高二数学条件概率综合测试题

合集下载

高中数学条件概率综合测试题(含答案)

高中数学条件概率综合测试题(含答案)

高中数学条件概率综合测试题(含答案)选修2-3 2.2.1 条件概率一、选择题1.下列式子成立的是()A.P(A|B)=P(B|A)B.0P(B|A)1C.P(AB)=P(A)P(B|A)D.P(AB|A)=P(B)[答案] C[解析] 由P(B|A)=P(AB)P(A)得P(AB)=P(B|A)P(A).2.在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为()A.35B.25C.110D.59[答案] D[解析] 设第一次摸到的是红球(第二次无限制)为事件A,则P(A)=69109=35,第一次摸得红球,第二次也摸得红球为事件B,则P(B)=65109=13,故在第一次摸得红球的条件下第二次也摸得红球的概率为P=P(B)P(A)=59,选D. 3.已知P(B|A)=13,P(A)=25,则P(AB)等于()A.56B.910C.215D.115[答案] C[解析] 本题主要考查由条件概率公式变形得到的乘法公式,P(AB)=P(B|A)P(A)=1325=215,故答案选C.4.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是()A.14B.13C.12D.35[答案] B[解析] 抛掷红、黄两颗骰子共有66=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,两颗骰子点数之积包含46,64,65,66共4个基本事件.所以其概率为4361236=13.5.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是()A.56B.34C.23D.13[答案] C6.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在吹东风的条件下下雨的概率为()A.911B.811C.25D.89[答案] D[解析] 设事件A表示“该地区四月份下雨”,B表示“四月份吹东风”,则P(A)=1130,P(B)=930,P(AB)=830,从而吹东风的条件下下雨的概率为P(A|B)=P(AB)P(B)=830930=89.7.一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是()A.23B.14C.25D.15[答案] C[解析] 设Ai表示第i次(i=1,2)取到白球的事件,因为P(A1)=25,P(A1A2)=2525=425,在放回取球的情况P(A2|A1)=252525=25.8.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为()A.1 B.12C.13D.14[答案] B[解析] 设Ai表示第i次(i=1,2)抛出偶数点,则P(A1)=1836,P(A1A2)=1836918,故在第一次抛出偶数点的概率为P(A2|A1)=P(A1A2)P(A1)=183********=12,故选B.二、填空题9.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为________.[答案] 0.310.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.[答案] 9599[解析] 设“第一次抽到次品”为事件A,“第二次抽到正品”为事件B,则P(A)=5100,P(AB)=51009599,所以P(B|A)=P(AB)P(A)=9599.准确区分事件B|A与事件AB的意义是关键.11.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.[答案] 12[解析] 一个家庭的两个小孩只有3种可能:{两个都是男孩},{一个是女孩,另一个是男孩},{两个都是女孩},由题目假定可知这3个基本事件的发生是等可能的.12.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.[答案] 3350[解析] 根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数共有33个,故所求概率为3350.三、解答题13.把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,求P(B|A).[解析] P(B)=P(A)=12,P(AB)=14,P(B|A)=P(AB)P(A)=1412=12.14.盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取出一个球,已知它不是黑球,试求它是黄球的概率.[解析] 解法一:设“取出的是白球”为事件A,“取出的是黄球”为事件B,“取出的是黑球”为事件C,则P(C)=1025=25,P(C)=1-25=35,P(BC)=P(B)=525=15P(B|C)=P(BC)P(C)=13.解法二:已知取出的球不是黑球,则它是黄球的概率P=55+10=13.15.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?(2)从2号箱取出红球的概率是多少?[解析] 记事件A:最后从2号箱中取出的是红球;事件B:从1号箱中取出的是红球.P(B)=42+4=23,P(B-)=1-P(B)=13.(1)P(A|B)=3+18+1=49.(2)∵P(A|B-)=38+1=13,P(A)=P(AB)+P(AB-)=P(A|B)P(B)+P(A|B-)P(B-)=4923+1313=1127.16.某校高三(1)班有学生40人,其中共青团员15人.全班分成4个小组,第一组有学生10人,共青团员4人.从该班任选一个作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率.[解析] 设事件A表示“选到第一组学生”,事件B表示“选到共青团员”.(1)由题意,P(A)=1040=14.(2)要求的是在事件B发生的条件下,事件A发生的条件概率P(A|B).不难理解,在事件B发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P(A|B)=415.。

高二数学 条件概率练习题 试题

高二数学 条件概率练习题 试题

高二数学条件概率练习题班级某某1、袋中共有5个球,其中3个新球,2个旧球,每次取1个,无放回地取2次,则第二次取到新球的概率是( ). A.53 B.43 C.21 D.103 2、设A 、B 是两个随机事件,且,0)(,1)(0><<B P A P )|()|(A B P A B P =,则必有( ). A.)|()|(B A P B A P = B.)|()|(B A P B A P ≠C.)()()(B P A P AB P =D.)()()(B P A P AB P ≠3、已知p(AB)=103, P(A)=53, 则P(B|A)=( ) A.509 B.21 C.109 D.41 4、已知P(B|A) =21, P(A)=53, 则p(AB)=( ) A.65 B.109 C. 103 D.101 5、下列正确的是( )A.)|()|(A B P B A P =B.)()|(B P A B A P ≠C.)|()())A B P B P AB P =D.)()()|(B n AB n B A P = 6、在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次也摸到红球的概率为( )A.53B.52C.101D.95 7、把一枚硬币任意掷两次,事件A={第一次出现正面},事件B={第二次出现正面},则P(BA)=( )A.41B.21C.61D.81 8、当掷五枚硬币时,已知至少出现两个正面向上,则正好出现3个正面向上的概率为( ) A.135B.136C.261 D.41 9、设有10件产品,其中有4件次品,依次从中不放回地抽取一件产品,直到将次品取完为止.则抽取次数为7的概率为.10、甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名,问在碰到甲班同学时,正好碰到一名女同学的概率是。

11、从1—100个整数中,任取一数,已知取出的—数是不大于50的数,求它是2或3的倍数的概率是.12、袋中装有2n —1个白球,2n 个黑球,一次取出n 个球,发现都是同一种颜色的,问这种颜色是黑色的概率是。

条件概率高中练习题及讲解及答案

条件概率高中练习题及讲解及答案

条件概率高中练习题及讲解及答案### 条件概率高中练习题及讲解#### 练习题一某班级有50名学生,其中男女生各半。

已知该班级有10名学生近视。

若随机抽取一名学生,该学生是男生的概率为P(A)=0.5,是近视的概率为P(B)=0.2。

求以下概率:1. 抽取的学生是男生且近视的概率P(AB)。

2. 抽取的学生是男生,给定他是近视的情况下的概率P(A|B)。

#### 解题步骤及讲解首先,我们需要理解条件概率的定义:P(A|B) = P(AB) / P(B)。

1. 计算P(AB):已知班级中男生和女生各半,近视学生占20%,那么男生中近视的学生比例为20%。

计算P(AB),即男生且近视的学生数占总学生数的比例,即:\[ P(AB) = \frac{10}{50} = 0.2 \]2. 计算P(A|B):根据条件概率公式,我们需要已知P(B)和P(AB)。

我们已经计算出P(AB)为0.2,而P(B)为0.2。

代入公式得:\[ P(A|B) = \frac{P(AB)}{P(B)} = \frac{0.2}{0.2} = 1 \]#### 练习题二在一个装有红球和蓝球的箱子中,红球有30个,蓝球有20个。

随机抽取一个球,求以下概率:1. 抽到红球的概率P(A)。

2. 若已知抽到的球是红球,再抽一个球,抽到蓝球的概率P(B|A)。

#### 解题步骤及讲解1. 计算P(A):红球总数占总球数的比例即为抽到红球的概率:\[ P(A) = \frac{30}{30+20} = \frac{30}{50} = 0.6 \]2. 计算P(B|A):已知抽到红球后,箱子中剩余的球数为49(30个红球和20个蓝球)。

此时抽到蓝球的概率为:\[ P(B|A) = \frac{20}{49} \]#### 练习题三某地区有两家医院,A医院和B医院。

A医院的诊断准确率为90%,B医院的诊断准确率为95%。

某患者分别在两家医院进行了检查,两家医院都诊断为阳性。

高二数学概率练习题及答案2023

高二数学概率练习题及答案2023

高二数学概率练习题及答案2023一、选择题(每题4分,共40分)1. 某班级有30名男生和40名女生,从中随机选择一位学生,男生和女生被选择的概率分别为()。

A. 3/7, 4/7B. 1/3, 2/3C. 3/8, 4/7D. 4/7, 3/72. 抛掷一枚公正的骰子,事件A:"点数是奇数",事件B:"点数大于2",则事件A和事件B的交集为()。

A. {3, 5}B. {1, 3, 5}C. {2, 4, 6}D. {1, 2, 3, 4, 5, 6}3. 从字母A、B、C中顺序地任选一个字母写下,则不同字母组成的三位数有()个。

A. 5B. 6C. 7D. 84. 某班有男生和女生各20人,从中任选5名学生参与活动,已知其中一名学生是男生的概率为1/4,求这5名学生全为女生的概率。

()A. 1/283B. 1/893C. 1/156D. 1/835. 已知A、B、C三个事件两两独立,且P(A) = 1/5,P(B) = 1/4,P(C) = 1/2,则P(至少发生一个事件) = ()。

A. 13/20B. 17/20C. 7/20D. 3/206. 某种花卉中,红色花卉占总数的1/4,蓝色花卉占总数的1/3,而紫色花卉占总数的1/6。

如果从这些花卉中随机摘取一只,那么摘到红色或蓝色花卉的概率是()。

A. 1/2B. 2/3C. 7/12D. 5/127. 一副标准扑克牌中红心牌有26张,从中任选一张牌,若抽到红心牌或者方块牌,则抽到A的概率是()。

A. 1/13B. 1/52C. 1/26D. 1/48. 在一个有25名学生的班级中,9人参加了篮球比赛,从中任选1名学生评为最有价值球员的概率是()。

A. 9/25B. 1/3C. 3/5D. 4/99. 在一个数列中,每个数都是从1到5的整数,选取一个数的概率是1/5,选取的数若大于等于4,则该数列的概率是()。

高二数学概率综合试题答案及解析

高二数学概率综合试题答案及解析

高二数学概率综合试题答案及解析1.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则()A.n=5,p=0.32B.n=4,p=0.4C.n=8,p=0.2D.n=7,p=0.45【答案】C【解析】因为随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,所以.【考点】随机变量的期望方差.2.从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽一张,已知第一次抽到A,则第二次也抽到A的概率为_________ .【答案】.【解析】由于第一次抽到A,则第二次抽牌时,还有3张A,共51张牌,而每张牌被抽到的概率是相等的,故第二次也抽到A的概率为.【考点】相互独立事件的概率乘法公式.3.抛掷一个骰子,若掷出5点或6点就说试验成功,则在3次试验中恰有2次成功的概率为__________。

【答案】【解析】抛掷一个骰子,若掷出5点或6点就说试验成功,则成功的概率为,则在3次试验中恰有2次成功的概率为。

【考点】等可能事件的概率4.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:喜爱打篮球不喜爱打篮球合计已知在全部50人中随机抽取1人,抽到喜爱打篮球的学生的概率为.(1)请将上表补充完整(不用写计算过程);(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;下面的临界值表供参考:(参考公式:,其中)【答案】(1)详见解析;(2)在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关.【解析】(1)根据在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为,可得喜爱打篮球的学生,即可得到列联表;(2)利用公式求得K2,与临界值比较,即可得到结论.试题解析:列联表补充如下: 3分喜爱打篮球不喜爱打篮球合计(2)∵∴在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关. 12分【考点】独立性检验..5.某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为,中将可以获得2分;方案乙的中奖率为,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?【答案】(1)(2)选择方案甲进行抽奖时,累计得分的数学期望最大【解析】解:(Ⅰ)由已知得:小明中奖的概率为,小红中奖的概率为,两人中奖与否互不影响,记“这2人的累计得分”的事件为A,则A事件的对立事件为“”,,这两人的累计得分的概率为. 6分(Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为,都选择方案乙抽奖中奖的次数为,则这两人选择方案甲抽奖累计得分的数学期望为,选择方案乙抽奖累计得分的数学期望为由已知:,,,他们都在选择方案甲进行抽奖时,累计得分的数学期望最大. 12分【考点】独立事件的概率以及期望点评:主要是考查了独立事件的概率以及期望值的运用,属于中档题。

高二数学条件概率练习题

高二数学条件概率练习题

高二数学条件概率练习题1. Alex有4件红色T恤和6件蓝色T恤,他每天都随机选择一件衣服穿。

已知当他穿上红色T恤时,下一次他选择蓝色T恤的概率是0.4;而当他穿上蓝色T恤时,下一次他选择红色T恤的概率是0.6。

现在已经确定,在第一天Alex穿了一件红色T恤。

求第三天Alex选择红色T恤的概率。

解析:设事件A为第一天Alex穿红色T恤,事件B为第二天Alex选择红色T恤,事件C为第三天Alex选择红色T恤。

首先,我们可以得到以下概率:P(B|A) = 0.6,即当第一天Alex穿红色T恤时,第二天选择红色T恤的概率为0.6;P(B|A') = 0.4,即当第一天Alex穿蓝色T恤时,第二天选择红色T恤的概率为0.4。

现在我们需要求解P(C|A),即当第一天Alex穿红色T恤时,第三天选择红色T恤的概率。

根据条件概率公式:P(C|A) = P(C∩A) / P(A)其中,P(C∩A)表示事件C和事件A同时发生的概率,即第一天Alex穿红色T恤且第三天选择红色T恤的概率。

要计算P(C∩A),我们可以将其表示为以下形式:P(C∩A) = P(B|A) * P(C|B∩A)其中,P(C|B∩A)表示当第二天选择红色T恤且第一天穿红色T恤时,第三天选择红色T恤的概率。

根据题目给出的条件,我们可以将P(C|B∩A)表示为:0.6 * P(C|A) + 0.4 * P(C|A')因为第一天Alex选择红色T恤,所以P(C|A') = 0,我们可以将上述式子简化为:P(C∩A) = 0.6P(C|A)然后,我们需要计算P(A),即第一天Alex选择红色T恤的概率。

根据题目给出的信息,Alex有4件红色T恤和6件蓝色T恤,所以:P(A) = 4 / (4 + 6) = 4 / 10 = 0.4将计算得到的P(C∩A)和P(A)代入条件概率公式,我们可以求解P(C|A):P(C|A) = P(C∩A) / P(A) = (0.6P(C|A)) / 0.4 = 1.5P(C|A)根据概率的性质,所有可能事件的概率之和为1,即P(C|A) +P(C|A') = 1。

高中2-3条件概率练习题及讲解

高中2-3条件概率练习题及讲解

高中2-3条件概率练习题及讲解在高中数学课程中,条件概率是一个重要的概念,它描述了在某个事件已经发生的情况下,另一个事件发生的概率。

以下是一些条件概率的练习题以及相应的讲解。

### 练习题1:假设在一个班级中有30名学生,其中20名男生和10名女生。

如果随机选择一名学生,他是男生的概率是2/3。

现在,如果我们知道这名被选中的学生参加了学校的篮球队,那么他是男生的概率是多少?解答:首先,我们设事件A为“学生是男生”,事件B为“学生参加了篮球队”。

根据题目,P(A) = 20/30 = 2/3。

我们需要计算的是P(A|B),即在事件B发生的条件下事件A发生的概率。

假设班级中有x名男生和y名女生参加了篮球队,那么P(B|A) = x/20(男生参加篮球队的概率),P(B|¬A) = y/10(女生参加篮球队的概率)。

根据全概率公式,P(B) = P(A)P(B|A) + P(¬A)P(B|¬A)。

由于我们不知道x和y的具体数值,我们无法直接计算P(A|B)。

但是,如果题目提供了这些信息,我们可以使用贝叶斯定理来求解。

### 练习题2:在一个袋子里有5个红球和3个蓝球。

第一次随机抽取一个球,记录颜色后放回。

第二次再次抽取一个球。

求第二次抽取红球的条件概率,条件是第一次抽取的也是红球。

解答:设事件A为“第一次抽取红球”,事件B为“第二次抽取红球”。

根据题目,P(A) = 5/8。

由于球被放回,抽取两次是独立的,所以P(B|A) = P(B) = 5/8。

### 练习题3:在一个小镇上,有两家医院。

医院A有70%的新生儿是男孩,医院B有60%的新生儿是男孩。

如果一个新生儿是男孩,那么他是在医院A出生的概率是多少?解答:设事件A为“新生儿在医院A出生”,事件B为“新生儿是男孩”。

根据题目,P(A) = 1/2(假设小镇上只有两家医院,且新生儿在两家医院出生的概率相等),P(B|A) = 0.7,P(B|¬A) = 0.6。

高二期末复习之条件概率和全概率练习

高二期末复习之条件概率和全概率练习

条件概率和全概率公式1、条件概率(1)概念:一般地,设A ,B 为两个随机事件,且P (A )>0,我们称P (B |A )=P (AB )P (A )为在事件A 发生的条件下,事件B 发生的条件概率,简称条件概率.(2)两个公式①利用古典概型,P (B |A )=n (AB )n (A );②利用概率的乘法公式:P (AB )=P (A )P (B |A ).2、全概率公式一般地,设n A A A ,,, 21是一组两两互斥的事件,Ω=n A A A 21,且n i A P i ,,,,)( 210=>,则对任意的事件Ω⊆B ,有∑==ni i i A B P A P B P 1)|()()(,称为全概率公式.3、贝叶斯公式设n A A A ,,, 21是一组两两互斥的事件,Ω=n A A A 21,且n i A P i ,,,,)( 210=>,则对任意的事件Ω⊆B ,0>)(B P ,有ni A B P A P A B P A P B P A B P A P B A P knk ki i i i i ,,,,)|()()|()()()|()()|( 211===∑=题型一条件概率1.已知()0.4P B =,()0.8P B A =,()0.3P B A =,则()P A =().A .34B .38C .13D .152.已知A ,B 为互斥事件,事件C 满足:1()12P BC =,1()6P A C =,1(())2P A B C ⋃=,则()P C =()A .13B .14C .16D .1123.某班有7名班干部,其中4名男生,3名女生.从中选出3人参加学校组织的社会实践活动,在男生甲被选中的情况下,女生乙也被选中的概率为__________.4.甲、乙、丙、丁4人分别到A 、B 、C 、D 四所学校实习,每所学校一人,在甲不去A 校的条件下,乙不去B 校的概率是______.5.甲、乙、丙、丁、戊五名同学利用寒假参加社区服务,分别从为老年人服务、社会保障服务、优抚对象服务、为残病人服务、安全防范服务等五个服务项目中选择一个报名,记事件A 为“五名同学所选项目各不相同”,事件B 为“只有甲同学选安全防范服务”,则()P A B =_________.6.一个盒子中装有5个黑球和4个白球,现从中先后无放回的取2个球,记“第一次取得黑球”为事件A ,“第二次取得白球”为事件B ,则()()P AB P B A +=()A .79B .23C .56D .897.红、黄、蓝被称为三原色,选取任意几种颜色调配,可以调配出其他颜色.已知同一种颜色混合颜色不变,等量的红色加黄色调配出橙色;等量的红色加蓝色调配出紫色;等量的黄色加蓝色调配出绿色.现有等量的红、黄、蓝彩色颜料各两瓶,甲从六瓶中任取两瓶颜料进行等量调配,则甲调配出绿色的概率为________;在甲调配出绿色的情况下,乙再从余下四瓶中任取两瓶颜料,进行等量调配,则乙调配出紫色的概率为________.8.某汽车4S 店的销售员的月工资由基础工资和绩效工资两部分组成,基础工资为t (单位:元),绩效工资如下表:月售车台数012345≥绩效工资0.1t0.3t 0.5t 0.8t 1.2t根据以往销售统计,该4S 店平均一名销售员月售车台数的概率分布如下表:月售车台数012345≥概率0.320.280.130.120.090.06(1)求该4S 店一名销售员的绩效工资大于0.4t 的概率;(2)若已知该4S 店一名销售员上个月工资大于1.2t ,求该销售员上个月卖出去3台车的概率;(3)根据调查,同行业内销售员月平均工资为8000元,要使该4S 店销售员的月工资的期望不低于行业平均水平,基础工资至少应定为多少?(精确到百位)1.D【详解】()()()()()()P B P AB AB P A P B A P A P B A =+=+,()()0.40.80.31P A P A ⎡⎤=+-⎣⎦,解得()10.25P A ==.故选:D.2.B【详解】因为A ,B 互斥,所以1(()|)(|)(|)2P A B C P A C P B C =+=⋃,因为1(|)6P A C =,所以1(|)3P B C =,又因为()(|)()P BC P B C P C =,所以1()3()4P C P BC ==.故选:B .3.13【详解】设事件A 表示“男生甲被选中”,事件B 表示“女生乙被选中”,则21653377C C 15351(),()C 357C 357P A P AB =====,所以()1(|)()3P AB P B A P A ==,即男生甲被选中的情况下,女生乙也被选中的概率为13.故答案为:13.4.79【详解】由题意,甲不去A 校的概率为331443A 3A 4P ==,甲不去A 校且乙不去B 校的概率为13123322244C A C A 7A 12P ⨯-⨯==,则在甲不去A 校的条件下,乙不去B 校的概率217712394P P P ===.故答案为:79.5.332【详解】事件AB :甲同学选安全防范服务且五名同学所选项目各不相同,所以其它4名同学排列在其它4个项目,且互不相同,为44A ,事件B :甲同学选安全防范服务,所以其它4名同学排列在其它4个项目,可以安排在相同项目,为44,()()()44545A 354325P AB P A B P B ===.故答案为:332.6.A【详解】545()9818P AB =⨯= ,5()118()5()29P AB P BA P A ===∣,7()()9P AB P B A ∴+=∣.故选:A.7.41513【详解】设A =“甲调配出绿色”,B =“乙调配出紫色”,因为等量的黄色加蓝色调配出绿色,且等量的红、黄色、蓝彩色颜料各两瓶共6瓶,所以112226C C 4()C 15P A ⋅==,因为甲调配出绿色时已经用掉1瓶黄色颜料和1瓶蓝色颜料,则颜料剩余红色2瓶,黄色1瓶,蓝色1瓶共4瓶,因为等量的红色加蓝色调配出紫色,所以112124C C 1()C 3P B ⋅==.故答案为:415,138.(1)0.27(2)0.3(3)6300元【详解】(1)设事件“该4S 店一名销售员的绩效工资大于0.4t ”为A ,则事件A 等价于“该销售员月售车台数不小于3”,()0.120.090.060.27P A =++=.(2)设事件“该4S 店一名销售员上个月工资大于1.2t ”为B ,事件“该销售员上个月卖出去3台车”为C ,则()()0.12P BC P C ==,()0.130.120.090.060.4P B =+++=,故()()()0.3P BC P C B P B ==.(3)该4S 店一名销售员月工资X 的分布列为X t 1.1t1.3t1.5t1.8t2.2tP0.320.280.130.120.090.06所以()0.320.28 1.10.13 1.30.12 1.50.09 1.80.06 2.2 1.271E X t t t t t t t =+⨯+⨯+⨯+⨯+⨯=,由1.2718000t ≥,得6300t ≥,即基础工资至少应定为6300元.题型二概率的乘法公式9.盒中有4个质地,形状完全相同的小球,其中1个红球,1个绿球,2个黄球;现从盒中随机取球,每次取1个,不放回,直到取出红球为止.则在此过程中没有取到黄球的概率为___________.10.【多选】箱中共有包装相同的3件正品和2件赝品,从中不放回地依次抽取2件,用A 表示“第一次取到正品”,用B 表示“第二次取到正品”,则()A .()()P A PB =B .()()()P AB P A P B =C .()0.9P A B +=D .(|)0.5P B A =11.【多选】已知事件,A B 满足()()0.5,0.2P A P B ==,则()A .若B A ⊆,则()0.5P AB =B .若A 与B 互斥,则()0.7P A B +=C .若()0.2P BA =∣,则A 与B 相互独立D .若A 与B 相互独立,则()0.9P AB =9.13【详解】没有取到黄球,可以是“第一次取到红球”或“第一次取到绿球,第二次取到红球”记事件1R 表示第一次取到红球,2R 表示第二次取到红球,1G 表示第一次取到绿球,则()114P R =,()()()12121111|4312P G R P G P R G ==⨯,∴没有取到黄球的概率为1114123P =+=.故答案为:13.10.ACD【详解】对A ,()35P A =,()3235410P AB =⨯=,()2335410P AB =⨯=,()()()33310105P B P AB P AB =+=+= ,故A 选项对;对B ,()()()3355P A P B P AB =⨯≠ ,故B 选项错;对C ,()()()()0.9P A B P A P B P AB +=+-= ,故C 选项正确;对D ,()()310(|)0.535P AB P B A P A === ,故D 选项正确.故选:ACD 11.BC【详解】对A ,因为B A ⊆,所以()()0.2P AB P B ==,错误;对B ,因为A 与B 互斥,所以()()()0.7P A B P A P B +=+=,正确;对C ,因为()()()0.2P AB P BA P A ==∣,所以()0.1P AB =,而()()0.5,0.2P A P B ==,所以()()()0.1P AB P A P B ==,正确;对D ,因为A 与B 相互独立,所以A 与B 相互独立,所以,()()()()()10.50.80.4P AB P A P B P A P B ⎡⎤==⨯-=⨯=⎣⎦,错误.故选:BC.题型三全概率公式12.现有四家工厂生产同一产品,已知它们生产该产品的日产量分别占日产量总和的15%,20%,30%和35%,且产品的不合格率分别为0.05,0.04,0.03和0.02,现从四家工厂一天生产的所有产品中任取一件,则抽到不合格品的概率是________.13.北京冬奥会奥运村有智能餐厅和人工餐厅各一个,某运动员连续两天均在奥运村用餐且每一天均在同一个餐厅用餐.他第一天等可能地随机选择其中一个餐厅用餐.若他第一天去智能餐厅,那么第二天去智能餐厅的概率为0.7;如果他第一天去人工餐厅,那么第二天去人工餐厅的概率为0.2.则该运动员第二天去智能餐厅用餐的概率为()A .0.45B .0.14C .0.75D .0.814.有甲、乙两个袋子,甲袋中有2个白球和1个红球,乙袋中有2个红球和中1个白球,这6个球手感上不可区别.现从甲袋中任取一球放入乙袋,搅匀后再从乙袋中任取一球,则收到红球的概率是()A .34B .712C .12D .4715.第三次人工智能浪潮滚滚而来,以ChatGPT 发布为里程碑,开辟了人机自然交流的新纪元.ChatGPT 所用到的数学知碑,开辟了人机自然交流的新纪元.ChatGPT 所用到的数学知识并非都是遥不可及的高深理论,条件概率就被广泛应用于ChatGPT 中.某数学素养提升小组设计了如下问题进行探究:现有完全相同的甲,乙两个箱子(如图),其中甲箱装有2个黑球和4个白球,乙箱装有2个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任取一个箱子,再从中随机摸出一球.(1)求摸出的球是黑球的概率;(2)若已知摸出的球是黑球,请用概率公式判断该球取自哪个箱子的可能性更大.16.某学校有A ,B 两家餐厅,王同学第1天午餐时随机的选择一家餐厅用餐.如果第一天去A 餐厅,那么第2天去A 餐厅的概率为0.6,如果第1天去B 餐厅,那么第2天去A 餐厅的概率为0.8.(1)计算王同学第2天去A 餐厅用餐的概率;(2)王同学某次在A 餐厅就餐,该餐厅提供5种西式点心,n 种中式点心,王同学从这些点心中选择三种点心,记选择西式点心的种数为X ,求n 的值使得()1P X =取得最大值.17.为倡导公益环保理念,培养学生社会实践能力,某中学开展了旧物义卖活动,所得善款将用于捐赠“圆梦困境学生”计划.活动共计50多个班级参与,1000余件物品待出售.摄影社从中选取了20件物品,用于拍照宣传,这些物品中,最引人注目的当属优秀毕业生们的笔记本,已知高三1,2,3班分别有12,13,14的同学有购买意向.假设三个班的人数比例为6:7:8.(1)现从三个班中随机抽取一位同学:(i )求该同学有购买意向的概率;(ii )如果该同学有购买意向,求此人来自2班的概率;(2)对于优秀毕业生的笔记本,设计了一种有趣的“掷骰子叫价确定购买资格”的竞买方式:统一以0元为初始叫价,通过掷骰子确定新叫价,若点数大于2,则在已叫价格基础上增加1元更新叫价,若点数小于3,则在已叫价格基础上增加2元更新叫价;重复上述过程,能叫到10元,即获得以10元为价格的购买资格,未出现叫价为10元的情况则失去购买资格,并结束叫价.若甲同学已抢先选中了其中一本笔记本,试估计其获得该笔记本购买资格的概率(精确到0.01).12.0.0315【详解】因为生产该产品的日产量分别占日产量总和的15%,20%,30%和35%,且产品的不合格率分别为0.05,0.04,0.03和0.02,所以抽到不合格品的概率为:15%0.0520%0.0430%0.0335%0.020.0315P =⨯+⨯+⨯+⨯=.故答案为:0.0315.13.C【详解】设1A =“第1天去智能餐厅用餐”,1B =“第1天去人工餐厅用餐”,2A =“第2天去智能餐厅用餐”,则11A B Ω=⋃,且1A 与1B 互斥,根据题意得:()()110.5P A P B ==,()210.7P A A =,()210.8P A B =,由全概率公式得()()()()()21211210.50.70.50.80.75P A P A P A A P B P A B =+=⨯+⨯=,故选:C .14.B【详解】设1A =“从甲袋放入乙袋的是白球”,2A =“从甲袋放入乙袋的是红球”B =“从乙袋中任取一球是红球”,则()()()()()112222317434312P B P B A P A P B A P A =+=⨯+⨯=.故选:B.15.(1)1130(2)该球取自乙箱的可能性更大【详解】(1)记事件A 表示“球取自甲箱”,事件A 表示“球取自乙箱”,事件B 表示“取得黑球”,则()()()()1212||2635P A P A P B A P B A =====,由全概率公式得:()()()()()||P B P A P B A P A P B A =+111211232530=⨯+⨯=.(2)该球取自乙箱的可能性更大,理由如下:该球是取自甲箱的概率()()()()11|523|111130P A P B A P A B P B ⨯===,该球取自乙箱的概率()()()()12|625|111130P A P B A P A B P B ⨯===,因为()()||P A B P A B <,所以该球取自乙箱的可能性更大.16.(1)0.7(2)9或10【详解】(1)设1A =“第1天去A 餐厅用餐”,1B =“第1天去B 餐厅用餐”,2A =“第2天去A 餐厅用餐”,根据题意得()()110.5P A P B ==,()210.6P A A =∣,()210.8P A B =∣,由全概率公式,得:()()()()()21211210.50.60.50.80.7P A P A P A A P B P A B =+=⨯+⨯=∣∣,所以,王同学第2天去A 餐厅用餐的概率为0.7.(2)由题意,X 的可能取值有:0,1,2,3,由超几何分布可知()()()()()125351511543nn n n C C P X C n n n +-===+++,令()()()()151543n n n a n n n -=+++,又 N n ∈,所以1n n a a +≥,可得()()()()1361n n n n ++≥+-,解得9n ≤,易知当9n =和10n =时,()1P X =的值相等,所以当9n =或10时,()1P X =有最大值为4591,即当n 的值为9或10时,使得()1P X =最大.17.(1)(i )2263;(ii )722(2)0.75.【详解】(1)(i )设事件A =“该同学有购买意向”,事件i B =“该同学来自i 班”()1,2,3i =.由题意可知()()()231678,212121P B P B P B ===,()()()123111,,234P A B P A B P A B ===,所以,由全概率公式可得:()()()()()()()112233P A P B P A B P B P A B P B P A B =⋅+⋅+⋅6171812221221321463=⨯+⨯+⨯=.(ii )由条件概率可得()()()()()()2222717213222263P B P A B P B A P B A P A P A ⨯⋅====.(2)由题意可得每次叫价增加1元的概率为23,每次叫价增加2元的概率为13.设叫价为()310n n ≤≤元的概率为n P ,叫价出现n 元的情况只有下列两种:①叫价为1n -元,且骰子点数大于2,其概率为123n P -;②叫价为2n -元,且骰子点数小于3,其概率为213n P -.于是得到()1221333n n n P P P n --=+≥,易得123P =,222173339P =⨯+=由于()()112121113333n n n n n n P P P P P P n ------=-+=--≥,于是当2n ≥时,数列{}1n n P P --是以首项为19,公比为13-的等比数列,故()2111293n n n P P n --⎛⎫-=⨯-≥ ⎪⎝⎭.于是()()()()101213298109P P P P P P P P P P =+-+-+⋅⋅⋅+-+-9101119323110.751344313⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+=+⨯≈ ⎪⎛⎫⎝⎭-- ⎪⎝⎭于是,甲同学能够获得笔记本购买资格的概率约为0.75.题型四贝叶斯公式18.学校给每位教师随机发了一箱苹果,李老师将其分为两份,第1份占总数的40%,次品率为5%,第2份占总数的60%,次品率为4%.若李老师分份之前随机拿了一个发现是次品后放回,则该苹果被分到第1份中的概率为______.19.一堆苹果中大果与小果的比例为9:1,现用一台水果分选机进行筛选.已知这台分选机把大果筛选为小果的概率为5%,把小果筛选为大果的概率为2%.经过一轮筛选后,现在从这台分选机筛选出来的“大果”里面随机抽取一个,则这个“大果”是真的大果的概率为()A.855857B.8571000C.171200D.91020.假设某市场供应的灯泡中,甲厂产品占60%,乙厂产品占40%,甲厂产品的合格率为90%,乙厂产品的合格率为80%,在该市场中购买甲厂的两个灯泡,则恰有一个是合格品的概率为___________;若在该市场中随机购买一个灯泡,则这个灯泡是合格品的概率为___________;若在该市场中购买的一个灯泡是合格品,则这个灯泡是甲厂的概率为_______________.21.甲、乙、丙3台车床加工同一型号的零件,甲加工的次品率为6%,乙、丙加工的次品率均为5%,加工出来的零件混放在一起.已知甲、乙、丙加工的零件数分别占总数的25%,30%,45%.(1)任取一个零件,求它是次品的概率;(2)如果取到的零件是次品,求它是丙车床加工的概率.22.为丰富学生的课外活动,学校羽毛球社团举行羽毛球团体赛,赛制采取5局3胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且上场顺序是随机的,每局比赛结果互不影响,经过小组赛后,最终甲乙两队进入最后的决赛,根据前期比赛的数据统计,甲队明星队员M对乙队的每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(1)求甲队明星队员M在前四局比赛中不出场的前提下,甲乙两队比赛4局,甲队最终获胜的概率;(2)求甲乙两队比赛3局,甲队获得最终胜利的概率;(3)若已知甲乙两队比赛3局,甲队获得最终胜利,求甲队明星队员M上场的概率.18.511【详解】设事件B 为“拿的苹果是次品”,()1,2i A i =为“拿的苹果来自第i 份”,则()10.4P A =,()1|0.05P B A =,()20.6P A =,()2|0.04P B A =,所以()()()()()11220.40.050.60.040.044||P B P A P B A P A P B A ⨯+⨯==+=,所求概率为()()()()()()1111|0.40.0550.04411|P BA P A P B A P A B P B P B ⨯====.故答案为:51119.A【详解】记事件1:A 放入水果分选机的苹果为大果,事件2:A 放入水果分选机的苹果为小果,记事件:B 水果分选机筛选的苹果为“大果”,则()1910P A =,()2110P A =,()11920P B A =,()2150P B A =,由全概率公式可得()()()()()112291911857102010501000P B P A P B A P A P B A =⋅+⋅=⨯+⨯=,()()()11191985510201000P A B P A P B A ==⨯=,因此,()()()1185510008551000857857P A B P A B P B ==⨯=.故选:A.20.0.18/9500.86/43502743【详解】在该市场中购买甲厂的两个灯泡,则恰有一个是合格品的概率为12C 0.90.10.18⋅⨯=;设A =“购买一个甲厂灯泡”,B =“购买一个一厂灯泡”,C =“灯泡是合格品”,则()0.6P A =,()0.4P B =,(|)0.9P C A =,(|)0.8P C B =,则()()(|)()(|)P C P A P C A P B P C B =⋅+⋅0.60.90.40.80.86=⨯+⨯=.即若在该市场中随机购买一个灯泡,则这个灯泡是合格品的概率为0.86;()(|)(|)()P A P C A P A C P C ⋅=0.60.90.86⨯=54278643==.即若在该市场中购买的一个灯泡是合格品,则这个灯泡是甲厂的概率为2743.故答案为:0.18;0.86;2743.21.(1)0.0525(2)37【详解】(1)设B =“任取一个零件是次品”,A 甲=“零件为甲车床加工”,A 乙=“零件为乙车床加工”,A 丙=“零件为丙车床加工”,则A A A Ω=甲乙丙U U ,且A 甲,A 乙,A 丙,两两互斥,根据题意得()0.25,()0.3,()0.45,P A P A P A ===甲乙丙()|0.06,(|)(|)0.05P B A P B A P B A ===甲乙丙.由全概率公式得()()()|()(|)()((|)P B P A P B A P A P B A P A P B A =++甲甲乙乙丙丙0.250.060.30.050.450.050.0525.=⨯+⨯+⨯=(2)由题意知“如果取到的零件是次品,它是丙车床加工的概率”就是计算在B 发生的条件下事件A 丙发生的概率.()()(|)0.450.053(|).()()0.05257P A B P A P B A P A B P B P B ⨯====丙丙丙丙22.(1)316(2)1380(3)913【详解】(1)事件B =“甲乙两队比赛4局甲队最终获胜”,事件jA =“甲队第j 局获胜”,其中1,2,3,4,j =j A 相互独立.又甲队明星队员M 前四局不出场,故()1,1,2,3,42j P A j ==,123412341234B A A A A A A A A A A A =++,所以()41313C 216P B ⎛⎫== ⎪⎝⎭.(2)设C 为甲3局获得最终胜利,D 为前3局甲队明星队员M 上场比赛,由全概率公式知,()()()()()||P C P C D P D P C D P D =⋅+⋅,因为每名队员上场顺序随机,故()234335C A 3A 5PD ==,()321,55P D =-=()()2313311|,|241628P C D P C D ⎛⎫⎛⎫⎛⎫=⨯=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()3312131658580P C =⨯+⨯=.(3)由(2),()()()()()()33|9165|131380P CD P C D P D P D C P C P C ⨯⋅====.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

word 专业资料-可复制编辑-欢迎下载
条件概率练习题
一、选择题
1.下列式子成立的是( )
A .P (A |
B )=P (B |A ) B .0<P (B |A )<1
C .P (AB )=P (A )·P (B |A )
D .P (A ∩B |A )=P (B ) [答案] C [解析] 由P (B |A )=
P (AB )
P (A )
得P (AB )=P (B |A )·P (A ). 2.在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为( )
A.3
5
B.25
C.1
10
D.5
9
[答案] D [解析] 设第一次摸到的是红球(第二次无限制)为事件A ,则P (A )=6×910×9=3
5,第一次摸得红球,
第二次也摸得红球为事件B ,则P (B )=6×510×9=13,故在第一次摸得红球的条件下第二次也摸得红球的概率为P =
P (B )
P (A )=5
9
,选D. 3.已知P (B |A )=13,P (A )=2
5,则P (AB )等于( )
A.5
6
B.910
C.2
15
D.1
15
[答案] C [解析] 本题主要考查由条件概率公式变形得到的乘法公式,P (AB )=P (B |A )·P (A )=13×25=2
15,故
答案选C.
4.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( ) A.14
B.13
C.12
D.3
5
[答案] B [解析] 抛掷红、黄两颗骰子共有6×6=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,两颗骰子点数之积包含4×6,6×4,6×5,6×6共4个基本事件.
所以其概率为4
361236
=1
3.
5.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )
A.56
B.34
C.23
D.1
3
[答案] C
6.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830
.则在吹东风的条件下下雨的概率为( )
A.9
11
B.811
C.25
D.8
9
[答案] D [解析] 设事件A 表示“该地区四月份下雨”,B 表示“四月份吹东风”,则P (A )=11
30,P (B )=
930,P (AB )=830,从而吹东风的条件下下雨的概率为P (A |B )=P (AB )P (B )=8
30930
=89
. 7.一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是( ) A.23
B.14
C.25
D.1
5
[答案] C [解析] 设A i 表示第i 次(i =1,2)取到白球的事件,因为P (A 1)=25,P (A 1A 2)=25×25=4
25,
在放回取球的情况P (A 2|A 1)=25×2
525
=2
5.
8.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( ) A .1
B.12
C.13
D.1
4
[答案] B [解析] 设A i 表示第i 次(i =1,2)抛出偶数点,则P (A 1)=1836,P (A 1A 2)=1836×9
18,故在第一次抛出偶
数点的概率为P (A 2|A 1)=P (A 1A 2)P (A 1)=1836×
9
181836
=1
2
,故选B.
二、填空题
9.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为________.
[答案] 0.3
10.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.
[答案]
9599[解析] 设“第一次抽到次品”为事件A ,“第二次抽到正品”为事件B ,则P (A )=5100,P (AB )=5100
×9599,所以P (B |A )=P (AB )P (A )=9599
.准确区分事件B |A 与事件AB 的意义是关键. 11.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.
[答案] 1
2
[解析] 一个家庭的两个小孩只有3种可能:{两个都是男孩},{一个是女孩,另一个是男孩},{两
word 专业资料-可复制编辑-欢迎下载
个都是女孩},由题目假定可知这3个基本事件的发生是等可能的.
12.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.
[答案]
33
50
[解析] 根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数共有33个,故所求概率为33
50
.
三、解答题
13.把一枚硬币任意掷两次,事件A =“第一次出现正面”,事件B =“第二次出现正面”,求P (B |A ). [解析] P (B )=P (A )=12,P (AB )=14, P (B |A )=P (AB )P (A )=1
412
=1
2
.
14.盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取出一个球,已知它不是黑球,试求它是黄球的概率.
[解析] 解法一:设“取出的是白球”为事件A ,“取出的是黄球”为事件B ,“取出的是黑球”为事件C ,则P (C )=1025=25,∴P (C )=1-25=35,P (B C )=P (B )=525=1
5∴P (B |C )=P (B C )P (C )=13
.
解法二:已知取出的球不是黑球,则它是黄球的概率P =55+10=13
.
15.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:
(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少?
[解析] 记事件A :最后从2号箱中取出的是红球; 事件B :从1号箱中取出的是红球.
P (B )=42+4=23,P (B -
)=1-P (B )=13. (1)P (A |B )=3+18+1=49
.
(2)∵P (A |B -)=38+1=13, ∴P (A )=P (A ∩B )+P (A ∩B -)=P (A |B )P (B )+P (A |B -)P (B -)=49×23+13×13=11
27.
16.某校高三(1)班有学生40人,其中共青团员15人.全班分成4个小组,第一组有学生10人,共青团员4人.从该班任选一个作学生代表.
(1)求选到的是第一组的学生的概率; (2)已知选到的是共青团员,求他是第一组学生的概率. [解析] 设事件A 表示“选到第一组学生”,事件B 表示“选到共青团员”. (1)由题意,P (A )=1040=1
4
.
(2)要求的是在事件B 发生的条件下,事件A 发生的条件概率P (A |B ).不难理解,在事件B 发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P (A |B )=
415。

相关文档
最新文档