第06讲_年金的终值与现值(上)
年金终值和年金现值的计算

一、年金终值:年金终值是指在一段时间内,定期支付一定金额的现金流,经过一定的利率增长后所积累的总金额。
年金终值计算的目的是评估未来一段时间内现金流的价值。
年金终值的计算可以通过如下的公式进行:FV=P*((1+r)^n-1)/r其中,FV表示年金终值,P表示每期支付的金额,r表示每期支付的利率,n表示支付的期数。
例如,每年支付1000元,利率为5%,持续支付10年,则年金终值的计算为:年金终值的计算方法可以应用于各种不同的现金流情况,如每月、每季度、每半年等的现金支付。
二、年金现值:年金现值是指将未来一段时间内的现金流按照一定的利率折算到现在的价值,将未来的现金流所得到的总金额。
年金现值的计算的目的是评估未来现金流的现值,以便做出更加准确的投资决策。
年金现值的计算可以通过如下的公式进行:PV=P*(1-(1+r)^(-n))/r其中,PV表示年金现值,P表示每期支付的金额,r表示每期支付的利率,n表示支付的期数。
例如,每年支付1000元,利率为5%,持续支付10年,则年金现值的计算为:所以,每年支付1000元,利率为5%,持续支付10年,年金现值为7721.73元。
年金现值的计算方法也可以适用于各种不同的现金流情况。
三、年金终值和年金现值的应用:在投资决策中,投资者可以利用年金终值和年金现值来比较不同投资方案的收益。
通过计算不同方案的年金终值和年金现值,可以判断哪种投资方案更加有利可图,从而做出更加明智的决策。
在退休规划中,个人可以利用年金终值和年金现值来评估自己的退休金需求和储蓄目标。
通过计算所需的年金终值和现值,可以规划合理的退休储蓄计划,确保在退休时有足够的资金支持。
总之,年金终值和年金现值是评估一定时间内或一系列现金流价值的重要工具。
通过运用年金终值和年金现值的计算方法,可以帮助人们做出更加准确的投资决策和退休规划。
资产评估师考试-年金终值和年金现值知识点复习

年金终值和年金现值知识点四:年金终值和年金现值(一)年金的概念和类型1.年金——一定时期内系列等额收付款项1)系列:通常是指多笔款项,而不是一次性款项2)定期:每间隔相等时间(未必是1年)发生一次3)等额:每次发生额相等2.年金终值或现值——系列、定期、等额款项的复利终值或现值的合计数对于具有年金形态的一系列款项,在计算其终值或现值的合计数时,可利用等比数列求和的方法一次性计算出来,而无需计算每一笔款项的终值或现值,然后再加总。
3.年金的类型1)普通年金(后付年金)普通年金:从第一期起,在一定时期内每期期末等额收付的系列款项。
2)预付年金(先付、即付年金)预付年金:从第一期起,在一定时期内每期期初等额收付的系列款项。
3)递延年金递延年金:隔若干期后才开始发生的系列等额收付款项——第一次收付发生在第二期或第二期以后。
递延期(m):自第一期期末(时点1)开始,没有款项发生的期数(第一笔款项发生的期末数减1)。
支付期(n):有款项发生的期数。
4)永续年金永续年金:无限期收付(没有到期日)的年金,没有终值。
(二)普通年金终值与现值1.普通年金终值及偿债基金——互为逆运算1)普通年金终值——普通年金最后一次收付时点的本利和;。
已知:A,i,n,求FA【例题·计算分析题】A矿业公司决定将其一处矿产10年开采权公开拍卖,因此它向世界各国煤炭企业招标开矿。
已知甲公司和乙公司的投标书最具有竞争力,甲公司的投标书显示,如果该公司取得开采权,从获得开采权的第1年开始,每年年末向A公司交纳10亿美元的开采费,直到10年后开采结束。
乙公司的投标书表示,该公司在取得开采权时,直接付给A公司40亿美元,在第8年末再付给60亿美元。
假设A公司要求的年投资回报率为15%,试比较甲乙两公司所支付的开采费终值,判断A公司应接受哪个公司的投标?『正确答案』甲公司支付开采费的终值F=10×(F/A,15%,10)=10×20.304=203.04(亿美元)乙公司支付开采费的终值F=40×(F/P,15%,10)+60×(F/P,15%,2)=40×4.0456+60×1.3225=241.174(亿美元)由于乙公司支付的开采费终值高于甲公司,因此A公司应接受乙公司的投标。
年金现值与终值的比较

年金现值与终值的比较年金现值与终值是财务管理中两个重要的概念,用于评估不同时期的现金流量的价值。
年金现值是指在未来一段时间内产生的现金流量,在当下的价值,而年金终值则是指在未来一段时间内产生的现金流量的未来价值。
在财务决策中,对于年金现值和终值的比较是至关重要的。
本文将就年金现值与终值的比较进行探讨。
首先,我们来看看年金现值的计算方法。
年金现值是指未来一系列现金流量在当下的价值。
计算年金现值的方法可以用现值公式来表示,即PV = PMT × [(1 - (1 + r)^-n) / r],其中PV代表年金现值,PMT代表每期现金流量,r代表折现率,n代表期数。
通过这个公式,我们可以计算出不同时期的现金流量在当下的价值,帮助我们做出更明智的决策。
然后,我们来看看年金终值的计算方法。
年金终值是指未来一系列现金流量在未来的价值。
计算年金终值的方法可以用终值公式来表示,即FV = PV × (1 + r)^n,其中FV代表年金终值,PV代表现值,r代表折现率,n代表期数。
通过这个公式,我们可以计算出未来一系列现金流量的未来价值,帮助我们更好地规划未来的财务安排。
接着,我们来比较年金现值和终值在财务决策中的作用。
年金现值可以帮助我们评估不同时期的现金流量在当下的价值,有助于我们做出投资决策、贷款决策等。
而年金终值则可以帮助我们评估未来一系列现金流量的未来价值,有助于我们规划未来的财务安排和退休计划等。
因此,在财务管理中,年金现值和终值都扮演着重要的角色,需要根据具体情况灵活运用。
最后,需要注意的是,在比较年金现值和终值时,我们应该根据具体情况综合考虑两者的影响因素。
在实际应用中,我们可能需要同时考虑年金现值和终值,综合分析现金流量在不同时间点的价值,以便做出更全面的财务决策。
综上所述,年金现值与终值的比较在财务管理中具有重要意义。
通过对年金现值和终值的计算和比较,我们可以更好地评估现金流量的价值,帮助我们做出明智的财务决策。
年金终值和现值计算

3 延期年金
[例题]:某企业向银行借入一笔款项,银行的 贷款利率是8%,银行规定前10年不用还本付 息,但是从第11年到第20年每年年末偿还本息 1000元,问这笔款项的现值应为多少?
P=1000﹡(P/A, 8%, 10) ﹡(P/F, 8%, 10) =1000﹡6.710﹡0.463=3107元
1.1 普通年金终值
■ 定义:普通年金终值是一定时期内每期 期末等额收付款项的复利终值之和。
■ 令:A——年金数额 i ——利息率 n ——计息期数 F——年金终值
1.1 普通年金终值
■ 计算公式:
F=A﹡ [(1+i)n −1]/i 其中[(1+i)n −1]/i被称作年金终值系数,
记作(F/A, i, n) 普通年金终值,通常借助于“年金终值系 数表”计算。 F=A ﹡(F/A, i, n)
1.3普通年金现值
[例题]:某人出国3年,请人代付房租, 每年年末缴纳10万元,存款利率i=10%, 请问他现在应该存入多少钱。
P=A﹡(P/A, 10%, 3)=10﹡2.487=24.87万元
1.3普通年金现值
[例题]:某公司租入一台生产设备,每年末 须付租金5000元,预计需要租赁3年。若 i=8%,则此公司现在应存入多少元。
4.永续年金
■ [例题]:拟建立一项永久性奖学金,每年计划 颁发1万元奖金,若利率为10%,现在应存入 多少钱? P=1/10%=10万元
■ [例题]:如果有一股优先股,每季分得股息3 元,而利率是年利6%,对于一个准备购买这 种股票的人来说,他愿意出多少前来购买此优 先股? i=6%/4=1.5% P=3/1.5%=200元
■ 公式: A= F/ (F/A, i, n)= F﹡i/[(1+i)n −1]
年金终值和年金现值的计算

六、年金终值和年金现值的计算(一)年金的含义年金是指一定时期内每次等额收付的系列款项。
通常记作A 。
具有两个特点:一是金额相等;二是时间间隔相等。
也可以理解为年金是指等额、定期的系列收支。
在现实工作中年金应用很广泛。
例如,分期付款赊购、分期偿还贷款、发放养老金、分期支付工程款、每年相同的销售收入等,都属于年金收付形式。
老师手写板:①②年、月、半年、2年1年 2年 3年1年 1年 1年(二)年金的种类年金按其每次收付款项发生的时点不同,可以分为四种:普通年金(后付年金):从第一期开始每期期末收款、付款的年金。
预付年金(先付年金、即付年金):从第一期开始每期期初收款、付款的年金。
与普通年金的区别仅在于付款时间的不同。
递延年金:从第二期或第二期以后开始每期期末收付的年金。
永续年金:无限期的普通年金。
注意:各种类型年金之间的关系(1)普通年金和即付年金区别:普通年金的款项收付发生在每期期末,即付年金的款项收付发生在每期期初。
联系:第一期均出现款项收付。
【例题1·单选题】2007年1月1日,甲公司租用一层写字楼作为办公场所,租赁期限3年,每年12月31日支付租金10万元,共支付3年。
该租金有年金的特点,属于( )。
(2010年考试真题)A .普通年金B .即付年金C .递延年金D .永续年金【答案】A【解析】每年年末发生等额年金的是普通年金。
(2)递延年金和永续年金二者都是在普通年金的基础上发展演变起来的,它们都是普通年金的特殊形式。
它们与普通年金的共同点有:它们都是每期期末发生的。
区别在于递延年金前面有一个递延期,也就是前面几期没有现金流,永续年金没有终点。
在年金的四种类型中,最基本的是普通年金,其他类型的年金都可以看成是普通年金的转化形式。
【提示】1.这里的年金收付间隔的时间不一定是1年,可以是半年、一个季度或者一个月等。
A A A A A A A A A A 300万 200万 100万2.这里年金收付的起止时间可以是从任何时点开始,如一年的间隔期,不一定是从1月1日至12月31日,可以是从当年7月1日至次年6月30日。
有关年金_复利_现值_终值的计算

例如:本金为50000元,利率或者投资回报率为3%,投资年限为30年,那么,30年后所获得的利息收入,按复利计算公式来计算就是:50000×(1+3%)30由于,通胀率和利率密切关联,就像是一个硬币的正反两面,所以,复利终值的计算公式也可以用以计算某一特定资金在不同年份的实际价值。
只需将公式中的利率换成通胀率即可。
这均是时间价值问题,简单来讲,今天的100元不等于5年后的100元,那5年后的100元相当于今天的多少呢?这就需要贴现,即用100乘以期限为5,相应利率的复利现值系数,而如果要知道今天的100元相当于5年后的多少呢?则用100乘以复利终值系数,也就是求本利和。
这里的复利终值系数和复利现值系数都是在复利计算下推出的。
(一次性收付款)年金是每隔相同时间就发生相等金额的收付款,比如房租,如果发生时间在每期期末,则称为普通年金,如果以后5年中每年末可以得到100元,相当于今天能得多少(从时间价值考虑,肯定不是500元)就要用100乘以普通年金现值系数 ,反之,比如每年末存银行100元,在复利下5年能得到多少?则用100乘以年金终值系数复利终值系数、复利现值系数是针对一次性收付款,而年金终值系数和年金现值系数是系列收付款,而且是特殊的系列收付款不知道明白没有,最好能看看财务管理中时间价值章节终值的计算终值是指货币资金未来的价值,即一定量的资金在将来某一时点的价值,表现为本利和。
单利终值的计算公式:f=p(1+r×n)n复利终值的计算公式:f = p(1+r)式中f表示终值;p表示本金;r表示年利率;n表示计息年数其中,(1+r)n称为复利终值系数,记为fvr,n,可通过复利终值系数表查得。
现值的计算现值是指货币资金的现在价值,即将来某一时点的一定资金折合成现在的价值。
单利现值的计算公式:复利现值的计算公式:式中p表示现值;f表示未来某一时点发生金额;r表示年利率;n表示计息年数其中称为复利现值系数,记为pvr,n,可通过复利现值系数表查得。
年金终值和现值得计算

年金是指一定时期内定期支付的固定金额的现金流,可以分为年金的终值和现值两种计算方式。
一、年金的终值计算年金的终值是指在一定时期内,以固定利率计算,连续不断地进行定期支付的现金流的总金额。
假设有一个年金,每年支付2000元,年利率为5%,计算5年后的年金终值需要使用以下公式:FV=PMT×[(1+r)^n-1]/r其中FV表示年金的终值;PMT表示每年支付的金额;r表示年利率;n表示年数。
将数据代入计算公式,得到年金的终值:FV=2000×[(1+0.05)^5-1]/0.05=2000×[1.276-1]/0.05=2000×0.276/0.05二、年金的现值计算年金的现值是指在一定时期内,以固定利率计算,连续不断地定期支付的现金流的当前金额。
假设有一个年金,每年支付2000元,年利率为5%,计算当前的年金现值需要使用以下公式:PV=PMT×[1-(1+r)^-n]/r其中PV表示年金的现值;PMT表示每年支付的金额;r表示年利率;n表示年数。
将数据代入计算公式,得到年金的现值:PV=2000×[1-(1+0.05)^-5]/0.05=2000×[1-0.7835]/0.05=2000×0.2165/0.05=8659所以,当前该年金的现值为8659元。
年金的终值和现值的计算是财务管理中常用的计算方法,可以帮助人们进行投资决策和规划个人财务。
通过计算年金的终值,可以了解到未来收益的总金额,帮助人们判断投资的价值和收益能力;而通过计算年金的现值,可以了解到当前年金的价值,帮助人们做出合理的投资决策。
在实际应用中,可以使用电子表格软件(如Excel)中的相应函数或者金融计算器来进行年金的终值和现值的计算,这样更加简便和快捷。
不过,理解计算公式的推导过程对于掌握计算方法和理解计算结果的正确性是很重要的。
年金终值和现值的计算

年金是指在一定期限内定期支付的一系列等额现金流。
年金可以分为两类:年金终值和年金现值。
年金终值是指在未来一些特定时间点的一系列等额现金流的总和。
计算年金终值的公式如下:FV=PMT*[(1+r)^n-1]/r其中FV是年金终值PMT是每期支付的金额r是每期的利率n是支付期数。
我们可以通过以下例子来说明如何计算年金终值:假设你决定每个月从现在开始存入500元,存款期限是10年,年利率是5%。
现在我们来计算这个年金的终值。
PMT=500,r=0.05/12,n=10*12=120。
带入公式计算得到:FV=500*[(1+0.05/12)^120-1]/(0.05/12)年金现值是指将未来的一系列等额现金流折算到现在的总金额。
计算年金现值的公式如下:PV=PMT*[1-(1+r)^(-n)]/r其中PV是年金现值PMT是每期支付的金额r是每期的利率n是支付期数。
以下是一个年金现值的实例:假设你决定每个月从现在开始存入500元,存款期限是10年,年利率是5%。
现在我们来计算这个年金的现值。
PMT=500,r=0.05/12,n=10*12=120。
带入公式计算得到:PV=500*[1-(1+0.05/12)^(-120)]/(0.05/12)在计算年金终值和现值时,需要注意以下几个要点:1.利率的表示方式:通常利率是年利率,需要根据支付频率进行调整。
例如,如果利率是年利率,而支付频率是每个月,则利率需要除以122.支付期数的计算:支付期数等于存款期限乘以支付频率。
例如,如果存款期限是10年,支付频率是每个月,则支付期数为10乘以12,即120期。
3.利率和支付期数的单位要一致:利率和支付期数的单位要保持一致,比如,如果利率是年利率,支付期数应该是年份;如果利率是月利率,支付期数应该是月份。
4.汇率调整:如果计算的是国际性的年金,涉及到不同货币的转换,需要根据汇率进行调整。
综上所述,年金终值和现值的计算可以通过相应的公式进行完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(三)年金
1.年金的含义P24
年金(annuity)是指间隔期相等的系列等额收付款。
【手写板】
同时具备三个要素:①每次金额相等;②固定间隔期;③多笔。
2.年金的种类
普通年金:从第一期开始每期期末收款或付款的年金。
预付年金:从第一期开始每期期初收款或付款的年金。
递延年金:在第二期或第二期以后收付的年金。
永续年金:无限期的普通年金。
(四)年金的终值和现值
1.普通年金的终值与现值
(1)普通年金终值
【手写板】
F A=A×(1+i)0+A×(1+i)1+0+A×(1+i)2+……+A×(1+i)n+A×(1+i)n-1
式中:被称为年金终值系数,用符号表示(F/A,i,n)。
年金终值系数表(F/A,i,n)
利率
1%2%3%4%5%期数
5 5.1010 5.2040 5.3091 5.4163 5.5256
6 6.1520 6.3081 6.4684 6.6630 6.8091
77.21357.43437.66257.89838.1420
88.28578.58308.89239.21429.5491
99.36859.754610.15910.58311.027
【例题•计算题】小王计划每年末存入银行1000元,若存款利率为2%,问第9年末账面的本利和为多少?【解析】F=1000×(F/A,2%,9)=1000×9.7546=9754.6(元)。
(2)普通年金现值
P=A×(1+i)-1+A×(1+i)-2+……..+A×(1+i)-n
经计算可得:
式中:被称为年金现值系数,
记作(P/A,i,n)。
年金现值系数表(P/A,i,n)
期限
4%5%6%7%8%利率
6 5.2421 5.075
7 4.9173 4.7665 4.6229
7 6.0021 5.7864 5.5824 5.3893 5.2064
8 6.7327 6.4632 6.2098 5.9713 5.7466
97.43537.1078 6.8017 6.5152 6.2469
108.11097.72177.36017.0236 6.7101
【例题•计算题】某投资項目于2019年年初动工,假设当年投产,从投产之日起每年年末可得收益40000元。
按年利率6%计算,计算预期10年收益的现值。
【解析】P=40000×(P/A,6%,10)=40000×7.3601=294404(元)。
总结
【手写板】
终值(1+i)n现值(1+i)-n
一次性款项10×复利终值系数(F/P,i,n)10×复利终值系数(P/F,i,n)
普通年金10×年金终值系数(F/A,i,n)10×年金现值系数(P/A,i,n)
【例题•计算题】
(1)某人存入银行10万元,若存款利率4%,第5年年末取出多少本利和?
(2)某人计划每年年末存入银行10万元,连续存5年,若存款利率4%,第5年年末账面的本利和为多少?
(3)某人希望未来第5年年末可以取出10万元的本利和,若存款利率4%,问现在应存入银行多少钱?
(4)某人希望未来5年,每年年末都可以取出10万元,若存款利率4%,问现在应存入银行多少钱?
【总结】。