第一个非零数字前0的个数,按此方法即可正确求解5.A解析:A【分析】根据分式的值为0的条件可以求出x的值;分式为0时,分子为0分母不为0;【详解】由分式的值为0的条件得x-3=0,x+4≠0,由x-3=0,得x=3,由x+4≠0,得x≠-4,综上,得x=3时,分式34xx-+的值为0;故选:A.【点睛】本题考查了分式的值为0的情况,若分式的值为0,需要同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可.6.A解析:A【分析】设张明平均每分钟清点图书的数量为x,则李强平均每分钟清点图书的数量为x+10,由张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相等这个条件可列分式方程,求解即可.【详解】设张明平均每分钟清点图书x本,则李强平均每分钟清点(10)x+本,依题意,得:20030010x x=+,解得:20x,经检验,20x是原方程的解,所以张明平均每分钟清点图书20本.故选:A.本题考查了分式方程的应用.找到题中的等量关系,列出分式方程,注意分式方程一定要验根.7.C解析:C 【分析】由设甲单位的捐款人数为x ,甲单位捐款人数比乙单位少10人,得到乙单位人数为(x+10),根据甲单位人均捐款额比乙单位多20元列得方程. 【详解】 解:由题意得:7500980020x x 10-=+, 故选:C . 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键.8.C解析:C 【分析】A 、B 两项利用同底数幂的乘除法即可求解,C 项利用合并同类项法则计算即可,D 项利用分式的乘方即可得到结果,即可作出判断. 【详解】解:A 、原式=a 3,不符合题意; B 、原式=a 4,不符合题意; C 、原式=-a 2b ,符合题意; D 、原式=3278a- ,不符合题意, 故选:C . 【点睛】此题考查了分式的乘方,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.9.B解析:B 【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可. 【详解】5月份厨余垃圾分出率=660660x+,12月份厨余垃圾分出率=84007840010x + ,∴由题意得6608400147660840010x x⨯=++,故选:B . 【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.10.A解析:A 【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可. 【详解】A 、()23233412ab a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误; C 、()24222842a b a b b -÷=-,故这个选项错误; D 、()3263327a b a b -=-,故这个选项错误;故选:A . 【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.11.C解析:C 【分析】根据分式的除法法则计算即可. 【详解】2222x y x y x y x y -+÷+-()()22x y x y x y x y x y +--=⨯++222()x y x y -=+ 【点睛】此题考查分式的除法法则:先把除式的分子分母颠倒位置,再化为最简分式即可.12.C解析:C 【分析】根据分式的加减运算的法则计算即可. 【详解】222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.二、填空题13.【分析】根据分式运算法则即可求出答案【详解】解:===当m+n=-3时原式=故答案为:【点睛】本题考查分式解题的关键是熟练运用分式的运算法则本题属于基础题型解析:13【分析】根据分式运算法则即可求出答案. 【详解】解:222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭=22(2)m n m mn n m m+-++÷ =2()m n mm m n +⋅-+ =1m n-+, 当m+n=-3时, 原式=13故答案为:13【点睛】本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于基础题型.14.【分析】设甲乙丙三种口罩的进价分别为xyz 根据题意可分别求出甲乙丙三种口罩的利润再根据当销售出的甲乙丙口罩件数之比为1:3:2时的总利润为20和当销售出的甲乙丙口罩件数之比为3:2:2时的总利润为2解析:83【分析】设甲、乙、丙三种口罩的进价分别为x 、y 、z ,根据题意可分别求出甲、乙、丙三种口罩的利润.再根据当销售出的甲、乙、丙口罩件数之比为1:3:2时的总利润为20%和当销售出的甲、乙、丙口罩件数之比为3:2:2时的总利润为24%,列出等式,求出x 、y 、z 之间的关系.最后即可求出只购进甲、乙两种口罩,使总利润为28%时的甲、乙两种口罩的数量比. 【详解】设甲、乙、丙三种口罩的进价分别为x 、y 、z ,则销售甲口罩的利润为30%x ,乙口罩的利润为20%y ,丙口罩的利润为5%z .当销售出的甲、乙、丙口罩件数之比为1:3:2时,设甲口罩售出a 件,则乙口罩售出3a 件,丙口罩售出2a 件. 根据题意可列等式:30%320%25%20%32a x a y a za x a y a z++=++,整理得:x =3z .当销售出的甲、乙、丙口罩件数之比为3:2:2时,设甲口罩售出3b 件,则乙口罩售出2b 件,丙口罩售出2b 件.根据题意可列等式:330%220%25%24%322b x b y b zb x b y b z++=++, 整理得:9x-4y =19z . ∴y =2z .现只购进甲、乙两种口罩,使总利润为28%,设甲口罩售出A 件,乙口罩售出B 件.则30%20%28%A x B y A x B y +=+,即30%320%228%32A z B zA zB z⨯⨯+⨯⨯=⨯+⨯. ∴83A B =. 故答案为:83. 【点睛】本题考查分式方程的实际应用.根据题意列出每一步的分式方程是解答本题的关键.15.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案. 【详解】 解:223410(2)11A x xB x x -=-÷--()()()225223111x x x x x x ---⎛⎫=÷ ⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭ 12x x+=, ∵A 的次数等于B 的次数, ∴12x A JXB →+∞=, 故答案为:12. 【点睛】 本题考查了分式的混合运算,熟练分解因式是解题的关键.16.2【分析】将代入式子化简即可得到答案【详解】∴原式故答案为:2【点睛】此题考查分式的化简求值解题的关键是正确代入及掌握分式化简方法 解析:2【分析】将32a b =代入式子化简即可得到答案.【详解】23b a =,∴原式34222a a a a a+===. 故答案为:2.【点睛】 此题考查分式的化简求值,解题的关键是正确代入及掌握分式化简方法.17.-5【分析】根据平方差公式完全平方公式和分式运算的性质先化简代数式;再将代入到代数式计算即可得到答案【详解】∵∴故答案为:-5【点睛】本题考查了乘法公式分式运算代数式的知识;解题的关键是熟练掌握分式 解析:-5【分析】根据平方差公式、完全平方公式和分式运算的性质,先化简代数式;再将2x =,3y =-代入到代数式计算,即可得到答案.【详解】22222-⋅++x y x x x xy y 2()()()x y x y x x x y +-=⋅+x y x y-=+ ∵2x =,3y =- ∴22222-⋅++x y x x x xy y x y x y-=+ 2(3)23--=- 5=-故答案为:-5.【点睛】本题考查了乘法公式、分式运算、代数式的知识;解题的关键是熟练掌握分式运算、乘法公式的性质,从而完成求解.18.【分析】先将分子和分母分解因式再计算乘法并将结果化为最简分式【详解】【点睛】此题考查分式的乘法计算法则:分子相乘作积的分子分母相乘作积的分母 解析:31x x -- 【分析】先将分子和分母分解因式,再计算乘法,并将结果化为最简分式.【详解】2222221369(1)(1)3(3)39211(3)(3)(1)11-+-++-+--⋅=⋅⋅=--+++--+-x x x x x x x x x x x x x x x x x x . 【点睛】此题考查分式的乘法计算法则:分子相乘作积的分子,分母相乘作积的分母. 19.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】∵215a a+=, ∴21a +=5a , ∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 20.3【分析】要使分式的值为0必须分式分子的值为0并且分母的值不为0【详解】解:要使分式由分子解得:或3;而时分母;当时分母分式没有意义所以的值为3故答案为:3【点睛】本题主要考查了分式的值为零的条件要 解析:3【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【详解】解:要使分式由分子(1)(3)0m m --=.解得:1m =或3;而3m =时,分母23220m m -+=≠;当1m =时分母2321320m m -+=-+=,分式没有意义.所以m 的值为3.故答案为:3.【点睛】本题主要考查了分式的值为零的条件,要注意分母的值一定不能为0,分母的值是0时分式没有意义.三、解答题21.21x x +-,-2 【分析】 先把括号内通分,再把分子与分母因式分解和除法运算化为乘法运算,约分后得到原式=21x x +-,由于x 不能取1,2,所以把可把x =0代入计算. 【详解】解:原式=221(2)(2)2(1)x x x x x -++-⋅--=21(2)(2)2(1)x x x x x -+-⋅-- =21x x +-, 当x=0时,原式=-2.【点睛】本题考查了分式的化简求值:先把分式的分子或分母因式分解(有括号,先算括号),然后约分得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值. 22.(1)(1)(3)y x x ++;(2)3x =【分析】(1)先提取公因式,再用十字相乘分解即可;(2)先去分母,把方程化为整式方程,再解整式方程,最后检验即可.【详解】解:(1)原式()243(1)(3)y x x y x x =++=++.(2)22312442x x x x-=--+- 方程两边同时乘()22x -得,2(2)3(2)x x --=--去括号,2432x x --=-+移项合并同类项,39x =系数化为1,3x =,检验:把3x =代入,(2)(2)0x x -+≠,所以,3x =是原方程的解.【点睛】本题考查了因式分解和解分式方程,要注意:因式分解要彻底,分式方程要检验. 23.(1)十一月份甲款棉服的单价是150元;(2)20【分析】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意列方程即可得到结论;(2)根据不等量关系,列出关于a 的不等式,即可得到结论.【详解】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意得,8400900061.2x x-=, 解得:x =150,经检验:x =150是原方程的根, 答:十一月份甲款棉服的单价是150元;(2)由题意得:150(1-%a )(8400÷150+24)+1.2×150(1-3%2a )(8400÷150-6+50)≥22200,解得:a≤20,∴a 的最大值为20.【点睛】 本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意,列出方程和不等式,是解题的关键.24.5【分析】先计算绝对值、0指数、负指数,再加减.【详解】解: 0212|( 3.14)()2π---+-214=+5=【点睛】本题考查了包含绝对值、0指数和负指数的实数计算,准确应用各种法则,熟练计算是解题关键.25.(1)1a -;(2)13x =【分析】(1)先对分式变形化成同分母的分式,然后利用同分母分式的运算法则运算即可; (2)利用分式的性质,将分式方程化成整式方程,然后再求解,最后验根得出结果.【详解】 解:(1)21211a a a a ----21211a a a a -=+--2211a a a -+=-()211a a -=-1a =-; (2)121221x x x +=-+ 方程两边同乘()()221x x -+,得:()()()()2122122x x x x x ++-+=- 解得:13x =, 检验:当13x =时,()()2210x x -+≠, 所以,原方程的解为13x =. 【点睛】本题考查分式的加减运算及解分式方程,熟练掌握分式运算的法则及解分式方程的方法是解题的关键.26.4元【分析】利用第二次进货价格比第一次每千克贵了1元,设该水果店第一次购买苹果的单价为x 元,第二次进货价格(x+1)元,利用等量关系:第二次所购进苹果的数量恰好是第一次购进苹果数量的2倍构造方程.解之即可.【详解】解:设该水果店第一次购买苹果的单价为x 元,则1000250021x x ⨯=+, 解得:4x =,经检验,4x =是分式方程的根,答:该水果店第一次购买苹果的单价是4元.【点睛】本题考查可化为一元一次方程解应用题,掌握列方程解应用题的方法和进价、花费钱数与水果数量之间关系,抓住第二次进货价格比第一次每千克贵了1元设未知数,抓住第二次所购进苹果的数量恰好是第一次购进苹果数量的2倍构造方程是解题关键.。
成都石室联合中学金沙校区数学分式填空选择单元测试与练习(word解析版)

成都石室联合中学金沙校区数学分式填空选择单元测试与练习(word 解析版)一、八年级数学分式填空题(难)1.已知x 2﹣4x ﹣5=0,则分式265xx x --的值是_____.【答案】2 【解析】试题分析:根据分式的特点,可变形为22665453xx xx x x x =----+,然后整体代入可得623xx=. 故答案为2.2.若222222M ab b a ba b a b a b---=--+,则M =________. 【答案】2a 【解析】 【分析】把等式两边变为同分母的分式,分母相同分子也相同,即可得出答案·. 【详解】222222M ab b a b a b ---- =2222M ab b a b-+- a b a b -+=2()()()a b a b a b -+-=22222a ab b a b -+-, 22222M ab b a ab b -+=-+所以M=2a 故答案为:2a 【点睛】本题考查分式的减法运算、平方差公式、完全平方公式,利用等式两边分母相同,分子也相同求解是解题的关键.3.如果111a b +=,则2323a ab ba ab b -+=++__________. 【答案】15- 【解析】 【分析】由111a b +=得a+b=ab ,然后再对2323a ab b a ab b -+++变形,最后代入,即可完成解答. 【详解】解:由111a b+=得a+b=ab , 2323a ab b a ab b -+=++2332a b aba b ab +-++=()()232a b ab a b ab +-++=232ab ab ab ab -+=15-.【点睛】本题考查了分式的化简求值,解答的关键在于分式的灵活变形.4.若解分式方程144x mx m -=++产生增根,则m =_____. 【答案】-5 【解析】 【分析】 【详解】试题分析:根据分式方程增根的产生的条件,可知x+4=0,解得x =-4,然后把分式方程化为整式方程x-1=m ,解得m =-5 故答案为-5.5.八年级数学教师邱龙从家里出发,驾车去离家180km 的风景区度假,出发一小时内按原计划的速度匀速行驶,一小时后以原速的1.5倍匀速行驶,并提前40分钟到达风景区;第二天返回时以去时原计划速度的1.2倍行驶回到家里.那么来回行驶时间相差_________分钟. 【答案】10 【解析】 【分析】设从家到风景区原计划行驶速度为x km/h ,根据“实际时间=计划时间-4060”得出方程,求出原计划的行驶速度,进而计算出从家到风景区所用的时间以及回家所用的时间,即可得出结论. 【详解】设从家到风景区原计划行驶速度为x km/h ,根据题意可得:1801.5x x -+11804060x =-, 解得:x =60,检验得:x =60是原方程的根. ∴第一天所用的时间601804060=-=73(小时),第二天返回时所用时间=180÷(60×1.2)=2.5(小时),时间差=2.5-73=16(小时)=10(分钟). 故答案为:10. 【点睛】本题考查了分式方程的应用,正确得出方程是解答本题的关键.6.计算22111m m m ---的结果是_____. 【答案】11m - 【解析】【分析】根据分式的加减法法则进行计算即可得答案. 【详解】原式=22111m m m +-- =()()111m m m ++-=11m -, 故答案为11m -. 【点睛】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.7.化简3m m ++269m -÷23m -的结果是___________________. 【答案】1 【解析】 【分析】先进行分式的除法运算,然后再进行分式的加法运算即可得. 【详解】m m 3++26m 9-÷2m 3- =()()63·3332m m m m m -+++- =333m m m +++ =1,故答案为:1. 【点睛】本题考查了分式的混合运算,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.8.已知x m =6,x n =3,则x 2m ﹣n 的值为_____. 【答案】12 【解析】 【分析】逆用“同底数幂的除法法则和幂的乘方的运算法则”进行解答即可. 【详解】∵63m n x x ==,, ∴222()6312m nm n xx x -=÷=÷=.故答案为12. 【点睛】熟记“同底数幂的除法法则:m n m n a a a -÷=,幂的乘方的运算法则:()m n mna a =,并能逆用这两个法则”是解答本题的关键.9.已知114a b +=,则3227a ab b a b ab-++-=______. 【答案】1 【解析】∵11a b +=4, ∴4b aab +=, ∴a+b=4ab,∴-322-7a ab b a b ab ++=()32()7a b ab a b ab +-+-=4387ab ab ab ab --=ab ab=1 故答案为:1.10.若22440,x yx xy y x y--+=+则等于________. 【答案】13【解析】解:∵x 2﹣4xy +4y 2=0,∴(x ﹣2y )2=0,∴x =2y ,∴x y x y -+=22y y y y -+=13.故答案为13.点睛:根据已知条件x 2﹣4xy +4y 2=0,求出x 与y 的关系是解答本题的关键.二、八年级数学分式解答题压轴题(难)11.已知分式 A =2344(1)11a a a a a -++-÷--(1)化简这个分式;(2)当 a >2 时,把分式 A 化简结果的分子与分母同时加上 4 后得到分式 B ,问:分式 B 的值较原来分式 A 的值是变大了还是变小了?试说明理由;(3)若 A 的值是整数,且 a 也为整数,求出符合条件的所有 a 值的和. 【答案】(1)22a a +-;(2)原分式值变小了,见解析;(3)11 【解析】 【分析】(1)根据分式混合运算顺序和运算法则化简即可得; (2)根据题意列出算式2622a a A B a a ++-=--+,化简可得16(2)(2)A B a a -=-+,结合a的范围判断结果与0的大小即可得; (3)由24122a A a a +==+--可知,2a -=±1、±2、±4,结合a 的取值范围可得. 【详解】解:(1)A=2344(1)11a a a a a -++-÷-- =221311(2)a a a a ---⨯-- =2(2)(2)11(2)a a a a a +--⨯--=22a a +-; (2)变小了,理由如下:∵22a A a +=-, ∴62a B a +=+,∴261622(2)(2)a a A B a a a a ++-=-=-+-+; ∵2a >,∴20a ->,24a +>, ∴0A B ->, ∴分式的值变小了;(3)∵A 是整数,a 是整数,则24122a A a a +==+--, ∴21a -=±、2±、4±,∵1a ≠,∴a 的值可能为:3、0、4、6、-2; ∴3046(2)11++++-=; ∴符合条件的所有a 值的和为11. 【点睛】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.12.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍. 若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍. (注:=垃圾处理量垃圾处理率垃圾排放量)(1)求该市2018年平均每天的垃圾排放量;(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加10%. 如果按照创卫要求“城市平均每天的垃圾处理率不低于90%”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求? 【答案】(1)100;(2)98. 【解析】 【分析】(1)设2018年平均每天的垃圾排放量为x 万吨,根据题意列方程求出x 的值即可; (2)设设2020年垃圾的排放量还需要増加m 万吨,根据题意列出不等式,解得m 的取值范围即可得到答案. 【详解】(1)设2018年平均每天的垃圾排放量为x 万吨,40 2.5401.25100x x⨯=⨯+,解得:x=100,经检验,x=100是原分式方程的解, 答:2018年平均每天的垃圾排放量为100万吨. (2)由(1)得2019年垃圾的排放量为200万吨, 设2020年垃圾的排放量还需要増加m 万吨,40 2.5200(110%)m⨯+⨯+≥90%,m≥98,∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求.【点睛】此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.13.某快递公司有甲、乙、丙三个机器人分配快件,甲单独完成需要x小时,乙单独完成需要y小时,丙单独完成需要z小时.(1)求甲单独完成的时间是乙丙合作完成时间的几倍?(2)若甲单独完成的时间是乙丙合作完成时间的a倍,乙单独完成的时间是甲丙合作完成时间的b倍,丙单独完成的时间是甲乙合作完成时间的c倍,求111111 a b c+++++的值.【答案】(1)甲单独完成的时间是乙丙合作完成时间的xy xzyz+倍;(2)1【解析】分析:(1)先求出乙丙合作完成时间,再用甲单独完成的时间除以乙丙合作完成时间即可求解;(2)根据“甲单独作完成的天数为乙丙合作完成天数的a倍”,可得x=11ay z+,运用比例的基本性质、等式的性质及分式的基本性质可得11a+=yzxy yz xz++;同理,根据“乙单独作完成的天数为甲、丙合作完成天数的b倍”,可得11b+=xzxy yz xz++;根据“丙单独作完成的天数为甲、乙合作完成天数的c倍”,可得11c+=xyxy yz xz++,将它们分别代入所求代数式,即可得出结果.详解:(1)x÷[1÷(1y+1z)]=x÷[1÷y z yz+]=x÷yz y z +=xy xz yz+.答:甲单独完成的时间是乙丙合作完成时间的xy xzyz+倍;(2)由题意得x =11ayz +①,y =11bx z+②,z =11cx y +③.由①得a =x y +x z ,∴a +1=x y +x z +1,∴11a +=11x x y z++=yz xy yz xz ++;同理,由②得11b +=xz xy yz xz ++; 由③得11c +=xy xy yz xz++; ∴111111a b c +++++=yz xy yz xz +++xz xy yz xz +++xy xy yz xz ++=xy yz xz xy yz xz++++=1. 点睛:本题主要考查分式方程在工程问题中的应用及代数式求值.工程问题的基本关系式为:工作总量=工作效率×工作时间.注意两人合作的工作效率等于两人单独作的工作效率之和.本题难点在于将列出的方程变形,用含有x 、y 、z 的代数式分别表示11a +、11b +、11c +的值.14.某商场在一楼与二楼之间装有一部自动扶梯,以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯上走到二楼(扶梯本身也在行驶).如果二人都做匀速运动,且男孩每分钟走动的级数是女孩的两倍.又已知男孩走了27级到达顶部,女孩走了18级到达顶部(二人每步都只跨1级).(1)扶梯在外面的部分有多少级.(2)如果扶梯附近有一从二楼下到一楼的楼梯,台阶级数与扶梯级数相等,这两人各自到扶梯顶部后按原速度走下楼梯,到一楼后再乘坐扶梯(不考虑扶梯与楼梯间的距离).则男孩第一次追上女孩时,他走了多少台阶? 【答案】(1)楼梯有54级(2) 198级 【解析】 【试题分析】(1)设女孩速度为x 级/分,电梯速度为y 级/分,楼梯(扶梯)为s 级,则男孩速度为2x 级/分, 根据时间相等列方程,有:2727,21818.s x y s xy -⎧=⎪⎪⎨-⎪=⎪⎩ ①两式相除,得327418s s -=-,解方程得54s =即可. 因此楼梯有54级.(2)设男孩第一次追上女孩时,走过扶梯m 次,走过楼梯n 次,则这时女孩走过扶梯()1m -次,走过楼梯()1n -次.将54s = 代入方程组①,得2y x =,即男孩乘扶梯上楼的速度为4x 级/分,女孩乘扶梯上楼的速度为3x 级/分.于是有()()5415415454.423m n m n x x x x--+=+ 从而114231m n m n --+=+,即616n m +=. 无论男孩第一次追上女孩是在扶梯上还是在下楼时,,m n 中必有一个为正整数,且01m n ≤-≤,经试验知只有13,26m n ==符合要求.这时,男孩第一次追上女孩所走过的级数是:132********⨯+⨯=(级). 【试题解析】(1)设女孩速度为x 级/分,电梯速度为y 级/分,楼梯(扶梯)为s 级,则男孩速度为2x 级/分,依题意有2727,21818.s x y s xy -⎧=⎪⎪⎨-⎪=⎪⎩ ① 把方程组①中的两式相除,得327418s s -=-,解得54s =. 因此楼梯有54级.(2)设男孩第一次追上女孩时,走过扶梯m 次,走过楼梯n 次,则这时女孩走过扶梯()1m -次,走过楼梯()1n -次.将54s = 代入方程组①,得2y x =,即男孩乘扶梯上楼的速度为4x 级/分,女孩乘扶梯上楼的速度为3x 级/分.于是有()()5415415454.423m n m n x x x x--+=+ 从而114231m n m n --+=+,即616n m +=. 无论男孩第一次追上女孩是在扶梯上还是在下楼时,,m n 中必有一个为正整数,且01m n ≤-≤,经试验知只有13,26m n ==符合要求.这时,男孩第一次追上女孩所走过的级数是:132********⨯+⨯=(级).15.某工程队接到任务通知,需要修建一段长1800米的道路,按原计划完成总任务的13后,为了让道路尽快投入使用,工程队将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的13时,已修建道路多少米? (2)求原计划每小时修建道路多少米?【答案】(1)已修建道路600米;(2)原计划每小时抢修道路140米. 【解析】 【分析】(1)全长1800,原计划已经完成13,单位“1”已知用乘法,已修道路=118003⨯=600米(2)本题可以采用直接设,设原计划每小时修路为x 米,加快后每小时变为1.5x 米,等量关系为:原计划修路时间+提高后修路时间=总时间,列方程即可解出. 【详解】解:(1)已修建道路600米; (2)设原计划每小时抢修道路x 米,根据题意得:()6001800600x 150x -++%=10解得:x =140,经检验:x =140是原方程的解. 答:原计划每小时抢修道路140米. 【点睛】方程的应用题是中考常考的类型题,设未知数一般有直接设和间接设两种,做题时找好等量关系尤为重要,分式方程解出后要检验增根的情况,排除不合适的解.。
四川省成都市石室中学数学轴对称填空选择(篇)(Word版 含解析)

四川省成都市石室中学数学轴对称填空选择(篇)(Word版含解析)一、八年级数学全等三角形填空题(难)1.如图,∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E ,F,AB=11,AC=5,则BE=______________.【答案】3【解析】如图,连接CD,BD,已知AD是∠BAC的平分线,DE⊥AB,DF⊥AC,根据角平分线的性质可得DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,即可得AE=AF,又因DG是BC的垂直平分线,所以CD=BD,在Rt△CDF和Rt△BDE中,CD=BD,DF=DE,利用HL定理可判定Rt△CDF≌Rt△BDE,由全等三角形的性质可得BE=CF,所以AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,又因AB=11,AC=5,所以BE=3.点睛:此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,正确作出辅助线,利用数形结合思想是解决问题的关键.2.已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD,CE相交于点N,则下列五个结论:①AD=BE;②AP=BM;③∠APM=60°;④△CMN是等边三角形;⑤连接CP,则CP平分∠BPD,其中,正确的是_____.(填写序号)【答案】①③④⑤.【解析】【分析】①根据△ACD≌△BCE(SAS)即可证明AD=BE;②根据△ACN≌△BCM(ASA)即可证明AN=BM,从而判断AP≠BM;③根据∠CBE+∠CDA=60°即可求出∠APM=60°;④根据△ACN ≌△BCM 及∠MCN =60°可知△CMN 为等边三角形;⑤根据角平分线的性质可知.【详解】①∵△ABC 和△CDE 都是等边三角形∴CA =CB ,CD =CE ,∠ACB =60°,∠DCE =60°∴∠ACE =60°∴∠ACD =∠BCE =120°在△ACD 和△BCE 中CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE (SAS )∴AD =BE ;②∵△ACD ≌△BCE∴∠CAD =∠CBE在△ACN 和△BCM 中ACN BCM CA CBCAN CBM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACN ≌△BCM (ASA )∴AN =BM ;③∵∠CAD +∠CDA =60°而∠CAD =∠CBE∴∠CBE +∠CDA =60°∴∠BPD =120°∴∠APM =60°;④∵△ACN ≌△BCM∴CN =BM而∠MCN =60°∴△CMN 为等边三角形;⑤过C 点作CH ⊥BE 于H ,CQ ⊥AD 于Q ,如图∵△ACD ≌△BCE∴CQ =CH∴CP平分∠BPD.故答案为:①③④⑤.【点睛】本题主要考查了三角形全等的判定和性质的灵活运用,角的计算及角平分线的判定,熟练掌握三角形全等的证明方法,角平分线的判定及相关辅助线的作法是解决本题的关键.3.在Rt△ABC中,∠C=90°,∠A的平分线AD分对边BD,DC的长度比为3:2,且BC=20cm,则点D到AB的距离是_____cm.【答案】8【解析】【分析】根据题意画出图形,过点D作DE⊥AB于点E,由角平分线的性质可知DE=CD,根据角平分线AD分对边BC为BD:DC=3:2,且BC=10cm即可得出结论.【详解】解:如图所示,过点D作DE⊥AB于点E,∵AD是∠BAC的平分线,∠C=90°,∴DE=CD.∵BD:DC=3:2,且BC=10cm,∴CD=20×25=8(cm).故答案为:8.【点睛】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.4.如图,△ABC中,AC=BC=5,∠ACB=80°,O为△ABC中一点,∠OAB=10°,∠OBA=30°,则线段AO的长是_____.【答案】5【解析】【分析】作∠CAO的平分线AD,交BO的延长线于点D,连接CD,由等边对等角得到∠CAB=∠CBA=50°,再推出∠DAB=∠DBA,得到AD=BD,然后可证△ACD≌△BCD,最后证△ACD≌△AOD,即可得AO=AC=5.【详解】解:如图,作∠CAO的平分线AD,交BO的延长线于点D,连接CD,∵AC=BC=5,∴∠CAB=∠CBA=50°,∵∠OAB=10°,∴∠CAD=∠OAD=1(CAB OAB)2∠-∠=()150102︒︒-=20°,∵∠DAB=∠OAD+∠OAB=20°+10°=30°,∴∠DAB=30°=∠DBA,∴AD=BD,∠ADB=120°,在△ACD与△BCD中AC BCAD BDCD CD=⎧⎪=⎨⎪=⎩∴△ACD≌△BCD(SSS)∴∠CDA=∠CDB,∴∠CDA=∠CDB=()1360ADB2︒-∠=()13601202︒︒-=120°,在△ACD与△AOD中CDA ADO120AD ADCAD OAD︒⎧∠=∠=⎪=⎨⎪∠=∠⎩∴△ACD≌△AOD(ASA)∴AO=AC=5,故答案为5.【点睛】本题考查全等三角形的判定和性质,作辅助线构造全等三角形是解决本题的关键.5.如图,AB∥CD,O为∠BAC、∠ACD的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD 之间的距离等于____.【答案】2【解析】过点O作OF⊥AB于F,作OG⊥CD于G,∵O为∠BAC、∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=1,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=(180°﹣∠BAC)+(180°﹣∠ACD)=180°,∴E、O、G三点共线,∴AB与CD之间的距离=OF+OG=1+1=2.故答案为:2.点睛:本题考查了角平分线上的点到角的两边的距离相等的性质,平行线的性质,熟记性质是解题的关键,难点在于作出辅助线并证明E、O、G三点共线.6.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在_____.【答案】∠BAC的平分线上,与A相距1cm的地方.【解析】【分析】由已知条件及要求满足的条件,根据角平分线的性质作答,注意距A1cm处.【详解】工厂的位置应在∠BAC的平分线上,与A相距1cm的地方;理由:角平分线上的点到角两边的距离相等.【点睛】此题考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.作图题一定要找到相关的知识为依托,同时满足多个要求时,要逐个满足.7.如图,三角形△ABO中,∠OAB=∠AOB=15°,点B在x轴的正半轴,坐标为B(6,0).OC平分∠AOB,点M在OC的延长线上,点N为边OA上的点,则MA+MN的最小值是______.【答案】3【解析】【分析】在x轴正半轴上取点N’,使ON’=ON,作AD⊥x轴于D点.易证△N’OM≌△NOM,可得MN’=MN,则MA+MN的最小值即为MA+MN’的最小值,由于A点固定,故当N’点与D点重合时,MA+MN’的值最小,即MA+MN的值最小.【详解】解:在x轴正半轴上取点N’,使ON’=ON,作AD⊥x轴于D点.∵ON’=ON,∠N’OM=∠NOM,OM=OM,∴△N’OM≌△NOM,∴MN’=MN,∴MA+MN=MA+MN’,∵A点固定,∴MA+MN’的最小值为当N’与D点重合时的MA+MN’值,∴MA+MN’的最小值为AD,∵∠OAB=∠AOB=15°,OB=6,∴∠ABD=30°,AB=6,∴AD=0.5×6=3,∴MA+MN的最小值为3,故答案为3.【点睛】理解A点是固定点,而M和N均为动点,然后运用三点共线及点到直线的最短距离概念进行解答是本题的关键.8.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC; ②∠BCE+∠BCD=180°;③AF2=EC2﹣EF2; ④BA+BC=2BF.其中正确的是_____.【答案】①②③④.【解析】【分析】根据已知条件易证△ABD ≌△EBC ,可判定①正确;根据等腰三角形的性质、对顶角相等、结合全等三角形的性质及平角的定义即可判定②正确;证明AD=AE=EC ,再利用勾股定理即可判定③正确;过E 作EG ⊥BC 于G 点,证明Rt △BEG ≌Rt △BEF 及Rt △CEG ≌Rt △AFE ,根据全等三角形的性质可得AF=CG ,所以BA+BC=BF+FA+BG ﹣CG=BF+BG=2BF ,即可判定④正确.【详解】①∵BD 为△ABC 的角平分线,∴∠ABD=∠CBD ,在△ABD 和△EBC 中,BD BC ABD CBD BE BA =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△EBC (SAS ),∴①正确;②∵BD 为△ABC 的角平分线,BD=BC ,BE=BA ,∴∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA , ∴∠DCE=∠DAE ,∴△ACE 为等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,∵EF ⊥AB ,∴AF 2=EC 2﹣EF 2;∴③正确;④如图,过E 作EG ⊥BC 于G 点,∵E 是BD 上的点,∴EF=EG ,在Rt △BEG 和Rt △BEF 中,BE BE EF EG =⎧⎨=⎩, ∴Rt △BEG ≌Rt △BEF (HL ),∴BG=BF ,在Rt △CEG 和Rt △AFE 中,EF FG AE CE =⎧⎨=⎩, ∴Rt △CEG ≌Rt △AFE (HL ),∴AF=CG ,∴BA+BC=BF+FA+BG ﹣CG=BF+BG=2BF ,∴④正确.故答案为:①②③④.【点睛】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.9.如图,已知AB ∥CD ,O 为∠CAB 、∠ACD 的角平分线的交点,OE ⊥AC 于E ,且OE =2,CO =3,则两平行线间AB 、CD 的距离等于________.【答案】4【解析】试题解析:如图,过点O 作MN ,MN ⊥AB 于M ,交CD 于N ,∵AB ∥CD ,∴MN⊥CD,∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,∴OM=OE=2,∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=2,∴MN=OM+ON=4,即AB与CD之间的距离是4.点睛:要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.10.已知:如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm,则DC=_______【答案】2cm【解析】试题解析:解:连接AD,∵ED是AB的垂直平分线,∴BD=AD=4c m,∴∠BAD=∠B=30°,∵∠C=90°,∴∠BAC=90°-∠B=90°-30°=60°,∴∠DAC=60°-30°=30°,在Rt△ACD中,∴DC=12AD==12× 4=2c m.故答案为2c m.点睛:本题考查了线段垂直平分线,在直角三角形中30度角所对的边等于斜边的一半,三角形内角和定理,主要考查学生运用性质进行计算的能力.二、八年级数学全等三角形选择题(难)11.在△ABC与△DEF中,下列各组条件,不能判定这两个三角形全等的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DE,∠B=∠E,∠A=∠FC.AC=DF,BC=DE,∠C=∠D D.AB=EF,∠A=∠E,∠B=∠F【答案】B【解析】利用全等三角形的判定定理,分析可得:A、AB=DE,∠B=∠E,∠C=∠F可利用AAS证明△ABC与△DEF全等;B、∠A=∠F,∠B=∠E,AC=DE,对应边不对应,不能证明△ABC与△DEF全等;C、AC=DF,BC=DE,∠C=∠D可利用ASA证明△ABC与△DEF全等;D、AB=EF,∠A=∠E∠B=∠F可利用SAS证明△ABC与△DEF全等;故选:D.点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.在△ABC中,∠C=90°,D为AB的中点,ED⊥AB,∠DAE=∠CAE,则∠CAB=()A.30°B.60°C.80 °D.50°【答案】B【解析】试题解析:∵D为AB的中点,ED⊥AB,∴DE为线段AB的垂直平分线,∴AE=BE,∴∠DAE=∠DBE,∴∠DAE=∠DBE=∠CAE,在Rt△ABC中,∵∠CAB+∠DBE=90°,∴∠CAE+∠DAE+∠DBE=90°,∴3∠DBE=90°,∴∠DBE=30°,∴∠CAB=90°-∠DBE=90°-30°=60°.故选B.13.如右图,在△ABC中,点Q,P分别是边AC,BC上的点,AQ=PQ,PR⊥AB于R,PS⊥AC于S,且PR=PS,下面四个结论:①AP平分∠BAC;②AS=AR;③BP=QP;④QP∥AB.其中一定正确的是( )A.①②③B.①③④C.①②④D.②③④【答案】C【解析】试题解析:∵PR⊥AB于点R,PS⊥AC于点S,且PR=PS,∴点P在∠BAC的平分线上,即AP平分∠BAC,故①正确;∴∠PAR=∠PAQ,∵AQ=PQ,∴∠APQ=∠PAQ,∴∠APQ=∠PAR,QP AB∴,故④正确;在△APR与△APS中,AP AP PR PS=⎧⎨=⎩,(HL)APR APS∴≌,∴AR=AS,故②正确;△BPR和△QSP只能知道PR=PS,∠BRP=∠QSP=90∘,其他条件不容易得到,所以,不一定全等.故③错误.故选C.14.在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于点E,AB=18cm,则△DBE的周长为()A.16cm B.8cm C.18cm D.10cm【答案】C【解析】因为∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,易证△ACD≌△AED,所以AE=AC=BC,ED=CD.△DBE的周长=BE+DE+DB=BE+CD+DB=BE+BC=BE+AE=AB.因为AB=12,所以△DBE的周长=12.故选C.点睛:本题主要考查了全等三角形的判定的性质及角平分线的性质定理,角的平分线上的点到角的两边的距离相等,运用这个性质,结合等腰三角形有性质,将△DBE的周长转化为AB的长.15.如图,在ABC ∆中,AC BC =,90ACB ∠=︒,AE 平分BAC ∠交BC 于点E ,BD AE ⊥于点D ,DF AC ⊥交AC 的延长线于点F ,连接CD ,给出四个结论:①45ADC ∠=︒;②12BD AE =;③AC CE AB +=;④2AB BC FC -=;其中正确的结论有 ( )A .1个B .2个C .3个D .4个【答案】D【解析】试题解析:如图,过E 作EQ ⊥AB 于Q ,∵∠ACB=90°,AE 平分∠CAB ,∴CE=EQ ,∵∠ACB=90°,AC=BC ,∴∠CBA=∠CAB=45°,∵EQ ⊥AB ,∴∠EQA=∠EQB=90°,由勾股定理得:AC=AQ ,∴∠QEB=45°=∠CBA ,∴EQ=BQ ,∴AB=AQ+BQ=AC+CE ,∴③正确;作∠ACN=∠BCD ,交AD 于N ,∵∠CAD=12∠CAB=22.5°=∠BAD ,∴∠ABD=90°-22.5°=67.5°,∴∠DBC=67.5°-45°=22.5°=∠CAD ,∴∠DBC=∠CAD ,在△ACN 和△BCD 中,DBC CAD AC BCACN DCB ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ACN ≌△BCD ,∴CN=CD ,AN=BD ,∵∠ACN+∠NCE=90°,∴∠NCB+∠BCD=90°,∴∠CND=∠CDA=45°,∴∠ACN=45°-22.5°=22.5°=∠CAN ,∴AN=CN ,∴∠NCE=∠AEC=67.5°,∴CN=NE ,∴CD=AN=EN=12AE , ∵AN=BD ,∴BD=12AE , ∴①正确,②正确;过D 作DH ⊥AB 于H ,∵∠FCD=∠CAD+∠CDA=67.5°,∠DBA=90°-∠DAB=67.5°,∴∠FCD=∠DBA ,∵AE 平分∠CAB ,DF ⊥AC ,DH ⊥AB ,∴DF=DH ,在△DCF 和△DBH 中90F DHB FCD DBA DF DH ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△DCF ≌△DBH ,∴BH=CF ,由勾股定理得:AF=AH , ∴2,2AC AB AC AH BH AC AM CM AC AF CF AF AF AF AM AF AF+++++++====, ∴AC+AB=2AF ,AC+AB=2AC+2CF ,AB-AC=2CF ,∵AC=CB ,∴AB-CB=2CF,∴④正确.故选D16.如图,在Rt△ABC中,∠CBA=90°,∠CAB的角平分线AP和∠ACB外角的平分线CF相交于点D,AD交CB于点P,CF交AB的延长线于点F,过点D作DE⊥CF交CB的延长线于点G,交AB的延长线于点E,连接CE并延长交FG于点H,则下列结论:①∠CDA=45°;②AF-CG=CA;③DE=DC;④FH=CD+GH;⑤CF=2CD+EG;其中正确的有()A.①②④B.①②③C.①②④⑤D.①②③⑤【答案】D【解析】试题解析:①利用公式:∠CDA=12∠ABC=45°,①正确;②如图:延长GD与AC交于点P',由三线合一可知CG=CP',∵∠ADC=45°,DG⊥CF,∴∠EDA=∠CDA=45°,∴∠ADP=∠ADF,∴△ADP'≌△ADF(ASA),∴AF=AP'=AC+CP'=AC+CG,故②正确;③如图:∵∠EDA=∠CDA,∠CAD=∠EAD,从而△CAD≌△EAD,故DC=DE,③正确;④∵BF⊥CG,GD⊥CF,∴E为△CGF垂心,∴CH⊥GF,且△CDE、△CHF、△GHE均为等腰直角三角形,∴HF=CH=EH+CE=GH+CE=GH+2CD,故④错误;⑤如图:作ME⊥CE交CF于点M,则△CEM为等腰直角三角形,从而CD=DM,CM=2CD,EM=EC,∵∠MFE=∠CGE,∠CEG=∠EMF=135°,∴△EMF≌△CEG(AAS),∴GE=MF,∴CF=CM+MF=2CD+GE,故⑤正确;故选D点睛:本题考查了角平分线的性质、等腰三角形的判定与性质、三角形垂心的定义和性质、全等三角形的判定与性质等多个知识点,技巧性很强,难度较大,要求学生具有较高的几何素养.对于这一类多个结论的判断型问题,熟悉常见的结论及重要定理是解决问题的关键,比如对第一个结论的判定,若熟悉该模型则可以秒杀.17.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为()A.2 B.3 C.4 D.5【答案】C【解析】【分析】可延长DE至F,使EF=BC,利用SAS可证明△ABC≌△AEF,连AC,AD,AF,再利用SSS证明△ACD≌△AFD,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求解即可.【详解】延长DE至F,使EF=BC,连AC,AD,AF,在△ABC与△AEF中,=90AB AEABC AEFBC EF⎧⎪∠∠⎨⎪⎩===,∴△ABC≌△AEF(SAS),∴AC=AF,∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,∴CD=EF+DE=DF,在△ACD与△AFD中,AC AFCD DFAD AD⎧⎪⎨⎪⎩===,∴△ACD≌△AFD(SSS),∴五边形ABCDE的面积是:S=2S△ADF=2×12•DF•AE=2×12×2×2=4.故选C.【点睛】本题主要考查了全等三角形的判定及性质以及三角形面积的计算,正确作出辅助线,利用全等三角形把五边形ABCDE的面积转化为两个△ADF的面积是解决问题的关键.18.如图,点 D 是等腰直角△ABC 腰 BC 上的中点,点B 、B′ 关于 AD 对称,且BB′ 交AD 于 F,交 AC 于 E,连接 FC 、 AB′,下列说法:① ∠BAD=30°; ② ∠BFC=135°;③ AF=2B′ C;正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】依据点D是等腰直角△ABC腰BC上的中点,可得tan∠BAD=12,即可得到∠BAD≠30°;连接B'D,即可得到∠BB'C=∠BB'D+∠DB'C=90°,进而得出△ABF≌△BCB',判定△FCB'是等腰直角三角形,即可得到∠CFB'=45°,即∠BFC=135°;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C;依据△AEF与△CEB'不全等,即可得到S△AFE≠S△FCE.【详解】∵点D是等腰直角△ABC腰BC上的中点,∴BD=12BC=12AB,∴tan∠BAD=12,∴∠BAD≠30°,故①错误;如图,连接B'D,∵B、B′关于AD对称,∴AD垂直平分BB',∴∠AFB=90°,BD=B'D=CD,∴∠DBB'=∠BB'D,∠DCB'=∠DB'C,∴∠BB'C=∠BB'D+∠DB'C=90°,∴∠AFB=∠BB'C,又∵∠BAF+∠ABF=90°=∠CBB'+∠ABF,∴∠BAF=∠CBB',∴△ABF≌△BCB',∴BF=CB'=B'F,∴△FCB'是等腰直角三角形,∴∠CFB'=45°,即∠BFC=135°,故②正确;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C,故③正确;∵AF>BF=B'C,∴△AEF与△CEB'不全等,∴AE≠CE,∴S△AFE≠S△FCE,故④错误;故选B.【点睛】本题主要考查了轴对称的性质以及全等三角形的判定与性质的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.19.如图,在△ABC中,AB=6,AC=10,BC边上的中线..AD=4,则△ABC的面积..为()A.30B.48C.20D.24【答案】D【解析】延长AD到E,使DE=AD,连接BE,因为D为BC的中点,所以DC=BD,在△ADC和△EDB中,AD EDADC EDBDC BD=⎧⎪∠=∠⎨⎪=⎩,所以△ADC≌△EDB,所以BE=AC=10, ∠CAD=∠E,又因为AE =2AD =8,AB =6,所以222AB AE BE =+,所以∠CAD =∠E=90°,则11114646242222ABC ABD ADC S S S AD BE AD AC =+=⨯+⨯=⨯⨯+⨯⨯=, 所以故选D.20.如图,D 为BAC ∠的外角平分线上一点并且满足BD CD =,DBC DCB ∠=∠,过D 作DE AC ⊥于E ,DF AB ⊥交BA 的延长线于F ,则下列结论:①CDE △≌BDF ;②CE AB AE =+;③BDC BAC ∠=∠;④DAF CBD ∠=∠. 其中正确的结论有( ).A .1个B .2个C .3个D .4个【答案】D【解析】 BD=CD,AD 是角平分线,所以FD=DE,∠DFB =∠DEC =90°,所以CDE ≌BDF ;①正确.由全等得BF=CE ,因为FA=AE,FB=AB+FA ,所以CE=AB+AE , ②正确.由全等知,∠DCE=∠FBD,所以∠BAC=∠BDC. ③正确. ∴DBF DCE ∠=∠,∴A 、B 、C 、D 四点共圆,∴DAF CBD ∠=∠,④正确.故选D.21.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',连接AO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60°得到:②点O 与O '的距离为4;③150AOB ∠=︒;④S 四边形643AOBO ;⑤9634AOC AOB S S +=+△△.其中正确的结论是( )A .①②③④B .①②③⑤C .①②④⑤D .①②③④⑤【答案】D【解析】【分析】证明△BO ′A ≌△BOC ,又∠OBO ′=60°,所以△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;由△OBO ′是等边三角形,可知结论②正确;在△AOO ′中,三边长为3,4,5,这是一组勾股数,故△AOO ′是直角三角形;进而求得∠AOB =150°,故结论③正确;6AOO OBO AOBO S S S '∆'∆'=+=+四边形④正确;如图②,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.利用旋转变换构造等边三角形与直角三角形,将S △AOC +S △AOB 转化为S △COO ″+S △AOO ″,计算可得结论⑤正确.【详解】解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB =O ′B ,AB =BC ,∴△BO ′A ≌△BOC ,又∵∠OBO ′=60°,∴△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;如图①,连接OO ′,∵OB =O ′B ,且∠OBO ′=60°,∴△OBO ′是等边三角形,∴OO ′=OB =4.故结论②正确;∵△BO ′A ≌△BOC ,∴O ′A =5.在△AOO ′中,三边长为3,4,5,这是一组勾股数,∴△AOO ′是直角三角形,∠AOO ′=90°,∴∠AOB =∠AOO ′+∠BOO ′=90°+60°=150°,故结论③正确;2134462AOO OBO AOBO S S S '∆'∆'=+=⨯⨯=+四边形 故结论④正确;如图②所示,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.易知△AOO ″是边长为3的等边三角形,△COO ″是边长为3、4、5的直角三角形,则2134362AOC AOB COO AOO AOCO S S S S S ∆∆∆''∆''''+==+=⨯⨯+=四边形, 故结论⑤正确.综上所述,正确的结论为:①②③④⑤.故选:D .【点睛】本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将△AOB向不同方向旋转,体现了结论①﹣结论④解题思路的拓展应用.22.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边三角形ABC 和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③PQ∥AE;④DE=DP;⑤∠AOE=120°;其中正确结论的个数为()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE,故①正确;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ (ASA),所以AP=BQ;故②正确;③根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知③正确;④根据∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,可知PD≠CD,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,由平角的性质可得∠AOE=120°,可知⑤正确;【详解】①∵△ABC和△CDE为等边三角形∴AC=BC,CD=CE,∠BCA=∠DCB=60°∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD =BE ,故①正确;由(1)中的全等得∠CBE =∠DAC ,且BC =AC ,∠ACB =∠BCQ =60°∴△CQB ≌△CPA (ASA ),∴AP =BQ ,故②正确;∵△CQB ≌△CPA ,∴PC =PQ ,且∠PCQ =60°∴△PCQ 为等边三角形,∴∠PQC =∠DCE =60°,∴PQ ∥AE ,故③正确,∵∠QCP =60°,∠DPC =∠BCA +∠PAC >60°,∴PD ≠CD ,∴DE ≠DP ,故④DE =DP 错误;∵BC ∥DE ,∴∠CBE =∠BED ,∵∠CBE =∠DAE ,∴∠AOB =∠OAE +∠AEO =60°,∴∠AOE =120°,故⑤正确,故选C .【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,平行线的判定与性质,综合性较强,题目难度较大.23.如图,在四边形ABCD 中,//AB CD .不能判定ABD CDB ∆≅∆的条件是( )A .AB CD =B .AD BC = C .//AD BC D .A C ∠=∠【答案】B【解析】【分析】根据已知条件,分别添加选项进行排查,即可完成解答;注意BD 是公用边这个条件.【详解】解:A.若添加AB=CD,根据AB ∥CD ,则∠ABD=∠CDB ,依据SAS 可得△ABD ≌△CDB ,故A 选项正确;B.若添加AD=BC,根据AB ∥CD ,则∠ADB=∠CBD ,不能判定△ABD ≌△CDB ,故B 选项错误;C.若添加//AD BC ,则四边形ABCD 是平行四边形,能判定△ABD ≌△CDB ,故C 选项正确;D.若添加∠A=∠C ,根据AB ∥CD ,则∠ABD=∠CDB ,且BD 公用,能判定△ABD ≌△CDB ,故D 选项正确;故选:B.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.24.下列两个三角形中,一定全等的是( )A .两个等边三角形B .有一个角是40︒,腰相等的两个等腰三角形C .有一条边相等,有一个内角相等的两个等腰三角形D .有一个角是100︒,底相等的两个等腰三角形【答案】D【解析】【分析】根据全等三角形的判定方法及等腰三角形的性质对各个选项进行分析,从而得到答案.【详解】解:A 、当两个等边三角形的对应边不相等时,这两个等边三角形也不会全等,故本选项错误;B 、当该角不是对应角时,这两个等腰三角形也不会全等,故本选项错误;C 、当两个等腰三角形的对应边与对应角不相等时,这两个等腰三角形也不会全等,故本选项错误;D 、等腰三角形的100°角只能是顶角,则两个底角是40°,它们对应相等,所以由全等三角形的判定定理ASA 或AAS 证得它们全等,故本选项正确;故选D .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.25.如图(1),已知AB AC =,D 为BAC ∠的角平分线上一点,连接BD ,CD ;如图(2),已知AB AC =,D ,E 为BAC ∠的角平分线上两点,连接BD ,CD ,BE ,CE ;如图(3),已知AB AC =,D ,E ,F 为BAC ∠的角平分线上三点,连接BD ,CD ,BE ,CE ,BF ,CF ;……,依此规律,第6个图形中有全等三角形的对数是( )A .21B .11C .6D .42【答案】A【解析】【分析】 根据条件可得图1中△ABD ≌△ACD 有1对三角形全等;图2中可证出△ABD ≌△ACD ,△BDE ≌△CDE ,△ABE ≌△ACE 有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第6个图形中全等三角形的对数.【详解】解:∵AD 是∠BAC 的平分线,∴∠BAD=∠CAD .在△ABD 与△ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD .∴图1中有1对三角形全等;同理图2中,△ABE ≌△ACE ,∴BE=EC ,∵△ABD ≌△ACD .∴BD=CD ,又DE=DE ,∴△BDE ≌△CDE ,∴图2中有3对三角形全等,3=1+2;同理:图3中有6对三角形全等,6=1+2+3;∴第6个图形中有全等三角形的对数是1+2+3+4+5+6=21.故选:A .【点睛】此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.26.Rt △ABC 中,AB =AC ,D 点为Rt △ABC 外一点,且BD ⊥CD ,DF 为∠BDA 的平分线,当∠ACD =15°,下列结论:①∠ADC =45°;②AD =AF ;③AD+AF =BD ;④BC ﹣CE =2D,其中正确的是( )A.①③B.①②④C.①③④D.①②③④【答案】C【解析】【分析】由题意可证点A,点C,点B,点D四点共圆,可得∠ADC=∠ABC=45°;由角平分线的性质和外角性质可得∠AFD=∠BDF+∠DBF>∠ADF,可得AD≠AF;如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,由“SAS”可证△ADF≌△HDF,可得∠DHF=∠DAF=30°,AF=HF,由等腰三角形的性质可得BH=AF,可证BD=BH+DH=AF+AD;由“SAS”可证△BDG≌△BDE,可得∠BGD=∠BED=75°,由三角形内角和定理和等腰三角形的性质可得BC=BG=2DE+EC.【详解】∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,且∠ACD=15°,∵∠BCD=30°,∵∠BAC=∠BDC=90°,∴点A,点C,点B,点D四点共圆,∴∠ADC=∠ABC=45°,故①符合题意,∠ACD=∠ABD=15°,∠DAB=∠DCB=30°,∵DF为∠BDA的平分线,∴∠ADF=∠BDF,∵∠AFD=∠BDF+∠DBF>∠ADF,∴AD≠AF,故②不合题意,如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,∵DH=AD,∠HDF=∠ADF,DF=DF,∴△ADF≌△HDF(SAS)∴∠DHF=∠DAF=30°,AF=HF,∵∠DHF=∠HBF+∠HFB=30°,∴∠HBF=∠BFH=15°,∴BH=HF,∴BH=AF,∴BD=BH+DH=AF+AD,故③符合题意,∵∠ADC=45°,∠DAB=30°=∠BCD,∴∠BED=∠ADC+∠DAB=75°,∵GD=DE,∠BDG=∠BDE=90°,BD=BD,∴△BDG≌△BDE(SAS)∴∠BGD=∠BED=75°,∴∠GBC=180°﹣∠BCD﹣∠BGD=75°,∴∠GBC=∠BGC=75°,∴BC=BG,∴BC=BG=2DE+EC,∴BC﹣EC=2DE,故④符合题意,故选:C.【点睛】本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,27.具备下列条件的两个三角形,可以证明它们全等的是( ).A.一边和这一边上的高对应相等B.两边和第三边上的中线对应相等C.两边和其中一边的对角对应相等D.直角三角形的斜边对应相等【答案】B【解析】【分析】根据判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL分别进行分析.【详解】解:A、一边和这边上的高对应相等,无法得出它们全等,故此选项错误;B、两边和第三边上的中线对应相等,通过如图所示方式(倍长中线法)可以证明它们全等(△ABC≌△A′B′C′),故此选项正确..C、两边和其中一边的对角对应相等,无法利用ASS得出它们全等,故此选项错误;D、直角三角形的斜边对应相等,无法得出它们全等,故此选项错误.故选:B.【点睛】本题考查三角形全等的判定方法,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.28.如图,在△ABC中,AB=BC,90ABC∠=︒,点D是BC的中点,BF⊥AD,垂足为E,BF交AC于点F,连接DF.下列结论正确的是()A.∠1=∠3 B.∠2=∠3 C.∠3=∠4 D.∠4=∠5【答案】A【解析】【分析】如图,过点C作BC的垂线,交BF的延长线于点G,则CG BC⊥,先根据直角三角形两锐角互余可得BAD CBG∠=∠,再根据三角形全等的判定定理与性质推出1G∠=∠,又根据三角形全等的判定定理与性质推出3G∠=∠,由此即可得出答案.【详解】如图,过点C作BC的垂线,交BF的延长线于点G,则CG BC⊥,即90BCG∠=︒,90AB BC ABC=∠=︒45BAC ACB∠∴∠==︒904545GCF BCG ACB∴∠=∠-∠=︒-︒=︒BF AD⊥1190BAD CBG∴∠+∠=∠+∠=︒BAD CBG∴∠=∠在BAD∆和CBG∆中,90BAD CBGAB BCABD BCG∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()BAD CBG ASA∴∆≅∆,1BD CG G∴=∠=∠点D是BC的中点CD BD CG∴==在CDF∆和CGF∆中,45CD CGDCF GCFCF CF=⎧⎪∠=∠=︒⎨⎪=⎩()CDF CGF SAS∴∆≅∆3G∴∠=∠13∠∠∴=故选:A .【点睛】本题是一道较难的综合题,考查了直角三角形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造两个全等的三角形是解题关键.29.在ABC ∆中,已知AB BC =,90ABC ∠=︒,点E 是BC 边延长线上一点,如图所示,将线段AE 绕点A 逆时针旋转90︒得到AF ,连接CF 交直线AB 于点G ,若53BC CE =,则AG BG=( )A .73B .83C .113D .133【答案】D【解析】【分析】过点F 作FD ⊥AG ,交AG 的延长线于点D, 设BC=5x ,利用AAS 证出△FAD ≌△AEB ,从而用x 表示出AD ,BD ,然后利用AAS 证出△FDG ≌△CBG ,即可用x 表示出BG,AG 从而求出结论.【详解】解:过点F 作FD ⊥AG ,交AG 的延长线于点D∵53BC CE = 设BC=5x ,则CE=3x∴BE=BC +CE=8x∵5AB BC x ==,90ABC ∠=︒,∴∠BAC=∠BCA=45°∴∠BCA=∠CAE +∠E=45°由旋转可知∠EAF=90°,AF=EA∴∠CAE +∠FAD=∠EAF -∠BAC=45°∴∠FAD=∠E在△FAD 和△AEB 中90FAD E D ABE AF EA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△FAD ≌△AEB∴AD=EB=8x ,FD=AB∴BD=AD -AB=3x ,FD=CB在△FDG 和△CBG 中90FDG CBG FGD CGBFD CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△FDG ≌△CBG ∴DG=BG=12BD=32x ∴AG=AB +BG=132x ∴13132332xAG x BG == 故选D .【点睛】此题考查的是全等三角形的判定及性质,掌握构造全等三角形的方法和全等三角形的判定及性质是解决此题的关键.30.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是()A.PD=DQ B.DE=12AC C.AE=12CQ D.PQ⊥AB【答案】D【解析】过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ 中,FPD QPDE CDQPF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFD≌△QCD,∴PD=DQ,DF=CD,∴A选项正确,∵AE=EF,∴DE=12AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=12AP=12CQ,∴C选项正确,故选D.。
2025届成都市石室中学高三数学上学期10月考试卷及答案解析

成都石室中学2024~2025学年度上期高2025届十月考试数学试卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确的选项填涂在答题卡相应位置.1. 已知集合{}1,2,4A =,2{N |20}B x x x =Î+-£,则A B =U ( )A. {}2,1,0,1,2,4-- B. {}0,1,2,4C. {}1,2,4 D. {}1【答案】B 【解析】【分析】根据一元二次不等式的解法,求得{}0,1B =,结合集合并集的概念与运算,即可求解.【详解】由不等式220x x +-£,可得(2)(1)0≤x x +-,解得21x -££,所以集合{}{N |21}0,1B x x =Î-££=,又因为{}1,2,4A =,可得{}0,1,2,4A B È=.故选:B.2. 2024年巴黎奥运会中国代表队获得金牌榜第一,奖牌榜第二的优异成绩.首金是中国组合黄雨婷和盛李豪在10米气步枪混合团体赛中获得,两人在决赛中14次射击环数如图,则( )A. 盛李豪的平均射击环数超过10.6B. 黄雨婷射击环数的第80百分位数为10.65C. 盛李豪射击环数的标准差小于黄雨婷射击环数的标准差D. 黄雨婷射击环数的极差小于盛李豪射击环数的极差【答案】C 【解析】【分析】根据图表数据可直接判断选项A ,利用第80百分位数的解法直接判断选项B ,根据图表的分散程度即可判断选项C ,根据极差的求法直接判断选项D.【详解】由题知,盛李豪的射击环数只有两次是10.8环,5次10.6环,其余都是10.6环以下,所以盛李豪平均射击环数低于10.6,故A 错误;由于140.811.2´=,故第80百分位数是从小到大排列的第12个数10.7,故B 错误;由于黄雨婷的射击环数更分散,故标准差更大,故C 正确;黄雨婷射击环数的极差为10.89.7 1.1-=,盛李豪的射击环数极差为10.810.30.5-=,故D 错误.故选:C3. 已知0.10.6a =,0.6log 0.3b =,0.6log 0.4c =,则a ,b ,c 的大小关系为( )A. b c a >> B. a b c >>C. c b a >> D. a c b>>【答案】A 【解析】【分析】由对数函数的底数小于1得到函数单调递减,判断出b ,c 的大小关系,又判断出b ,c 大于1,a 小于1,从而得出结论.【详解】由于0.6log y x =(0,)+¥单调递减,故0.60.60.6log 0.3log 0.4log 0.61b c =>=>=,又∵0.100.60.61a =<=,∴b c a >>.故选:A.4. 已知实数a ,b ,c 满足a b c >>,且0a b c ++=,则下列说法正确的是( )A. 22ab cb > B.222a cc a+³C. ||||a b > D. 0ab bc +>【答案】C 【解析】【分析】根据已知等式可确定0,0a c ><,结合不等式性质和作差法依次判断各个选项即可.【详解】由题,0,0a c ><,取1,0,1a b c ===-,则22ab cb =,故A 错误;在2522a c c a +=-,故B 错误;0ab bc +=,故D 错误;因为22()()()0a b a b a b c a b -=+-=-->,所以22a b >,即||||a b >,故C 正确.故选:C.5. “函数2()ln(22)f x x ax =-+的值域为R ”的一个充分不必要条件是( )A. [B. (C. ()-¥+¥U D. )+¥【答案】D 【解析】【分析】根据对数函数的性质,先分析出对数的真数部分能取得所有的正数,然后根据二次函数与其对应二次方程的关系,求出a 的范围即可求解.【详解】因为函数2()ln(22)f x x ax =-+的值域为R ,设222y x ax =-+,则二次函数y 需要取到一切正数,对应于方程2220x ax -+=中,0D ³,即2480a -³,解得a ³或a £,从而)+¥是“函数2()ln(22)f x x ax =-+的值域为R ”的充分不必要条件.故选:D6. 核燃料是重要的能量来源之一,在使用核燃料时,为了冷却熔化的核燃料,可以不断向反应堆注入水,但会产生大量放射性核元素污染的冷却水,称为核废水.核废水中含有一种放射性同位素氚,它有可能用辐射损伤细胞和组织,影响生物的繁殖和生态平衡.已知氚的半衰期约为12年,则氚含量变成初始量的110000大约需要经过( )年.(lg 20.3010»)A. 155 B. 159C. 162D. 166【答案】B 【解析】【分析】根据题意列出等量关系,借助换底公式和题目给出的参考量得出结果.【详解】设氚含量变成初始量的110000大约需要经过t 年,则1211()210000t =,121log 1210000t =,即48159lg 2t =»年,故选:B.7. 若函数()y f x =的图象如图1所示,则如图2对应的函数可能是( )A. (12)y f x =-B. 1(1)2y f x =-C. (12)y f x =--D. 1(1)2y f x =--【答案】A 【解析】【分析】根据函数定义域求出新函数定义域判断B,D;取特殊值判断C,根据函数平移伸缩变换判断A.【详解】由()y f x =的定义域为(1,)-+¥知,1(1)2y f x =-中111,42x x ->-<,不符合图2,故排除B ,D ;对于C ,当12x =时,(0)0y f =->,不满足图2,故C 错误;将函数()y f x =图关于y 轴对称,得到()y f x =-的图,向右平移1个单位得到(1)y f x =-的图,最后纵坐标不变,横坐标变为原来的一半,得到函数(12)y f x =-的图可能为图2.故选:A.8. 已知函数()11,0,2221,0.x x x f x x ì+>ï=íï-£î,则方程()(3)2f x f x +-=的所有根之和为( )A. 0 B. 3C. 6D. 9【答案】C【解析】的【分析】将方程根的问题转化为函数()y f x =和2(3)y f x =--的图象交点横坐标问题,数形结合即可判断交点个数,再根据对称性求解和即可解答.【详解】方程()(3)2f x f x +-=的根为函数()y f x =和2(3)y f x =--的图象交点横坐标,由函数()11,0,2221,0.x x x f x x ì+>ï=íï-£î得,()31,3,23232,3,x x x y f x x -ì<ï=--=íï-³î如下图所示,两函数图象共有4个交点,且因为()(3)2f x f x +-=,所以函数()y f x =与函数2(3)y f x =--的图象关于点3(,1)2中心对称,故方程()(3)2f x f x +-=的所有根之和为6.故选:C.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分, 部分选对的得部分分,有选错的得0分,.9. 已知函数()f x 的定义域为R ,()()()22f x y f x f y +=+,则( )A. ()00f = B. ()11f =C. ()f x 是奇函数 D. ()f x 在R 上单调递增【答案】AC 【解析】【分析】通过赋值法及特例逐项判断即可.【详解】由()()()22f x y f x f y +=+知,当0x y ==时, ()()030f f =,即()00f =,故A 正确;取()f x x =-,则()f x 满足条件()()()22f x y f x f y +=+,但()11f =-,且()f x 是在R 上单调递减,故B ,D错误;当,x t y t =-=时,()()()2f t f t f t =-+,即()()f t f t -=-,故C 正确.故选:AC.10. 已知复数12,z z 的共轭复数分别为21,z z ,则下列命题为真命题的是( )A. 1212z z z z +=+B. 1212z z z z ×=×C. 若120z z ->,则12z z >D. 若2221212z z z z +=+,则21210z z z z +××=【答案】ABD 【解析】分析】设出1i z a b =+,2i z c d =+,,,,R a b c d Î,结合共轭复数及模长定义与复数运算法则逐项计算可判断A 、B 、D ;举出反例可判断C.【详解】设1i z a b =+,2i z c d =+,且,,,R a b c d Î,则1i z a b =-,2i z c d =-;对A :12i i ()i z z a b c d a c b d +=+++=+++,12()i a c z b d z +=+-+所以12()i a c z b d z -=+++,所以1212z z z z +=+,故A 正确;对B :12i)(i)()i (()z z a b c d ac bd bc ad ++=--+=,12i)(i)()i (()z z a b c d ac bd bc ad --=--+=,故B 正确;对C :当1212i,2i z z =+=时,满足1210z z -=>,但不能得出12z z >,故C 错误;对D :2121212121211221212()()()()z z z z z z z z z z z z z z z z z z +=++=++=+++22121212z z z z z z =+++,故11220z z z z +=,故D 正确.故选:ABD.11. 设函数()()()ln f x x a x b =++,则下面说法正确的是( )A. 当0,1a b ==时,函数()f x 在定义域上仅有一个零点B. 当0,0a b ==时,函数()f x 在(1,)+¥上单调递增C. 若函数()f x 存在极值点,则a b£【D. 若()0f x ³,则22a b +的最小值为12【答案】ABD 【解析】【分析】代入0,1a b ==得到()f x 解析式,结合对数运算可得A 正确;求导分析单调性可得B 正确;当a b £时求导分析,当a b >利用换元法二次求导数分析可得C 错误;由复合函数同增异减得到()f x 的单调性,再结合二次函数取值可得D 正确;【详解】对于A ,当0,1a b ==时,()ln(1)f x x x =+,由()0f x =得,0x =,函数()f x 在定义域上仅有一个零点,故A 正确;对于B ,当0a b ==时,函数()ln f x x x =,当1x >时,()ln 10f x x ¢=+>,故函数()f x 在(1,)+¥上单调递增,故B 正确;对于C ,()ln()ln()1x a a bf x x b x b x b x b+-¢=++=+++++,当a b £时,函数()f x ¢在定义域上单调递增,且当x b ®-时,()f x ¥¢®-,当x ®+¥时,()f x ¥¢®+,此时函数()f x ¢存在零点0x ,即函数()f x 在0(,)b x -上单调递减,在0(,)x +¥上单调递增,故此时函数()f x 存在极值点,当a b >时,设()ln()1a b g x x b x b-=++++,则()2212()()a b x b a g x x b x b x b -+-=-=+++¢,令()0g x ¢=,则2x a b =-,故函数()f x ¢在(,2)b a b --上单调递减,在(2,)a b -+¥上单调递增,故()()2ln()2f x f a b a b ¢³¢-=-+,故当21e b a b <<+时,函数()f x ¢存在零点,函数()f x 存在极值点,综上,当函数()f x 存在极值点时,21eb a b <<+或a b £,故C 错误;对于D ,()()ln 0x a x b ++³恒成立,当()0f x =时,x a =-或1x b =-,当且仅当两个零点重合时, 即1a b -=-,因为y x a =+为增函数,设()()1ln ln 1y x b x a =+=++,则1y 在(1,)a a ---上单调递减,在(,)a -+¥上单调递增,所以函数()f x 在(1,)a a ---上单调递减,在(,)a -+¥上单调递增,满足()()ln 0x a x b ++³, 则22212212a b b b +=-+³,当12b =时取“=”,故D 正确,故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12. 若函数2()23f x x kx =++在[1,2]上单调,则实数k 的取值范围为_____.【答案】8k £-或4k ³-【解析】【分析】运用二次函数的单调性知识,结合对称轴可解.【详解】函数2()23f x x kx =++的对称轴为04k x =-,故当24k -³或14k-£时,函数()f x 在[1,2]上单调,即8k £-或4k ³-,故答案为:8k £-或4k ³-.13.若()y f x =是定义在R 上的奇函数,()(2)f x f x =-,(1)2f =,则(1)(2)(3)(2025)f f f f +++=L ________.【答案】2【解析】【分析】根据题意,推得(4)()f x f x +=,得到()y f x =的周期为4,再求得(1),(2),(3),(4)f f f f 的值,结合周期性,即可求解.【详解】因为函数()y f x =是定义在R 上的奇函数,故()()f x f x -=-,又因为()(2)f x f x =-,所以(2)()f x f x -=--,故(2)()f x f x +=-,所以(4)(2)()f x f x f x +=-+=,即()y f x =的周期为4,由于()y f x =为定义在R 上的奇函数,且(1)2f =,可得(0)0f =,(2)(0)0f f ==,(3)(1)(1)2f f f =-=-=-,所以(1)(2)(3)(4)0f f f f +++=,则(1)(2)(3)(2025)f f f f +++=L 506[(1)(2)(3)(4)](1)2f f f f f ´++++=.故答案为:2.14. 若过点()1,b 作曲线e x y x =的切线有且仅有两条,则b 的取值范围是______.【答案】25[0,e)e ìü-íýîþU 【解析】【分析】由题意,设切点000(,e )xx x ,利用相切性质得到关于0,b x 的关系式0200(1)e xb x x =-+,将切线条数问题转化为关于0x 的方程解的个数问题求解,再分离参数转化为函数2()(1)e x g x x x =-+的图象与直线y b =的交点个数问题,构造函数研究函数的单调性与最值,数形结合求b 的范围即可.【详解】设切点为000(,e )xx x ,()(1)e x f x x ¢=+,故切线方程为00000e (1)e ()x x y x x x x -=+-,将()1,b 代入切线方程得00000e(1)e (1)x x b x x x -=+-,0200(1)e x b x x \=-+,过点()1,b 作曲线e x y x =的切线有且仅有两条,则关于0x 的方程0200(1)e xb x x =-+有两解,可转化为直线y b =与函数2(1)e x y x x =-+的图象有两个交点.令2()(1)e x g x x x =-+,则2()(2)e (1)(2)e x x g x x x x x ¢=--=--+,当2x <-时,()0f x ¢<,()f x 在(),2¥--单调递减;当2<<1x -时,()0f x ¢>,()f x 在()2,1-单调递增;当1x >时,()0f x ¢<,()f x 在(1,+∞)单调递减;故()g x 的单调减区间(,2),(1,)-¥-+¥,增区间是(2,1)-.当x ®-¥时,()0g x ®,当x ®+¥时,()g x ®-¥,且25(1)e,(2)e g g =-=-,当y b =与()y g x =有且仅有两个交点时,25[0,e)e b ìüÎÈ-íýîþ,故答案为:25[0,e)e ìüÈ-íýîþ.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数()1ln 1kxf x x -=-为奇函数.(1)求实数k 值;(2)若函数()()2xg x f x m =-+,且()g x 在区间[]2,3上没有零点,求实数m 的取值范围.【答案】(1)1-(2)(,4ln 3)(8ln 2,)m Î-¥--+¥U 【解析】【分析】(1)根据奇函数定义建立方程,解得1k =±,检验即可求解;(2)利用导数研究函数的单调性可知()g x 在[2,3]上单调递减,根据零点的概念建立不等式,解之即可求解.【小问1详解】因为()1ln1kxf x x -=-是奇函数,所以()()f x f x -=-, 即11ln ln ln 1111kx kx x x kx x --+=-=----, 所以1111kx x kxx +=----,故22211k x x -=-,则1k =±,当1k =时,111xx -=--显然不成立;经验证:1k =-符合题意;所以1k =-;【小问2详解】由1()ln21x x g x m x +=-+-,22()2ln 21x g x x ¢=---, 当[2,3]x Î时,()0g x ¢<,故()g x 在[2,3]上单调递减.的的故()[ln 28,ln 34]g x m m Î-+-+.因为()g x 在区间[]2,3上没有零点,所以ln 280m -+>或ln 340m -+<,解得4ln 3m <-或8ln 2m >-,即(,4ln 3)(8ln 2,)m Î-¥--+¥U .16. 已知三棱锥D ABC -,D 在平面ABC 上的射影为ABC V 的重心O ,15AC AB ==,24BC =.(1)证明:BC AD ^;(2)E 为AD 上靠近A 的三等分点,若三棱锥D ABC -的体积为432,求二面角E CO B --的余弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)由题意可得AM BC ^、OD ^平面ABC ,根据线面垂直的性质可得OD BC ^,结合线面垂直的判定定理和性质即可证明;(2)建立如图空间直角坐标系,利用三棱锥的体积公式求得12OD =,由空间向量的线性运算求得()4,0,4OE =uuu r,结合空间向量法求解面面角即可.【小问1详解】如图所示,连结AO 并延长交BC 于M ,因为O 为△ABC 的重心,所以M 是BC 的中点,又因为AC AB =,所以由等腰三角形三线合一可得AM BC ^, 因为D 在平面ABC 上的射影为O ,所以OD ^平面ABC , 又ÌBC 平面ABC ,所以OD BC ^,又,,AM OD O AM OD =ÌI 平面AMD ,所以^BC 平面AMD , 又AD Ì平面AMD ,所以BC AD ^,【小问2详解】由(1)知AM BC ^,OD ^面ABC ,过M 作z 轴平行于OD ,则z 轴垂直于面ABC ,如图,以,MA MB 为x 轴,y 轴,建立空间直角坐标系,在ABC V 中,15AC AB ==,24BC =由(1)知,AM BC ^,故9AM ==,得11082ABC S AM BC =×=V , 所以三棱锥A-BCD 的体积为 1110843233ABC S OD OD ×=´´=V ,则12OD =因为O 为△ABC 的重心,故133OM AM ==,则()()()()()0,12,0,0,12,0,3,0,0,9,0,0,3,0,12C B O A D -,()()()6,0,0,6,0,12,3,12,0OA AD OC ==-=--uuu r uuu r uuu r因为E 为AD 上靠近A 的三等分点,所以()12,0,43AE AD ==-uuu r uuu r,故()14,0,43OE OA AD =+=uuu r uuu r uuu r设(),,n x y z =r 为平面ECO 的一个法向量,则4403120n OE x z n OC x y ì×=+=ïí×=--=ïîuuu r r uuu rr ,取4x =,则1,4y z =-=-,故()4,1,4n =--r,易得()0,0,1m =r是平面COB 的一个法向量, 设二面角E CO B --的平面角为q ,则q 为钝角,所以cos cos ,m n m n m n q ×=-=-==r r r rr r 所以二面角E CO B --的余弦值为 【点睛】17. 某小区有3000名居民,想通过验血的方法筛选乙肝病毒携带者,假设携带病毒的人占%a .为减轻工作量,随机地按n 人一组分组,然后将各组n 个人的血样混合在一起化验.若混合血样呈阴性,说明这n 个人全部阴性;若混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需要对每个人再分别化验一次.(1)若0.2,20,a n ==试估算该小区化验的总次数;(2)若0.9a =,且每人单独化验一次花费10元,n 人混合化验一次花费9n +元,求当n为何值时,每个居民化验的平均费用最少.注:假设每位居民的化验结果呈阴性还是阳性相互独立.当00.01p <<时,(1)1n p np -»-.【答案】(1)270 (2)10【解析】【分析】(1)设每组居民需化验的次数为X ,确定其取值,分别求概率,进而可得期望,即得;(2)设每组n 人总费用为Y 元,结合条件计算,然后表示出结合基本不等式即得.【小问1详解】设每组需要检验的次数为X ,若混合血样为阴性,则1X =,若混合血样呈阳性,则21X =, 所以20(1)(10.002)P X ==-,20(21)1(10.002)P X ==--, 所以202020()1(10.002)21[1(10.002)]2120(10.002)E X =´-+´--=-´-2120(1200.002) 1.8»-´-´=一共有300020150¸=组,故估计该小区化验的总次数是1.8150270´=.【小问2详解】设每组n 人总费用为Y 元,若混合血样呈阴性,则9Y n =+;若混合血样呈阳性,则119Y n =+,故(9)(10.009)n P Y n =+=-,(119)1(10.009)n P Y n =+=--()(9)0.991(119)(10.991)11100.9919n n n E Y n n n n =+×++×-=-´+每位居民的化验费用为()11100.99199911100.9911110(10.009)n n E Y n n n n n n n-´+==-´+»-´-+=911100.091 2.8n n -++³+=元 当且仅当90.09n n=,即10n =时取等号,故10n =时,每个居民化验的平均费用最少.18. 在平面直角坐标系xOy 中,已知()1,1A ,()1,1B -,动点P 满足OP mOA nOB =+uuu r uuu r uuu r,且1mn =.设动点P 形成的轨迹为曲线C .(1)求曲线C 的标准方程;(2)过点()2,2T 的直线l 与曲线C 交于M ,N 两点,试判断是否存在直线l ,使得A ,B ,M ,N 四点共圆.若存在,求出直线l 的方程;若不存在,说明理由.【答案】(1)22144x y -=(2)不存在直线l 符合题意,理由见解析【解析】【分析】(1)设(),P x y ,则由OP mOA nOB =+uuu r uuu r uuu r,可得x m n =+,y m n =-,再结合1mn =,消去,m n ,即可得曲线C 的标准方程,(2)判断直线l 的斜率存在,设l :()22y k x =-+,设()11,M x y ,()22,N x y ,将直线方程代入曲线C 的方程,化简后利用根与系数的关系,结合中点坐标公式表示出MN 的中点H 的坐标,利用弦长公式表示出MN ,表示出线段MN 的中垂线方程,求出其与与x 轴的交点坐标为4,01k Q k æöç÷+èø,而AB 的中垂线为x 轴,所以若A ,B ,M ,N 共圆,则圆心为4,01k Q k æöç÷+èø,从而由2222224MNQA QM QH HM QH ==+=+列方程求解即可.【小问1详解】设(),P x y ,则(),OP x y =uuu r,()1,1OA =uuu r ,()1,1OB =-uuu r ,因为OP mOA nOB =+uuu r uuu r uuu r,所以()()()(),1,11,1,x y m n m n m n =+-=+-,所以x m n =+,y m n =-,所以2x y m +=,2x yn -=,又122x y x y mn +-=×=,整理得22144x y -=,即曲线C 的标准方程为22144x y -=;【小问2详解】易知当l 的斜率不存在时,直线l 与曲线C 没有两个交点,所以直线l 的斜率存在,设l :()22y k x =-+,将直线l 与曲线C 联立,得22(2)2144y k x x y =-+ìïí-=ïî,消去y ,整理得()22212(22)4880kxk k x k k ----+-=,因为()()22224(22)4148832(1)0k k kkk k D =----+-=->且210k -¹,所以1k <且1k ¹-,设()11,M x y ,()22,N x y ,则1241k x x k +=+,21224881k k x x k -+=-,所以MN 的中点22,11kH k k æöç÷++èø,且1x M N =-=,将1241k x x k +=+,21224881k k x x k -+=-代入上式,整理得4MN =当0k ¹时,线段MN 的中垂线方程为1l :12214111k y x x k k k k k æö=--+=-+ç÷+++èø,令y =0,解得41k x k =+,即1l 与x 轴的交点坐标为4,01k Q k æöç÷+èø,当k =0时,线段MN 的中垂线为y 轴,与x 轴交于原点,符合Q 点坐标,因为AB 的中垂线为x 轴,所以若A ,B ,M ,N 共圆,则圆心为4,01k Q k æöç÷+èø,所以2222224MNQA QM QH HM QH ==+=+,所以()2222281442211111(1)(1)k k k k k k k k k +-æöæöæö-+=++ç÷ç÷ç÷++++-èøèøèø,整理得32622100k k k -++=,即()22(1)3450k k k +-+=,因为1k <且1k ¹-,所以上述方程无解,即不存在直线l 符合题意.19. 在高等数学中,我们将()y f x =在0x x =处可以用一个多项式函数近似表示,具体形式为:()()()()()()()()()200000002!!n nf x f x f x f x f x x x x x x x n ¢¢=+¢-+-+×××+-+×××(其中()()n f x 表示()f x 的n 次导数*3,N n n ³Î),以上公式我们称为函数()f x 在0x x =处的泰勒展开式.当00x =时泰勒展开式也称为麦克劳林公式.比如e x 在0x =处的麦克劳林公式为:22111e 12!3!x n x x x x n =++++++L L !,由此当0x ³时,可以非常容易得到不等式223111e 1,e 1,e 1,226x x x x x x x x x ³+³++³+++L 请利用上述公式和所学知识完成下列问题:(1)写出sin x 在0x =处的泰勒展开式.(2)若30,2x æö"Îç÷èø,sin e 1a xx >+恒成立,求a 的范围;(参考数据5ln 0.92»)(3)估计5ln3的近似值(精确到0.001)【答案】(1)1352111(1)sin 3!5!(21)!n n x x x x x n --+-=-+++-L L ; (2)1a ³; (3)0.511【解析】【分析】(1)求导,根据题意写出sin x 在0x =处的泰勒展开式;(2)结合sin x 在0x =处的泰勒展开式,构造函数证明3310,,sin 26x x x x æö"Î>-ç÷èø,再令31()ln(1)6g x x x x =--+,30,2x æöÎç÷èø,求导得到函数单调性,证明出30,,()02x g x æö"Î>ç÷èø,当1a ³时,31sin sin ln(1)6a x x x x x ³>->+ ,满足要求,当1a <时,令()sin ln(1)h x a x x =-+,30,2x æöÎç÷èø,易求得(0)10h a ¢=-<,所以必存在一个区间(0,)m ,使得()h x 在(0,)m 上单调递减, 所以(0,)x m Î时,()(0)0h x h <=,不合要求,从而得到答案;(3)求出ln(1)x +和ln(1)x -的泰勒展开式,得到35122ln 2135x x xx x +=+++-L ,令14x =,估计5ln3的近似值.【小问1详解】()sin cos x x ¢=,()cos sin x x ¢=-,()sin cos x x ¢-=-,()cos sin x x ¢-=,其中cos 01,sin 00==,sin x 在0x =处的泰勒展开式为:1352111(1)sin 3!5!(21)!n n x x x x x n --+-=-+++-L L ,【小问2详解】因为1352111(1)sin 3!5!(21)!n n x x x x x n --+-=-+++-L L ,由sin x 在0x =处的泰勒展开式,先证3310,,sin 26x x x x æö"Î>-ç÷èø,令3211()sin ,()cos 1,()sin 62f x x x x f x x x f x x x =-+¢=-+¢¢=-,()1cos f x x ¢¢¢=-,易知()0f x ¢¢¢>,所以()f x ¢¢在30,2æöç÷èø上单调递增,所以()(0)0f x f ¢¢>¢¢=,所以()f x ¢在30,2æöç÷èø上单调递增,所以()(0)0f x f ¢>¢=,所以()f x 在30,2æöç÷èø上单调递增,所以()(0)0f x f >=,再令31()ln(1)6g x x x x =--+,30,2x æöÎç÷èø,易得1(1)(2)2()1x x x g x x --+¢=+,所以()g x 在(0,1)上单调递增,在31,2æöç÷èø上单调递减,而3155(0)0,ln 02162g g æö==->ç÷èø,所以30,,()02x g x æö"Î>ç÷èø恒成立,当1a ³时,31sin sin ln(1)6a x x x x x ³>->+ ,所以sin e 1a x x >+成立,当1a <时,令()sin ln(1)h x a x x =-+,30,2x æöÎç÷èø,易求得(0)10h a ¢=-<,所以必存在一个区间(0,)m ,使得()h x 在(0,)m 上单调递减, 所以(0,)x m Î时,()(0)0h x h <=,不符合题意. 综上所述,1a ³.【小问3详解】因为1154ln ln,1314+=-转化研究1ln 1x x +-的结构,23456ln(1)23456x x x x x x x +=-+-+-+L ,23456ln(1)23456x x x x x x x -=-------L ,两式相减得35122ln 2135x x x x x +=+++-L ,取1,4x =得35512121ln 2((0.5108343454=´+´+´+»L ,所以估计5ln 3的近似值为0.511(精确到0.001).【点睛】麦克劳林展开式常常用于放缩法进行比较大小,常用的麦克劳林展开式如下:()21e 12!!n x n x x x o x n +=+++++L ,()()()352122sin 13!5!21!n n n x x x x x o x n ++=-+-+-++L ,()()()24622cos 112!4!6!2!nn n x x x xx o x n =-+-++-+L ,()()()2311ln 11231n n n x x xx x o x n +++=-+-+-++L ,()2111n n x x x o x x =+++++-L ,()()()221112!nn n x nx x o x -+=+++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省成都市石室中学数学分式填空选择(篇)(Word 版 含解析)一、八年级数学分式填空题(难)1.已知:x 满足方程11200620061x x =--,则代数式2004200620052007x x -+的值是_____. 【答案】20052007- 【解析】因为11200620061x x =--,则200420062005200520062006001120072007x x x x x x x --=⇒=⇒=⇒=---+ . 故答案:20052007-.2.如果111a b +=,则2323a ab b a ab b -+=++__________. 【答案】15- 【解析】 【分析】由111a b +=得a+b=ab ,然后再对2323a ab b a ab b -+++变形,最后代入,即可完成解答. 【详解】解:由111a b+=得a+b=ab , 2323a ab b a ab b -+=++2332a b aba b ab +-++=()()232a b ab a b ab +-++=232ab ab ab ab -+=15-.【点睛】本题考查了分式的化简求值,解答的关键在于分式的灵活变形.3.若以x 为未知数的方程()22111232a ax x x x +-=---+无解,则a =______. 【答案】1-或32-或2-. 【解析】 【分析】首先解方程求得x 的值,方程无解,即所截方程的解是方程的增根,应等于1或2,据此即可求解a 的值. 【详解】去分母得()()()2121x a x a -+-=+, 整理得()134a x a +=+,①当1a =-时,方程①无解,此时原分式方程无解; 当1a ≠-时,原方程有增根为1x =或2x =. 当增根为1x =时,3411a a +=+,解得32a =-; 当增根为2x =时,3421a a +=+,解得2a =-. 综上所述,1a =-或32a =-或2a =-. 【点睛】本题主要考查了方程增根产生的条件,如果方程有增根,则增根一定是能使方程的分母等于0的值.4.如果实数x 、y 满足方程组30233x y x y +=⎧⎨+=⎩,求代数式(xy x y ++2)÷1x y +.【答案】1 【解析】解:原式=222()xy x y x y x y ++⋅++=xy +2x +2y ,方程组:30233x y x y +=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩,当x =3,y =﹣1时,原式=﹣3+6﹣2=1.故答案为1.点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.5.若11a b+=3,则22a b a ab b +-+的值为_____. 【答案】35【解析】 【分析】 由113a b +=,可得3a b ab +=,即b+a=3ab ,整体代入22a ba ab b +-+即可求解.【详解】 ∵113a b+=,∴3a bab+=,即b+a=3ab ∴22a b a ab b +-+=3ab 6ab ab -=3ab 5ab =35.【点睛】本题考查了分式的化简求值,利用整体代入求值是解决本题的关键.6.若关于x 的分式方程x 2322m mx x++=--的解为正实数,则实数m 的取值范围是____.【答案】m <6且m≠2. 【解析】 【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可. 【详解】x 2322m mx x++=--, 方程两边同乘(x-2)得,x+m-2m=3x-6, 解得,x=6-2m, 由题意得,6-2m>0, 解得,m <6,∵6-2m≠2, ∴m≠2,∴m<6且m≠2. 【点睛】要注意的是分式的分母暗含着不等于零这个条件,这也是易错点.7.若关于x 的分式方程7311mx x x +=--无解,则实数m =_______. 【答案】3或7. 【解析】解:方程去分母得:7+3(x ﹣1)=mx ,整理得:(m ﹣3)x =4.①当整式方程无解时,m ﹣3=0,m =3;②当整式方程的解为分式方程的增根时,x =1,∴m ﹣3=4,m =7. 综上所述:∴m 的值为3或7. 故答案为3或7.8.使分式的值为0,这时x=_____.【答案】1 【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法9.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元. 【答案】28 【解析】设这种电子产品的标价为x 元, 由题意得:0.9x −21=21×20%, 解得:x=28,所以这种电子产品的标价为28元. 故答案为28.10.某市为治理污水,需要铺设一段全长600 m 的污水排放管道,铺设120 m 后,为加快施工进度,后来每天比原计划多铺设20 m ,结果共用8天完成这一任务,则原计划每天铺设管道的长度为_________. 【答案】60 m 【解析】设原计划每天铺设x m 管道,则加快施工进度后,每天铺设(20x +)m ,由题意可得,120600120820x x -+=+,解得:60x =,或5x =-(舍去),故答案为:60 m .二、八年级数学分式解答题压轴题(难)11.阅读下面材料并解答问题材料:将分式322231x x x x --++-+拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为21x -+,可设()322231()x x x x x a b --++=-+++, 则323223x x x x ax x a b --++=--+++ ∵对任意x 上述等式均成立, ∴2a =且3a b +=,∴2a =,1b =∴()2322221(2)12312111x x x x x x x x x -+++--++==++-+-+-+ 这样,分式322231x x x x --++-+被拆分成了一个整式2x +与一个分式211x -+的和 解答:(1)将分式371x x +-拆分成一个整式与一个分式(分子为整数)的和的形式 (2)求出422681x x x --+-+的最小值. 【答案】(1)3+101x -;(2)8 【解析】 【分析】(1)直接把分子变形为3(x-1)+10解答即可;(2)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a)+b ,按照题意,求出a 和b 的值,即可把分式422681x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式. 【详解】解:(1)371x x +-=33101x x -+- =()31101x x -+-=3+101x -; (2)由分母为21x -+,可设4268x x --+()()221x x a b =-+++, 则4268x x --+()()221x x a b =-+++ 422x ax x a b =--+++42(1)()x a x a b =---++.∵对于任意的x ,上述等式均成立,∴168a a b -=⎧⎨+=⎩解得71a b =⎧⎨=⎩∴422681x x x --+-+()()2221711x x x -+++=-+()()222217111x x x x -++=+-+-+22171x x =++-+.∴当x=0时,22171x x ++-+取得最小值8,即 422681x x x --+-+的最小值是8. 【点睛】本题主要考查分式的混合运算,解答本题的关键是理解阅读材料中的方法,并能加以正确应用.12.观察下列各式:111121212==-⨯,111162323==-⨯,1111123434==-⨯,1111204545==-⨯,1111305656==-⨯,… ()1请你根据上面各式的规律,写出符合该规律的一道等式:________ ()2请利用上述规律计算:()1111...1223341n n ++++=⨯⨯⨯+________(用含有n 的式子表示)()3请利用上述规律解方程:()()()()111121111x x x x x x x ++=---++.【答案】1111426767==-⨯ 1n n + 【解析】 【分析】根据阅读材料,总结出规律,然后利用规律变形计算即可求解. 【详解】 解:()11111(426767==-⨯答案不唯一); 故答案为1111426767==-⨯; ()2原式1n n =+; 故答案为1n n + ()3分式方程整理得:111111121111x x x x x x x -+-+-=---++,即1221x x =-+, 方程两边同时乘()()21x x --,得()122x x +=-, 解得:5x =,经检验,5x =是原分式方程的解. 【点睛】此题主要考查了阅读理解型的规律探索题,利用分数和分式的性质,把分式进行变形是解题关键.13.在计算23224x xx x +-++-的过程中,三位同学给出了不同的方法: 甲同学的解法:原式=222222(3)(2)26284444x x x x x x x x x x x +--+-----==----; 乙同学的解法:原式=3231312(2)(2)222x x x x x x x x x x +-++--=-=++-+++=1; 丙同学的解法:原式=(x+3)(x ﹣2)+2﹣x=x 2+x ﹣6+2﹣x=x 2﹣4.(1)请你判断一下, 同学的解法从第一步开始就是错误的, 同学的解法是完全正确的.(2)乙同学说:“我发现无论x 取何值,计算的结果都是1”.请你评价一下乙同学的话是否合理,并简要说明理由.【答案】(1)丙,乙;(2)不合理,理由见解析. 【解析】试题分析:(1)根据分式的加减法,由分解因式和同分母的分式加减,可知甲第2步去括号时没变号;乙正确;丙第一步的计算漏掉了分母,由此可知答案;(2)根据乙的正确化简结果可知最终结果与x 值无关,但是要注意所选取的x 不能使分式无意义.试题解析:(1)丙同学的解法从第一步开始就是错误的,乙同学的解法是完全正确的; 故答案为:丙,乙; (2)不合理, 理由:∵当x≠±2时,22232(3)(2)22444x x x x x x x x x +-+--+=-+---=222262444x x x x x x +--+-=--=1, ∴乙同学的话不合理,14.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b 元资金建立民办教育发展基金会,其中一部分作为奖金发给了n 所民办学校.奖金分配方案如下:首先将n 所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n 排序,第1所民办学校得奖金bn元,然后再将余额除以n 发给第2所民办学校,按此方法将奖金逐一发给了n 所民办学校.(1)请用n 、b 分别表示第2所、第3所民办学校得到的奖金;(2)设第k 所民办学校所得到的奖金为k a 元(1k n ≤≤),试用k 、n 和b 表示k a (不必证明);(3)比较k a 和1k a +的大小(k=1,2 ,……,1n -),并解释此结果关于奖金分配原则的实际意义.【答案】(1)211()(1)b b a b n n n n =-⨯=- ,23111()(1)(1)b b a b n n n n n=-⨯-=-; (2)11(1)k k ba nn-=- ; (3)1k k a a +> .奖金分配的实际意义:名次越靠后,奖金越少. 【解析】 【试题分析】(1)根据第1所民办学校得奖金bn元,然后再将余额除以n 发给第2所民办学校,得:22311111()(1),()(1)(1).b b b b a b a b n n n n n n n n n=-⨯=-=-⨯-=- (2)根据(1)中的两个式子,11(1)k k b a nn-=- ; (3)11(1)k k b a nn -=-,+11(1)k k b a n n=-,则1111+121111111(1)(1)(1)1(1)(1)(1)0k k k k k k k b b b b ba a n n n n n n n n n n n n----⎡⎤-=---=---=-⋅⋅=-⋅>⎢⎥⎣⎦,则+1k k a a >.奖金分配的实际意义:名次越靠后,奖金越少.【试题解析】(1)根据题意得:22311111()(1),()(1)(1).b b b b a b a b n n n n n n n n n=-⨯=-=-⨯-=- (2)根据(1)中的两个式子,11(1)k k b a nn-=- (3)11(1)k k b a nn -=-,+11(1)k k b a n n=-,则1111+121111111(1)(1)(1)1(1)(1)(1)0k k k k k k k b b b b ba a n n n n n n n n n n n n----⎡⎤-=---=---=-⋅⋅=-⋅>⎢⎥⎣⎦,则+1k k a a >.奖金分配的实际意义:名次越靠后,奖金越少.【方法点睛】本题目是一道分式的实际应用问题,第一个问题有难度,依据奖金的分配规则,写出23a a 、 的表达式;第二问在第一问的基础上,找出规律,直接写出k a 的表达式即可;第三问用作差法比较两个分式的大小,若差为正数,则被减数大于减数;若差为0,则被减数等于减数;若差为负数,则被减数小于减数.15.某商场在一楼与二楼之间装有一部自动扶梯,以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯上走到二楼(扶梯本身也在行驶).如果二人都做匀速运动,且男孩每分钟走动的级数是女孩的两倍.又已知男孩走了27级到达顶部,女孩走了18级到达顶部(二人每步都只跨1级).(1)扶梯在外面的部分有多少级.(2)如果扶梯附近有一从二楼下到一楼的楼梯,台阶级数与扶梯级数相等,这两人各自到扶梯顶部后按原速度走下楼梯,到一楼后再乘坐扶梯(不考虑扶梯与楼梯间的距离).则男孩第一次追上女孩时,他走了多少台阶? 【答案】(1)楼梯有54级(2) 198级 【解析】 【试题分析】(1)设女孩速度为x 级/分,电梯速度为y 级/分,楼梯(扶梯)为s 级,则男孩速度为2x 级/分, 根据时间相等列方程,有:2727,21818.s x y s xy -⎧=⎪⎪⎨-⎪=⎪⎩ ①两式相除,得327418s s -=-,解方程得54s =即可. 因此楼梯有54级.(2)设男孩第一次追上女孩时,走过扶梯m 次,走过楼梯n 次,则这时女孩走过扶梯()1m -次,走过楼梯()1n -次.将54s = 代入方程组①,得2y x =,即男孩乘扶梯上楼的速度为4x 级/分,女孩乘扶梯上楼的速度为3x 级/分.于是有()()5415415454.423m n m n x x x x--+=+ 从而114231m n m n --+=+,即616n m +=. 无论男孩第一次追上女孩是在扶梯上还是在下楼时,,m n 中必有一个为正整数,且01m n ≤-≤,经试验知只有13,26m n ==符合要求. 这时,男孩第一次追上女孩所走过的级数是:132********⨯+⨯=(级). 【试题解析】(1)设女孩速度为x 级/分,电梯速度为y 级/分,楼梯(扶梯)为s 级,则男孩速度为2x 级/分,依题意有2727,21818.s x y s x y -⎧=⎪⎪⎨-⎪=⎪⎩①把方程组①中的两式相除,得327418s s -=-,解得54s =. 因此楼梯有54级.(2)设男孩第一次追上女孩时,走过扶梯m 次,走过楼梯n 次,则这时女孩走过扶梯()1m -次,走过楼梯()1n -次.将54s = 代入方程组①,得2y x =,即男孩乘扶梯上楼的速度为4x 级/分,女孩乘扶梯上楼的速度为3x 级/分.于是有()()5415415454.423m n m n x x x x--+=+ 从而114231m n m n --+=+,即616n m +=. 无论男孩第一次追上女孩是在扶梯上还是在下楼时,,m n 中必有一个为正整数,且01m n ≤-≤,经试验知只有13,26m n ==符合要求.这时,男孩第一次追上女孩所走过的级数是:132********⨯+⨯=(级).。