人教版八年级上册数学第12章——12.2《三角形全等判定》同步练习及(含答案)(3)

合集下载

八年级数学上册《第十二章 全等三角形》同步练习题及答案(人教版)

八年级数学上册《第十二章 全等三角形》同步练习题及答案(人教版)

八年级数学上册《第十二章全等三角形》同步练习题及答案(人教版)1、全等三角形的概念:(1)能够完全重合的两个三角形叫做全等三角形。

(2)把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

2、全等三角形的性质:(1)全等三角形的对应边相等;(2)全等三角形的对应角相等。

3、三角形全等的判定:(1)边边边(SSS):三边分别相等的两个三角形全等。

(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。

(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。

(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。

(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。

一、单选题1.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=()A.95°B.120°C.55°D.60°2.如图,点B、F、C、E在一条直线上,AB∥DE,AC∥DF,那么添加下列一个条件后,仍无法判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.BF=EC3.如图,已知,要说明,还需从下列条件①,②,③,④中选一个,则正确的选法个数是()A.1个B.2个C.3个D.4个4.如图,将两块直角三角尺的直角顶点O叠放在一起,若∠AOD=130°,则∠BOC的度数为()A.40°B.45°C.50°D.60°5.如图,AB=AD,∠BAC=∠DAC=25°,则∠BCA的度数为()A.25°B.50°C.65°D.75°6.如图,方格纸中有四个相同的正方形,则∠1+∠2+∠3为()A.90°B.120°C.135°D.150°7.如图,是的平分线,D,E,F分别是射线、射线、射线上的点,连接.若添加一个条件使,则这个条件可以为()A.B.C.D.8.如图,已知的周长是16,MB和MC分别平分∠ABC和∠ACB,过点M作BC的垂线交BC于点D,且MD=4,则的面积是()A.64 B.48 C.32 D.42二、填空题9.如图,已知∠ACB=∠DBC,请增加一个条件,使△ABC≌△DCB,你添加的条件为.10.如图,AC=DB,AO=DO,则、两点之间的距离为.11.如图,点在等边三角形内部, AD=AE ,若,则需添加一个条件:.12.如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是.13.如图,在中,AB=AC,分别过点B、C作经过点A的直线的垂线段、CE,若厘米,厘米,则的长为.三、解答题14.如图,在△ABC中,AC=BC,直线l经过点C,过A、B两点分别作直线l的垂线AE、BF,垂足分别为E、F,AE=CF,求证:∠ACB=90°15.如图,已知DE⊥AE,DF⊥AF,且DE=DF,B、C分别是AE、AF上的点,AB=AC求证:DB=DC16.如图,点B,F,C,E在一条直线上,FB=CE,AB//ED,AC//FD,交于O,求证:OA=OD.17.如图,在中,点D是线段上一点,以为腰作等腰直角,使于点G,交于点F.求证:.18.如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD=BE.(1)△ABD和△ECB全等吗?请说明理由;(2)若∠BDC=65°,求∠ADB的度数.参考答案1.B2.B3.C4.C5.D6.C7.A8.C9.AC=BD(答案不唯一)10.5511.或或或等12.213.14厘米14.证明:在Rt△ACE和Rt△CBF中∴Rt△ACE≌Rt△CBF(HL)∴∠EAC=∠BCF∵∠EAC+∠ACE=90°∴∠ACE+∠BCF=90°∴∠ACB=180°-90°=90°.15.解:∵DE⊥AE,DF⊥AF,且DE=DF∴AD平分∠FAE∴∠CAD=∠BAD又AD=AD,AB=AC∴△ACD≌△ABD∴DB=DC.16.证明:∴∵∴∵∴在和中∴∴在和中∴∴.17.证明:∵∴∵,即∴∴∵∴∴∵∴.18.(1)解:△ABD和△ECB全等,理由如下:∵AD∥BC∴∠ADB=∠CBE在△ADB和△EBC中∴△ADB≌△EBC(ASA);(2)解:∵△ADB≌△EBC ∴BC=BD∴∠BDC=∠BCD=65°∴∠DBC=50°∴∠ADB=50°.。

八年级数学上册《第十二章 三角形全等的判定》同步练习题及答案(人教版)

八年级数学上册《第十二章 三角形全等的判定》同步练习题及答案(人教版)

八年级数学上册《第十二章三角形全等的判定》同步练习题及答案(人教版) 一、单选题1.如图,AB//DE,AB=DE增加下列一个条件,仍不能判定ΔABC≅ΔDEF的是( )A.∠A=∠D B.BE=CF C.AC=DF D.∠ACB=∠F2.根据下列已知条件,不能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,AC=DF B.AB=DE,BC=EFC.∠A=∠D,∠B=∠E,AB=DE D.AB=DE,BC=EF3.下列命题正确的是()A.两个等边三角形全等B.有两边及一个角对应相等的两个三角形全等C.斜边和一条直角边分别相等的两个直角三角形全等D.有一个锐角相等的两个直角三角形全等4.如图,已知∠ADB=∠BCA=90°,添加下列条件后不能使△ABD≌△BAC的是()A.AD=BC B.AC=BDC.∠DAC=∠CBD D.∠ABD=∠BAC5.如图BD⊥AC,CE⊥AB,垂足分别为D,E,BD与CE交于点O,且OD=OE,下列结论错误的是()A.∠OAB=∠OAC B.AE=ADC.∠B=∠C D.OE垂直平分AB6.如图∠A=∠D=90°,给出下列条件:①AB=DC②OB=OC③∠ABC=∠DCB④∠ABO=∠DCO从中添加一个条件后,能证明△ABC≌△DCB的是()A.①②③B.②③④C.①②④D.①③④7.如图,在△ABC中∠C=90°,D是BC上一点,DE⊥AB于点E,AE=AC连接AD,若BC=8,则BD+DE 等于()A.6 B.7 C.8 D.98.如图,在△ABC和△DBC中∠ACB=∠DBC=90°,E是BC的中点DE⊥AB,垂足为点F,且AB=DE.若BD=8cm,则AC的长为( )A.2cm B.3cm C.4cm D.6cm二、填空题9.如图,点C,F在BE线段上,∠ABC=∠DEF,BC=EF,请你添加一个条件,使得△ABC≌△DEF,你添加的条件是(只需填一个答案即可).10.如图,已知△ABC中,AB=AC,要使△ABD≌ACE,则只需添加一个适当的条件是.(只填一个即可)11.如图,AE平分∠CAD,点B在射线AE上,若使△ABC≌△ABD,则还需添加的一个条件是(只填一个即可).12.如图,已知AD,CE是△ABC的两条高线,AD=CE,∠CAD=25°,则∠OCD=度.13.如图,已知AD//BC,点E为CD上一点,AE,BE分别平分∠DAB,∠CBA若AE=3cm,BE=4cm 则四边形ABCD的面积是.三、解答题14.如图所示,已知在△ABC中∠BAC=90°,AB=AC直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为D,E,求证:DE=BD+CE.15.如图,在ΔABC中,D是BC的中点DE⊥AB,DF⊥AC垂足分别是E,F,BE=CF .求证:AD平分∠BAC .16.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是∠DAB的平分线,请你说明它的道理.17.如图,已知△ABC中,AB=BC=AC,∠ABC=∠BCA=∠CAB=60°,M、N分别在△ABC的BC、AC边上,且BM=CN,AM、BN交于点Q.求证:∠BQM=60°.18.如图,△ABC与△DCB中,AC与BD交于点E,且AE=DE,∠A=∠D.(1)BE与CE相等吗?请说明理由;(2)若∠BEC=130°,求∠EBC的度数.19.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=2,CF=4时,求AC的长.20.已知△ABC和△ADE,AB=AD ∠BAD=∠CAE,∠B=∠D,AD与BC交与点P,点C在DE上.(1)求证:BC=DE(2)若∠B=30°,∠APC=70°①求∠E的度数②求证:CP=CE参考答案1.C2.B3.C4.C5.D6.A7.C8.C9.AB=DE(或∠A=∠D或∠ACB=∠DFE)10.BD=CE11.AC=AD(答案不唯一)12.4013.12cm214.证明:∵BD⊥直线m,CE⊥直线m ∴∠BDA=∠CEA=90°∵∠BAC=90°∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°∴∠CAE=∠ABD在△ADB和△CEA中{∠BDA=∠CEA∠ABD=∠CAEAB=AC∴△ADB≌△CEA(AAS)∴BD=AE∴DE=AE+AD=BD+CE.15.证明:∵D是BC的中点∴BD=CD .∵DE⊥AB,DF⊥AC∴∠DEB=∠DFC=90° .在Rt△DEB和Rt△DFC中∴Rt△DEB≅Rt△DFC(HL)∴DE=DF .∵DE⊥AB,DF⊥AC∴点D在∠BAC的平分线上∴AD平分∠BAC . 16.解:在△ACD和△ACB中AD=AB,CD=CB,AC=AC.∴△ACD≌△ACB.∴∠DAC=∠BAC∴AE是∠DAB的平分线. 17.解:在△ABM与△BCN中{AB=BC∠ABM=∠C=60°BM=CN∴△ABM≌△BCN(SAS)∴∠BAM=∠CBN∵∠BQM=∠ABN+∠BAM∴∠BQM=∠ABN+∠CBN=∠ABC=60°.18.(1)解:BE=CE.理由:在△ABE和△DCE中∵∠AEB=∠DEC,∠A=∠D,AE=DE∴△ABE≌△DCE(ASA)∴BE=CE;(2)解:由(1)知BE=CE∴∠EBC=∠ECB∵∠EBC+∠ECB+∠BEC=180°,∠BEC=130°∴∠EBC+∠ECB=50°∴∠EBC=25°.19.(1)证明:∵CF∥AB.∴∠B=∠FCD,∠BED=∠F ∵AD是BC边上的中线,∴BD=CD在△BDE 和△CDF 中∴△BDE ≌△CDF( AAS)(2)解:∵△BDE ≌△CDF∴BE=CF=4,∴AB=AE+BE=2+4=6∵AD ⊥BC ,BD=CD .∴AD 垂直平分BC ,∴AC=AB= 6.20.(1)证明:∵∠BAD =∠CAE∴∠BAD +∠CAP =∠CAE +∠CAP即∠BAC=∠DAE在△ABC 和△ADE 中{∠B =∠DAB =AD ∠BAC =∠DAE∴△ABC ≌△ADE (ASA )∴BC=DE ;(2)解:①∵∠B =30°,∠APC =70° ∴∠BAD=70°-30°=40°∴∠CAE=∠BAD=40°.∵△ABC ≌△ADE∴AC=AE∴∠E=∠ACE= 180∘−40∘2=70∘ ;②∵∠APC =70° ,∠E=∠ACE =70°∴∠APC=∠E=∠ACE =70°.∵△ABC ≌△ADE∴∠ACP=∠E =70°∴∠APC=∠E=∠ACE =∠ACP =70°.在△ACP 和△ACE 中{∠APC =∠E∠ACP =∠ACE AC =AC∴△ACP ≌△ACE (AAS )∴CP=CE.。

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)一选择题1.下列条件不能判定两个直角三角形全等的是( )A. 斜边和一直角边对应相等B. 两个锐角对应相等C. 一锐角和斜边对应相等D. 两条直角边对应相等2.一块三角形玻璃被打碎后店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃能够全等的依据是( )A. ASAB. AASC. SASD. SSS3.如图OD⊥AB于点D OP⊥AC于点P且OD=OP则△AOD与△AOP全等的理由是( )A. SSSB. ASAC. SSAD. HL4.如图为6个边长相等的正方形的组合图形则∠1+∠2+∠3的度数为( )A. 90°B. 135°C. 150°D. 180°5.如图AC是△ABC和△ADC的公共边下列条件中不能判定△ABC≌△ADC的是( )A. AB=AD,∠2=∠1B. AB=AD,∠3=∠4C. ∠2=∠1,∠3=∠4D. ∠2=∠16.如图已知点B、E、C、F在同一直线上且BE=CF,∠ABC=∠DEF那么添加一个条件后.仍无法判定△ABC≌△DEF的是( )A. AC=DFB. AB=DEC. AC//DFD. ∠A=∠D7.如图点C D在AB同侧∠CAB=∠DBA下列条件中不能判定△ABD≌△BAC的是( )A. ∠D=∠CB. BD=ACC. AD=BCD. ∠CAD=∠DBC8.如图D是AB上一点DF交AC于点E,DE=FE,FC//AB若AB=4,CF=3则BD的长是( )A. 0.5B. 1C. 1.5D. 29.如图△ABC中AB=AC,AD是角平分线BE=CF则下列说法中正确的有( )①AD平分∠EDF;②△EBD≌△FCD;③BD=CD;④AD⊥BC.A. 1个B. 2个C. 3个D. 4个10.两组邻边分别相等的四边形叫做“筝形”如图四边形ABCD是一个筝形其中AD=CD AB=CB 在探究筝形的性质时得到如下结论:③四边形ABCD的面积其中正确的结论有.( )A. 0个B. 1个C. 2个D. 3个二填空题11.如图在3×3的正方形网格中∠1+∠2=_______度.12.如图已知AB=AC,EB=EC,AE的延长线交BC于D则图中全等的三角形共有______对.13.如图所示的网格是正方形网格点A,B,C,D均落在格点上则∠BAC+∠ACD=____°.14.如图∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4则AC=______.15.如图在△ABC和△DEF中点B,F,C,E在同一直线上BF=CE,AB//DE请添加一个条件使△ABC≌△DEF这个添加的条件可以是______(只需写一个不添加辅助线).16.如图在△ABC中高AD和BE交于点H且DH=DC则∠ABC=°.17.如图在四边形ABCD中AB=AD,∠BAD=∠BCD=90∘连接AC若AC=6则四边形ABCD的面积为.18.如图∠C=90°,AC=20,BC=10,AX⊥AC点P和点Q同时从点A出发分别在线段AC和射线AX上运动且AB=PQ当AP=______时以点A,P,Q为顶点的三角形与△ABC全等.19.如图△ABC中AB=AC,AD⊥BC于D点DE⊥AB于点E BF⊥AC于点F,DE=3cm则BF=cm.20.如图所示∠E=∠F=90∘,∠B=∠C,AE=AF结论:①EM=FN②AF//EB③∠FAN=∠EAM④△ACN≌△ABM.其中正确的有______ .三解答题21.如图点A,D,C,F在同一条直线上AD=CF,AB=DE,AB//DE.求证:BC=EF.22.如图点C、F、E、B在一条直线上∠CFD=∠BEA,CE=BF,DF=AE写出CD与AB之间的关系并证明你的结论.23.如图B、C、E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE24.已知:如图在△ABC中BE⊥AC垂足为点E,CD⊥AB垂足为点D且BD=CE.求证:∠ABC=∠ACB.25.如图在△ABC中AB=CB,∠ABC=90°,D为AB延长线上一点点E在BC边上且BE=BD 连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°求∠BDC的度数.答案和解析1.【答案】B【解析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A.符合判定HL故本选项正确不符合题意;B.全等三角形的判定必须有边的参与故本选项错误符合题意;C.符合判定AAS故本选项正确不符合题意;D.符合判定SAS故本选项正确不符合题意.故选B.2.【答案】A【解析】本题考查了全等三角形的判定:全等三角形的判定方法中选用哪一种方法取决于题目中的已知条件若已知两边对应相等则找它们的夹角或第三边;若已知两角对应相等则必须再找一组对边对应相等若已知一边一角则找另一组角或找这个角的另一组对应邻边.利用全等三角形判定方法进行判断.【解答】解:这片碎玻璃的两个角和这两个角所夹的边确定从而可根据“ASA”重新配一块与原来全等的三角形玻璃.故选:A.3.【答案】D【解析】本题考查了直角三角形全等的判定的知识点解题关键点是熟练掌握直角三角形全等的判定方法HL.根据直角三角形全等的判别方法HL可证△AOD≌△AOP.【解答】解:∵OD⊥AB且OP⊥AC∴△AOD和△AOP是直角三角形又∵OD=OP且AO=AO∴△AOD≌△AOP(HL).故选D.4.【答案】B【解析】本题考查了全等图形准确识图并判断出全等的三角形是解题的关键标注字母利用“边角边”证明△ABC和△DEA全等根据全等三角形对应角相等可得∠1=∠4从而求出∠1+∠3=90°再判断出∠2=45°进而计算即可得解.【解答】解:如图在△ABC和△DEA中{AB=DE∠ABC=∠DEA=90°BC=EA,∴△ABC≌△DEA(SAS)∴∠1=∠4∵∠3+∠4=90°∴∠1+∠3=90°又∵∠2=45°∴∠1+∠2+∠3=90°+45°=135°.故选B.5.【答案】A【解析】本题考查三角形全等的判定方法判定两个三角形全等的一般方法有:SSS SAS ASA AAS等.利用全等三角形的判定定理:SSS SAS ASA AAS等逐项进行分析即可.判定两个三角形全等时必须有边的参与若有两边一角对应相等时这个角必须是两边的夹角.【解答】解:A.AB=AD∠2=∠1再加上公共边AC=AC不能判定△ABC≌△ADC故此选项符合题意;B.AB=AD∠3=∠4再加上公共边AC=AC可利用SAS判定△ABC≌△ADC故此选项不合题意;C.∠2=∠1∠3=∠4再加上公共边AC=AC可利用ASA判定△ABC≌△ADC故此选项不合题意;D.∠2=∠1∠B=∠D再加上公共边AC=AC可利用AAS判定△ABC≌△ADC故此选项不合题意;故选A.6.【答案】A【解析】解:∵BE=CF∴BE+EC=EC+CF即BC=EF且∠ABC=∠DEF∴当AC=DF时满足SSA无法判定△ABC≌△DEF故A不能;当AB=DE时满足SAS可以判定△ABC≌△DEF故B可以;当AC//DF时可得∠ACB=∠F满足ASA可以判定△ABC≌△DEF故C可以;当∠A=∠D时满足AAS可以判定△ABC≌△DEF故D可以;故选:A.根据全等三角形的判定方法逐项判断即可.本题主要考查全等三角形的判定方法 掌握全等三角形的判定方法是解题的关键 即SSS SAS ASA AAS 和HL .7.【答案】C【解析】本题考查了全等三角形的判定定理的应用 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 符合SSA 和AAA 不能推出两三角形全等. 根据图形知道隐含条件BC =BC 根据全等三角形的判定定理逐个判断即可.【解答】解:A 添加条件∠D =∠C 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理AAS 能推出△ABD ≌△BAC 故本选项错误;B 添加条件BD =AC 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理SAS 能推出△ABD ≌△BAC 故本选项错误;C 添加条件AD =BC 还有已知条件∠CAB =∠DBA BC =BC 不符合全等三角形的判定定理 不能推出△ABD ≌△BAC 故本选项正确;D ∵∠CAB =∠DBA ∠CAD =∠DBC∴∠DAB =∠CBA 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理ASA 能推出△ABD ≌△BAC 故本选项错误;故选C .8.【答案】B【解析】解:∵CF//AB∴∠A =∠FCE ∠ADE =∠F∴在△ADE 和△CFE 中{∠A =∠FCE∠ADE =∠F DE =FE∴△ADE ≌△CFE(AAS)∴AD =CF =3∵AB =4∴DB =AB −AD =4−3=1.故选B .根据平行线的性质 得出∠A =∠FCE ∠ADE =∠F 再根据全等三角形的判定证明△ADE ≌△CFE得出AD=CF根据AB=4CF=3即可求线段DB的长.本题考查了全等三角形的性质和判定平行线的性质的应用能判定△ADE≌△FCE是解此题的关键解题时注意运用全等三角形的对应边相等对应角相等.9.【答案】C【解析】解:∵AB=AC AD平分∠BAC∴BD=DC AD⊥BC故③④正确在RT△BDE和RT△CDF中{BE=CFBD=CD∴RT△BDE≌RT△CDF故②正确∵AD⊥BC∴∠ADC=∠CDF=90°∴BC平分∠EDF.故①错误.故选:C.根据等腰三角形的三线合一可以判断③④正确根据HL可以证明RT△BDE≌RT△CDF可以判断②正确由BC平分∠EDF得出①错误故不难得到结论.本题考查全等三角形的判定和性质等腰三角形的性质角平分线的定义等知识解题的关键是等腰三角形三线合一的性质的应用属于中考常考题型.10.【答案】C【解析】此题考查全等三角形的判定和性质关键是根据SSS证明△ABD与全等和利用SAS证明与全等.【解答】解:如图在△ABD与中故①正确;∴∠ADB=∠CDB在与中∴∠AOD=∠COD=90°∴AC⊥DB故②正确;故③错误.故选C.11.【答案】90【解析】本题考查了全等三角形的判定和性质能看懂图形是解题的关键.首先判定两个三角形全等然后根据全等三角形的性质及直角三角形的性质即可判断得出结论.【解答】解:如图所示:∵∠ACB=∠DCE=90°AC=DC BC=EC∴Rt△ACB≌Rt△DCE∴∠2=∠EDC在Rt△DCE中∠1+∠EDC=90°∴∠1+∠2=90°.12.【答案】3【解析】解:①△ABE≌△ACE∵AB=AC EB=EC∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE∴∠EBD=∠ECD∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.在线段AD的两旁猜想所有全等三角形再利用全等三角形的判断方法进行判定三对全等三角形是△ABE≌△ACE△EBD≌△ECD△ABD≌△ACD.本题考查学生观察猜想全等三角形的能力同时也要求会运用全等三角形的几种判断方法进行判断.13.【答案】90【解析】【解答】解:在△DCE和△ABD中∵{CE=BD=1∠E=∠ADB=90°DE=AD=3∴△DCE≌△ABD(SAS)∴∠CDE =∠DAB∵∠CDE +∠ADC =∠ADC +∠DAB =90°∴∠AFD =90°∴∠BAC +∠ACD =90°故【答案】90.【分析】本题网格型问题 考查了三角形全等的性质和判定及直角三角形各角的关系 本题构建全等三角形是关键.证明△DCE ≌△ABD(SAS) 得∠CDE =∠DAB 根据同角的余角相等和三角形的内角和可得结论. 14.【答案】6【解析】本题考查了全等三角形的判定与性质有关知识 由AAS 证明△ABC ≌△EFC 得出对应边相等AC =EC BC =CF =4 求出EC 即可得出AC 的长.【解答】解:∵AC ⊥BE∴∠ACB =∠ECF =90°在△ABC 和△EFC 中{∠ACB =∠ECF ∠A =∠E AB =EF∴△ABC ≌△EFC(AAS)∴AC =EC BC =CF =4∵EC =BE −BC =10−4=6∴AC =EC =6;故答案为6. 15.【答案】AB =ED【解析】解:添加AB =ED∵BF =CE∴BF +FC =CE +FC即BC =EF∵AB//DE∴∠B =∠E在△ABC 和△DEF 中{AB =ED∠B =∠E CB =FE,∴△ABC ≌△DEF(SAS)故【答案】AB =ED .根据等式的性质可得BC =EF 根据平行线的性质可得∠B =∠E 再添加AB =ED 可利用SAS 判定△ABC ≌△DEF .本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL .注意:AAA SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.16.【答案】45【解析】本题考查了全等三角形的判定与性质 余角的性质 等腰直角三角形 由三角形的高得到∠ADB =∠ADC =∠BEC =90° 结合余角的性质得到∠HBD =∠CAD 易证△HBD ≌△CAD 得到AD =BD 根据等腰直角三角形得到∠ABD =45° 即可得出结论.【解答】解:∵AD ⊥BC BE ⊥AC∴∠ADB =∠ADC =∠BEC =90°∴∠HBD +∠C =∠CAD +∠C =90°∴∠HBD =∠CAD∵在△HBD 和△CAD 中{∠HBD =∠CAD,HDB =∠CDA,DH =DC,∴△HBD ≌△CAD(AAS)∴AD =BD∵∠ADB =90°∴△ABD 为等腰直角三角形∴∠ABD =45° 即∠ABC =45°故答案为45.17.【答案】18【解析】本题考查全等三角形的判定和性质和三角形的面积.过点A 作AE ⊥AC 交CD 的延长线于点E.做出辅助线是解答本题的关键.过点A 作AE ⊥AC 交CD 的延长线于点E 证明△AED ≌△ACB 将四边形ABCD 的面积转化为△ACE 的面积 利用三角形面积公式求解即可.【解答】解:过点A 作AE ⊥AC 交CD 的延长线于点E∵∠EAC =∠BAD =90°∴∠EAD =∠CAB∵∠BAD =∠BCD =90∘∴∠ADC +∠ABC =360°−(∠BAD +∠BCD)=180°又∵∠ADE +∠ADC =180∘∴∠ADE =∠ABC在△AED 与△ACB 中{∠EAD =∠CABAD =AB ∠ADE =∠ABC∴△AED ≌△ACB(ASA)∴AE =AC =6 四边形ABCD 的面积等于△ACE 的面积故S 四边形ABCD =12AC ⋅AE =12×6×6=18.故答案为18. 18.【答案】10或20【解析】解:∵AX ⊥AC∴∠PAQ =90°∴∠C=∠PAQ=90°分两种情况:①当AP=BC=10时在Rt△ABC和Rt△QPA中{AB=PQBC=AP∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=20时在△ABC和△PQA中{AB=PQAP=AC∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时△ABC与△APQ全等;故【答案】10或20.分两种情况:①当AP=BC=10时;②当AP=CA=20时;由HL证明Rt△ABC≌Rt△PQA(HL);即可得出结果.本题考查了直角三角形全等的判定方法;熟练掌握直角三角形全等的判定方法本题需要分类讨论难度适中.19.【答案】6【解析】本题考查了全等三角形的判定与性质三角形的面积利用面积公式得出等式是解题的关键.先利用HL证明Rt△ADB≌Rt△ADC得出S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB又S△ABC=12AC⋅BF将AC=AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中{AB=ACAD=AD ∴Rt△ADB≌Rt△ADC∴S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB∵S△ABC=12AC⋅BF∴12AC⋅BF=3AB ∵AC=AB∴12BF=3cm∴BF=6cm.故【答案】6.20.【答案】①③④【解析】此题考查了全等三角形的性质与判别考查了学生根据图形分析问题解决问题的能力.其中全等三角形的判别方法有:SSS SAS ASA AAS及HL.学生应根据图形及已知的条件选择合适的证明全等的方法.由∠E=∠F=90°∠B=∠C AE=AF利用“AAS”得到△ABE与△ACF全等根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等AE与AF相等AB与AC相等然后在等式∠EAB=∠FAC两边都减去∠MAN得到∠EAM与∠FAN相等然后再由∠E=∠F=90°AE=AF∠EAM=∠FAN利用“ASA”得到△AEM与△AFN全等利用全等三角形的对应边相等对应角相等得到选项①和③正确;然后再∠C=∠B AC=AB∠CAN=∠BAM利用“ASA”得到△ACN与△ABM全等故选项④正确;若选项②正确得到∠F与∠BDN相等且都为90°而∠BDN不一定为90°故②错误.【解答】解:在△ABE和△ACF中∠E=∠F=90°AE=AF∠B=∠C∴△ABE≌△ACF(AAS)∴∠EAB=∠FAC AE=AF AB=AC∴∠EAB−∠MAN=∠FAC−∠NAM即∠EAM=∠FAN在△AEM和△AFN中∠E=∠F=90°AE=AF∠EAM=∠FAN∴△AEM≌△AFN(ASA)∴EM=FN∠FAN=∠EAM故选项①和③正确;在△ACN和△ABM中∠C=∠B∠CAN=∠BAM AC=AB∴△ACN≌△ABM(ASA)故选项④正确;若AF//EB∠F=∠BDN=90°而∠BDN不一定为90°故②错误则正确的选项有:①③④.21.【答案】解:∵AB//DE∴∠A =∠EDF∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中{AB =DE∠A =∠EDF AC =DF∴△ABC ≌△DEF(SAS)∴BC =EF .【解析】先证明AC =DF 再根据SAS 推出△ABC ≌△DEF 便可得结论.本题考查了全等三角形的判定和性质的应用 证明三角形的边相等 往往转化证明三角形的全等. 22.【答案】解:CD//AB CD =AB理由是:∵CE =BF∴CE −EF =BF −EF∴CF =BE在△CFD 和△BEA 中{CF =BE∠CFD =∠BEA DF =AE∴△CFD ≌△BEA(SAS)∴CD =AB ∠C =∠B∴CD//AB .【解析】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角对应相等的重要工具.在判定三角形全等时 关键是选择恰当的判定条件. 求出CF =BE 根据SAS 证△CFD ≌△BEA 推出CD =AB ∠C =∠B 根据平行线的判定推出CD//AB .23.【答案】证明:∵AC//DE∴∠ACB =∠E ∠ACD =∠D∵∠ACD =∠B∴∠D =∠B在△ABC 和△EDC 中{∠B =∠D∠ACB =∠E AC =CE∴△ABC ≌△CDE(AAS).【解析】此题主要考查了全等三角形的判定 平行线的性质.首先根据AC//DE 利用平行线的性质可得:∠ACB =∠E ∠ACD =∠D 再根据∠ACD =∠B 证出∠D =∠B 然后根据全等三角形的判定定理AAS 证出△ABC ≌△CDE 即可.24.【答案】证明:∵BE ⊥AC CD ⊥AB∴∠BDC =∠CEB =90°在Rt △BCD 和Rt △CBE 中{BC =CB BD =CE∴Rt △BCD ≌Rt △CBE(HL)∴∠DBC =∠ECB即∠ABC =∠ACB .【解析】本题考查了全等三角形的判定与性质;证明三角形全等是解题的关键.证明Rt △BCD ≌Rt △CBE(HL) 即可得出结论.25.【答案】(1)证明:∵∠ABC =90°∴∠DBC =90°在△ABE 和△CBD 中{AB =CB∠ABE =∠CBD BE =BD∴△ABE ≌△CBD(SAS);(2)解:∵AB =CB ∠ABC =90°∴∠BCA =45°∴∠AEB =∠CAE +∠BCA =30°+45°=75°∵△ABE ≌△CBD∴∠BDC =∠AEB =75°.【解析】(1)由条件可利用SAS证得结论;(2)由等腰直角三角形的性质可先求得∠BCA利用三角形外角的性质可求得∠AEB再利用全等三角形的性质可求得∠BDC.本题主要考查全等三角形的判定和性质掌握全等三角形的判定方法(即SSS SAS ASA AAS和HL)和全等三角形的性质(即全等三角形的对应边相等对应角相等)是解题的关键.。

八年级数学上册《第十二章 三角形全等的判定》同步练习题及答案-人教版

八年级数学上册《第十二章 三角形全等的判定》同步练习题及答案-人教版

八年级数学上册《第十二章 三角形全等的判定》同步练习题及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.根据下列已知条件,不能画出唯一△ABC 的是( )A .AB =3,BC =6,CA =8 B .AB =6,∠B =60°,BC =10C .AB =4,BC =3,∠A =30°D .∠A =60°,∠B =45°,AB =42.如图为了测量B 点到河对面的目标A 之间的距离,在B 点同侧选择了一点C ,测得∠ABC =65°,∠ACB =35°,然后在M 处立了标杆,使∠MBC =65°,∠MCB =35°,得到△MBC ≌△ABC ,所以测得MB 的长就是A ,B 两点间的距离,这里判定△MBC ≌△ABC 的理由是( )A .SASB .AAAC .SSSD .ASA3.如图,在△ABC 中,∠C =90°,ED ⊥AB 于点D ,BD =BC ,若AC =6cm ,则AE+DE 等于( )A .4cmB .5cmC .6cmD .7cm4.如图,在△ABC 中,AB=AC ,∠ABC=40°,BD 是∠ABC 的平分线,延长BD 至E ,使DE=AD ,则∠ECA 的度数为( )A .30°B .35°C .40°D .45°5.如图,AD 平分BAC ∠,AB AC =连接BD ,CD 并延长,分别交AC ,AB 于点F ,E 则图中共有全等三角形的组数为( )A .2B .3C .4D .56.如图,在△ABC 和△BDE 中,点C 在边BD 上,边AC 交边BE 于点F.若AC=BD ,AB=ED ,BC=BE ,则∠ACB 等于( )A .∠EDB B .∠BEDC .12∠AFB D .2∠ABF 7.如图,点D 在线段BC 上,若1802ACE ABC x ∠=︒-∠-︒,且BC DE =,AC DC =和AB EC =则下列角中,大小为x ︒的角是 ( )A .EFC ∠B .ABC ∠ C .FDC ∠D .DFC ∠8.如图所示,两个完全相同的含30°角的Rt △ABC 和Rt △AED 叠放在一起,BC 交DE 于点O ,AB 交DE 于点G ,BC 交AE 于点F ,且∠DAB=30°,以下三个结论:①AF ⊥BC ;②△ADG ≌△AFC ;③O 为BC 的中点;④AG=BG .其中正确的个数为( )A .1B .2C .3D .4二、填空题:(本题共5小题,每小题3分,共15分.)9.如图,有一种简易的测距工具,为了测量地面上的点M 与点O 的距离(两点之间有障碍无法直接测量),在点O 处立竖杆PO ,并将顶端的活动杆PQ 对准点M ,固定活动杆与竖杆的角度后,转动工具至空旷处,标记活动杆的延长线与地面的交点N ,测量点N 与点O 的距离,该距离即为点M 与点O 的距离.此种工具用到了全等三角形的判定,其判定理由是 .10.如图,已知BC=EC ,∠BCE=∠ACD ,要使△ABC ≌△DEC ,则应添加的一个条件为 .(答案不唯一,只需填一个)11.如图,点D 在边BC 上,DE ⊥AB ,DF ⊥BC ,垂足分别为点E 、D ,BD =CF ,BE =CD .若∠AFD =140°,则∠EDF = .12.如图,∠ACB=90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,垂足分别为D ,E ,AD=25cm ,DE=17cm ,求BE= cm.13.如图,在Rt △ABC 中,AC=BC ,点P 是BC 上一点,BD ⊥AP 交AP 延长线于点D ,连接CD .若图中两阴影三角形的面积之差为32(即S △ACP -S △PBD =32),则CD=三、解答题:(本题共5题,共45分)14.如图是一个工业开发区局部的设计图,河的同一侧有两个工厂A 和B ,AD 、BC 的长表示两个工厂到河岸的距离,其中E 是进水口,D 、C 为污水净化后的出口.已知AE BE =和90AEB ∠=︒,AD ⊥DC ,BC ⊥DC ,点D 、E 、C 在同一直线上,150AD =米,350BC =米,求两个排污口之间的水平距离DC .15.如图,在四边形ABCD 中90B ∠=︒,连接AC ,且AC AD =,点E 在边BC 上,连接DE ,过点A 作AF DE ⊥,垂足为F ,AB AF =求证:DAC FAB ∠=∠.16.如图,在△ABC 中,AB=CB ,∠ABC=90°,D 为AB 延长线上一点,点E 在BC 边上,且BE=BD ,连结AE 、DE 、DC .(1)求证:△ABE ≌△CBD ;(2)若∠CAE=30°,求∠BDC 的度数.17.已知:如图AD BD = ,CD ED =和 12∠=∠,试说明31∠=∠的理由.请按下列过程完成解答:(1)说明ADE 和BDC 全等的理由;(2)说明31∠=∠的理由.18.如图,Rt ACB 中90ACB ∠=︒,ABC 的角平分线AD 、BE 相交于点P ,过P 作PF AD ⊥交BC 的延长线于点F ,交AC 于点H .(1)求APB ∠度数;(2)求证:ABP ≌FBP ;(3)猜想线段AH ,AB ,BD 的数量关系,并证明参考答案:1.C 2.D 3.C 4.C 5.C 6.C 7.C 8.D9.两个角及其夹边对应相等的两个三角形全等10.AC=CD11.50°12.813.814.解:由题意得:AD CD BC CD ⊥⊥,∴90ADE ECB ∠=∠=︒∴90AED DAE ∠+∠=︒90AEB ∠=︒∴90AED CEB ∠+∠=︒∴DAE CEB ∠=∠在ADE 与ECB 中∵{∠ADE =∠ECB =90°∠DAE =∠CEBAE =EB∴()ADE ECB AAS ≅∴AD CE = DE BC =∵150AD =米,350BC =米∴350150500DC DE CE BC AD =+=+=+=(米) 答:两个排污口之间的水平距离DC 为500米.15.证明:∵AF DE ⊥ ∴90B DFA ∠=∠=︒. 在Rt ADF 和Rt CAB 中AD AC AF AB =⎧⎨=⎩∴()Rt Rt HL ADF ACB ≌∴DAF CAB ∠=∠,∴DAF CAF CAB CAF ∠+∠=∠+∠ ∴DAC FAB ∠=∠.16.(1)证明:在△ABE 和△CBD 中∴△ABE ≌△CBD (SAS )(2)解:∵△ABE ≌△CBD∴∠AEB=∠BDC∵∠AEB 为△AEC 的外角∴∠AEB=∠ACB+∠CAE=30°+45°=75°则∠BDC=75°.17.(1)解:12∠=∠12BDE BDE ∴∠+∠=∠+∠BDC ADE ∴∠=∠在ADE 和BDC 中AD BD ADE BDC CD ED =⎧⎪∠=∠⎨⎪=⎩()SAS ADE BDC ∴≌;(2)解:如图,令AE BD 、相交于点OADE BDC ≌DAE DBC ∴∠=∠13180DAE AOD CBD BOE ∠+∠+∠=∠+∠+∠=︒ AOD BOE ∠=∠ 13∠∠∴=.18.(1)解:90ACB ∠=︒90?CAB CBA ∴∠+∠= AD 、BE 是ABC 的角平分线12PAB CAB ∴∠=∠ 12PBA CBA ∠=∠ ()1452PAB PBA CAB CBA ∴∠+∠=∠+∠=︒ 18045135APB ∴∠=︒-︒=︒;(2)证明:由()1可知:135APB ∠=︒ 45BPD ∴∠=︒FP AD ⊥9045135FPB ∴∠=︒+︒=︒APB FPB ∴∠=∠ BE 平分ABC ∠ABP FBP ∴∠=∠在ABP 和FBP 中{∠ABP =∠FBPBP =BP∠APB =∠FBPABP ∴≌()FBP ASA ;(3)解:AH BD AB +=证明如下:延长FP 交AB 于NAD平分BAC∠HAP NAP∴∠=∠在APH和APN中{∠HAP=∠NAPAP=AP∠APH=∠APN=90°APH∴≌()APN ASAAN AH∴=APB FPB∠=∠APN FPD∠=∠BPD BPN∴∠=∠在BPD和BPN中{∠BPD=∠BPN BP=BP∠DBP=∠NBPBPD∴≌()BPN ASABN BD∴=AH BD AN BN AB ∴+=+=。

人教版八年级上册数学三角形全等的判定同步训练(含答案)

人教版八年级上册数学三角形全等的判定同步训练(含答案)

人教版八年级上册数学12.2三角形全等的判定同步训练一、单选题1.如图,已知∠ABD =∠BAC ,添加下列条件还不能判定∠ABC ∠∠BAD 的依据是( )A .AC =BDB .∠DAB =∠CBAC .∠C =∠D D .BC =AD 2.如图,点E 、H 、G 、N 共线,∠E =∠N ,EF =NM ,添加一个条件,不能判断∠EFG ∠∠NMH 的是( )A .EH =NGB .∠F =∠MC .FG =MHD .FG HM ∥ 3.如图,90ACB ∠=︒,AC =BC ,BE ∠CE ,AD ∠CE 于D ,AD =2.5cm ,DE =1.7cm ,则BE =( )A .1cmB .0.8cmC .4.2cmD .1.5cm 4.如图,若BAD CAD ∠=∠,AB AC =,则ABD ACD △≌△的理由是( )A .SASB .AASC .ASAD .SSS 5.如图,要测池塘两端A ,B 的距离,小明先在地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD =CA ;连接BC 并延长到E ,使CE =CB ,发现DE =AB .那么判定∠ABC 和∠DEC 全等的依据是( )A.SSS B.SAS C.ASA D.AAS6.如图,AC与BD相交于点O,∠1=∠2,若用“SAS”说明∠ABC∠∠BAD,则还需添加的一个条件是()A.AD=BC B.∠C=∠D C.AO=BO D.AC=BD 7.如图,点B、E、C、F四点共线,∠B =∠DEF,BE =CF,添加一个条件,不能判定∠ABC ∠ ∠DEF的是()A.∠A=∠D B.AB=DE C.AC∠DF D.AC=DF 8.如图,AB∠CD,且AB=CD.E、F是AD上两点,CE∠AD,BF∠AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c9.如图,Rt∠ABC中,∠ACB=90°,∠B=50°,D,F分别是BC,AC上的点,DE∠AB,垂足为E,CF=BE,DF=DB,则∠ADE的度数为()A .40°B .50°C .70°D .71°二、填空题 10.如图,AE =AF ,AB =AC ,EC 与BF 交于点O ,60A ∠=︒,25B ∠=︒,则EOB ∠的度数为______.11.如下图,已知AC AB =,要使ABE ACD △≌△.则需添加一个条件______.12.如图,在ABC 中,90ACB ∠=︒,BE CE ⊥于点E ,AD CE ⊥于点D ,请你添加一个条件__________,使BEC CDA ≌(填一个即可).13.如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,OA OC =,请你添加一个条件________,使AOB COD ≌.14.如图,已知B D ∠=∠,请再添上一个条件_________,使ABC ADC △△≌(写出一个即可).15.已知:如图,AC =DC ,∠1=∠2,请添加一个已知条件:_____,使ABC ≌△DEC .16.如图,四边形ABCD ,连接BD ,AB ∠AD ,CE ∠BD ,AB =CE ,BD =CD .若AD =5,CD =7,则BE =________.17.如图,已知CD ∠AB ,BE ∠AC ,垂足分别为D 、E ,BE 、CD 交于点O ,且AO 平分∠BAC ,那么图中全等三角形共有_____对.三、解答题18.如图,C ,F 是线段AB 上的两点,AF BC =,EB ∠CD ,D E ∠=∠. 求证:AD FE =.19.如图,AC BC ⊥,DC EC ⊥,AC BC =,DC EC =.(1)求证:BCD ACE ≌.(2)图中AE 、BD 有怎样的关系?试证明你的结论.20.如图,在AOB ∠的平分线上取点E ,连接AE 并延长与OB 交于点D ,连接BE 并延长与OA 交于点C ,使ACB BDA ∠=∠,连接OE .(1)求证:CE DE =.(2)若110CED ∠=︒,30A ∠=︒,求AOB ∠的度数.21.如图,点A 、D 、C 、F 在同一条直线上,AD =CF ,AB =DE ,∠A =∠EDF =60°.(1)求证:△ABC ∠∠DEF ;(2)若∠B =100°,求∠F 的度数.参考答案:1.D2.C3.B4.A5.B6.D7.D8.D9.C10.70°11.∠C=∠B(答案不唯一)=(答案不唯一)12.AC BC13.OB=OD(答案不唯一)∠=∠14.BAC DAC15.BC EC=16.217.419.(2)AE BD=,AE BD⊥,20.50︒21.∠F=20°.答案第1页,共1页。

2023-2024学年人教版八年级数学上册《第十二章 三角形全等的判定》同步练习题附带答案

2023-2024学年人教版八年级数学上册《第十二章 三角形全等的判定》同步练习题附带答案

2023-2024学年人教版八年级数学上册《第十二章三角形全等的判定》同步练习题附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,在△ACD与△ABD中∠C=∠B,再添加下列哪个条件,能判定△ADC≌△ADB()A.AC=AB B.AC⊥CD C.DA平分∠BDC D.CD=BD2.如图,一块玻璃碎成三片,小智只带了第③块去玻璃店,就能配一块一模一样的玻璃,你能用三角形的知识解释,这是为什么?()A.ASA B.AAS C.SAS D.SSSBC若ΔABC的面积3.如图,AE垂直于∠ABC的平分线于点D,交BC于点E,CE=13为12,则ΔCDE的面积是()A.2B.3C.4D.64.工人常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分別与点M、N重合,过角尺顶点C作射线OC,由此作法便可得△NOC≅△MOC,共依据是()A.SSS B.SAS C.ASA D.AAS5.如图,在△ABC中∠C=90°,D是AC上一点,DE⊥AB于点E,BE=BC连接BD,若AC=8cm,则AD+DE等于()A.6cm B.7cm C.8cm D.10cm6.如图,为了测出池塘两端A,B间的距离,小铱在地面上取一个可以直接到达A点和B点的点O,连接AO并延长到C,使OC=OA;连接BO并延长到D,使OD=OB,连接CD并和测量出它的长度,小铱认为CD的长度就是A,B间的距离,她是根据△OAB≌△OCD来判断的AB=CD,那么判定这两个三角形全等的依据是().A.SSS B.SAS C.ASA D.AAS7.“又是一年三月三”.在校内劳动课上,小明所在小组的同学们设计了如图所示的风筝框架.已知∠B=∠E,AB=DE,BF=EC,△ABC的周长为24cm,FC=3cm制作该风筝框架需用材料的总长度至少为()A.44cm B.45cm C.46cm D.48cm8.如图,AB⊥BC,EC⊥BC,AD⊥DE,AD=DE,AB=3,BC=8,则CE长为()A.4 B.5 C.8 D.10二、填空题9.如下图,已知AC=AB,要使△ABE≌△ACD.则需添加一个条件.10.数学实践活动课中,老师布置了“测量小口圆柱形瓶底部内径”的探究任务,某学习小组设计了如下方案:如图,用螺丝钉将两根小棒AC,BD的中点O固定,现测得C,D之间的距离为75mm,那么小口圆柱形瓶底部的内径AB=mm.11.如图,在Rt△ABC中∠BAC=90°,AB=AC分别过点B、C作经过点A的直线的垂线段BD、CE,若BD=5厘米,CE=8厘米,则DE的长为.12.如图,△ABC中,AD是中线AC=3,AB=5则AD的取值范围是.13.如图,在四边形ABEF中,AB=4,EF=6,点C是BE上一点,连接AC、CF,若AC=CF,∠B=∠E=∠ACF,则BE的长为.三、解答题14.图1是郝老师制作的风筝,图2是风筝骨架的示意图,其中AB=AC,BD=CD,∠C=23°.求∠B的度数.15.如图,已知在△ABC中,D、E是BC上两点,且∠ADE=∠AED,∠BAD=∠EAC,求证:AB=AC.16.如图,C是AB上一点,点D,E分别在AB两侧AD∥BE,且AD=BC,BE=AC求证:CD=EC.17.如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,求∠ABO度数.18.课间,小明拿着老师的直角三角尺玩,不小心掉到两堆砖块之间,如图所示,已知∠ACB= 90°,AC=BC,AD⊥DE,BE⊥DE.(1)试说明:△ADC≌△CEB;(2)已知DE=35cm,请你帮小明求出砖块的厚度a(每块砖的厚度相同)参考答案1.C2.A3.A4.A5.C6.B7.B8.B9.∠C=∠B (答案不唯一)10.7511.13厘米12.1<AD <413.1014.解:在△ABD 和△ACD 中{AB =AC AD =AD BD =CD ∴△ABD ≌△ACD(SSS) ∴∠B =∠C ∵∠C =23° ∴∠B =23°.15.证明:∵∠ADE =∠AED∴AD =AE ,∠ADB =∠AEC在△ABD 与△ACE 中{∠BAD =∠EAC AD =AE ∠ADB =∠AEC∴△ABD ≌△ACE(ASA)∴AB =AC16.证明:∵AD ∥BE∴∠A =∠B在△ADC 和△BCE 中{AD =BC∠A =∠B AC =BE∴△DAC ≌△CBE∴CD =CE ;17.解:∵OM ⊥AB ,ON ⊥BC ∴∠OMB =∠ONB =90°在Rt △OMB 和Rt △ONB 中{OM =ON OB =OB∴Rt △OMB ≌Rt △ONB(HL)∴∠OBM =∠OBN∵∠ABC =30°∴∠ABO =15°.18.(1)解:∵∠ACB =90°∴∠ACD +∠BCE =90°∵AD ⊥DE∴∠ACD +∠DAC =90°∴∠BCE =∠DAC在△ADC 与△CEB 中{∠ADC =∠BEC =90°∠BCE =∠DACAC =BC∴△ADC ≌△CEB(AAS);(2)解:∵△ADC ≌△CEB∴DC =BE ,AD =CE∴DE =DC +CE =BE +AD =35cm ∵一共有7块砖∴每块砖块的厚度a 为:35÷7=5cm .。

初中数学人教版八年级上册第十二章《全等三角形》练习册(含答案12.2 三角形全等的判定

初中数学人教版八年级上册第十二章《全等三角形》练习册(含答案12.2   三角形全等的判定

初中数学人教版八年级上册实用资料12.2三角形全等的判定基础巩固1.(题型三)如图12-2-1,某同学把一块三角形玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )______A.带①去B.带②去C.带③去D.带①和②去图12-2-12.(题型一)如图12-2-2,在∆ABC中,AB=AC,BE=CE,则由“SSS”可以判定( )图12-2-2A.∆ABD≌∆ACDB.∆BDE≌∆CDEC.∆ABE≌∆ACED.以上都不对3.(题型一、四)如图12-2-3,∆BDC′是将长方形纸片ABCD沿着BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )图12-2-3A.1对B.2对C.3对D.4对4.(题型三)如图12-2-4,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE,AD=8,则AC= .图12-2-45.(题型二、三、四、五)如图12-2-5,已知AB⊥CF,DE⊥CF,垂足分别为B,E,AB=DE.请你添加一个适当的条件,使∆ABC≌∆DEF.添加的条件是.图12-2-56.(题型三)如图12-2-6,AB∥CD,AD,BC交于点O,EF过点O分别交AB,CD于点E,F,且AE=DF.求证:O是EF的中点.图12-2-67.(题型二)[福建泉州中考]如图12-2-7,∆ABC,∆CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:∆CDA≌∆CEB.图12-2-7能力提升8.(题型一、二)下列说法中,正确的是()A.两边及一组角对应相等的两个三角形全等B.有两边分别相等,且有一角为30°的两个等腰三角形全等C.两边及其中一边上的中线对应相等的两个三角形全等D.两边及其中一边上的高对应相等的两个三角形全等9.(题型四)如图12-2-8,在∆ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,AD=3,则点D到BC的距离是( )图12-2-8A.3B.4C.5D.610.(题型二)如图12-2-9,在∆ABC中,AB=CB,∠ABC=90°,D为AB的延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.图12-2-9(1)求证:∆ABE≌∆CBD.(2)若∠CAE=30°,求∠BDC的度数.11.(题型三)[湖北宜昌中考]杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图12-2-10,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.图12-2-1012.(题型四、五)如图12-2-11,CD⊥AB于点D,BE⊥AC于点E,且BD=CE,BE交CD于点O.求证:AO平分∠BAC.图12-2-1113.(题型二、三)如图12-2-12,AB∥CD,OA=OD,AE=DF.求证:EB∥CF.图12-2-1214.(题型四)在数学习题课后,老师布置了一道课后练习题:如图12-2-13,在Rt∆ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P,D分别在AO和BC上,PB=PD,DE⊥AC 于点E.求证:∆BPO≌∆PDE.图12-2-13(1)理清思路,完成解答,本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论:若PB平分∠ABO,其余条件不变.求证:AP=CD.答案基础巩固1. C 解析:③保留了原来三角形的两个角和它们的夹边,可以根据“ASA”来配一块与原来一样的玻璃,所以应带③去.故选C.2. C 解析:∵AB=AC,EB=EC,AE=AE,∴△ABE≌△ACE(SSS).故选C.3. D 解析:∵△BDC′是将长方形纸片ABCD沿对角线BD折叠得到的,∴△C′DB≌△CDB.∵AB=DC,AD=BC,BD=BD,∴△ABD≌△CDB(SSS),∴△ABD≌△C′DB.在△ABO和△C′DO中,易知AB=C′D,∠A=∠C′=90°.又∵∠AOB=∠C′OD,∴△ABO≌△C′DO(AAS).故选D.4. 8 解析:∵∠CBE=∠DBE,∴∠ABC=∠ABD.在△ABC和△ABD中,,,, ABC ABDAB ABCAB DAB∠=∠=∠=∠⎧⎪⎨⎪⎩∴△ABC≌△ABD(ASA),∴AC=AD=8.5. BC=EF(或BF=CE或AC=DF或∠A=∠D或∠C=∠F或AC∥DF,答案不唯一) 解析:∵AB⊥CF,DE⊥CF,∴△ABC和△DEF都是直角三角形.又∵AB=DE,∴可以添加的条件有:BC=EF(或BF=CE),△ABC≌△DEF(SAS);AC=DF,Rt△ABC≌Rt△DEF (HL);∠A=∠D,△ABC≌△DEF(ASA);∠C=∠F(或AC∥DF),△ABC≌△DEF(AAS).6. 证明:∵AB∥CD,∴∠EAO=∠FDO,∠AEO=∠DFO.在△AEO和△DFO中,,,, EAO FDOAE DFAEO DFO ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△AEO≌△DFO(ASA),∴OE=OF. ∴O是EF的中点.7.证明:∵△ABC,△CDE均为等腰直角三角形,且∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∠ACB-∠ACE=∠DCE-∠ACE, ∴∠ECB=∠DCA.在△CEB和△CDA中,,,,BC ACECB DCA EC DC=∠=∠=⎧⎪⎨⎪⎩∴△CEB≌△CDA(SAS).能力提升8. C 解析:选项A属于“SSA”,不是判定三角形全等的条件,错误;选项B,如图D12-2-1的两个等腰三角形的腰长相等,且有一角为30°,但这两个等腰三角形不全等,错误;选项C可利用“SSS”和“SAS”证明两个三角形全等,正确;选项D中的高有可能在三角形内部,也有可能在三角形外部,是不确定的,不符合全等的条件,D错误.故选C.图D12-2-1图D12-2-29. A 解析:如图D12-2-2,过点D作DE⊥BC,垂足为E,则DE的长即是点D到BC的距离.∵BD平分∠ABC,∴∠ABD=∠EBD.在△ABD和△EBD中,90,,,A DEBABD EBDBD BD∠=∠=︒∠=∠=⎧⎪⎨⎪⎩∴△ABD≌△EBD(AAS),∴DE=AD=3,即点D到BC的距离是3.故选A.10.(1)证明:∵∠ABC=90°,D为AB的延长线上一点,∴∠ABE=∠CBD=90°.在△ABE和△CBD中,,,,AB CBABE CBD BE BD=∠=∠=⎧⎪⎨⎪⎩∴△ABE≌△CBD(SAS).(2)解:∵AB=CB,∠ABC=90°,∴∠CAB=45°.∵∠CAE=30°,∴∠BAE=∠CAB-∠CAE=45°-30°=15°.∵△ABE≌△CBD,∴∠BCD=∠BAE=15°.∴∠BDC=90°-∠BCD=90°-15°=75°.11. 解:∵AB∥CD,∴∠ABO=∠CDO.∵OD⊥CD,∴∠CDO=90°.∴∠ABO=90°,即OB⊥AB.∵相邻两平行线间的距离相等,∴OD=OB.在△ABO和△CDO中,,,,ABO CDOAOB COD OB OD∠=∠∠=∠=⎧⎪⎨⎪⎩∴△ABO≌△CDO(ASA),∴CD=AB=20米.12. 证明:∵OD⊥AB,OE⊥AC,∴∠BDO=∠CEO=90°.在△BOD和△COE中,90,,,BDO CEOBOD COEBD CE∠=∠=︒∠=∠=⎧⎪⎨⎪⎩∴△BOD≌△COE(AAS),∴OD=OE.在Rt△AOD和Rt△AOE中,OA=OA, OD=OE,∴Rt△AOD≌Rt△AOE(HL),∴∠DAO=∠EAO,即AO平分∠BAC.13. 证明:∵AB∥CD(已知),∴∠3=∠4(两直线平行,内错角相等).在△DCO和△ABO中,34(),,12, OD OA∠=∠=∠=∠⎧⎪⎨⎪⎩已证(已知)(对顶角相等)∴△DCO≌△ABO(ASA),∴OC=OB(全等三角形的对应边相等). ∵AE=DF,OA=OD,∴OD+DF=OA+AE,即OF=OE.在△COF和△BOE中,(),(),12, OC OBOF OE==∠=∠⎧⎪⎨⎪⎩已证已证(对顶角相等)∴△COF≌△BOE(SAS),∴∠F=∠E(全等三角形的对应角相等).∴EB∥CF(内错角相等,两直线平行).14. 证明:(1)∵PB=PD,∴∠2=∠PBD.∵AB=BC,∠ABC=90°,∴∠C=45°.∵BO⊥AC,∴∠1=45°.∴∠1=∠C=45°.∵∠3=∠PBC-∠1,∠4=∠2-∠C,∴∠3=∠4.∵BO⊥AC,DE⊥AC,∴∠BOP=∠PED=90°.在△BPO和△PDE中,34,,,BOP PED BP PD∠=∠∠=∠=⎧⎪⎨⎪⎩∴△BPO≌△PDE(AAS).(2)由(1)得,∠3=∠4.∵BP平分∠ABO,∴∠ABP=∠3.∴∠ABP=∠4.在△ABP和△CPD中,,4,,A CABPPB PD∠=∠∠=∠=⎧⎪⎨⎪⎩∴△ABP≌△CPD(AAS),∴AP=CD.。

八年级数学上册《第十二章 三角形全等的判定》同步练习题附带答案(人教版)

八年级数学上册《第十二章 三角形全等的判定》同步练习题附带答案(人教版)

八年级数学上册《第十二章 三角形全等的判定》同步练习题附带答案(人教版)一、选择题:1.使两个直角三角形全等的条件是A .一锐角对应相等B .两锐角对应相等C .一条边对应相等D .两条边对应相等2.如图,AD 、BC 相交于点O ,且 12∠=∠ , CAB DBA ∠=∠下列结论中,错误的是( )A .C D ∠=∠B .AC BD = C .OC OB = D .BC AD =3.如图,D 在AB 上,E 在AC 上,且∠B=∠C ,则在下列条件中,无法判定△ABE ≌△ACD 的是( )A .AD=AEB .AB=AC C .BE=CD D .∠AEB=∠ADC4.小明不慎将一块三角形的玻璃摔碎成四块(即图中标有1、2、3、4的四块),如果将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带( )A .第1块B .第2块C .第3块D .第4块5.如图,在ABC 中,BE AC ⊥于点E ,AF 分别交BE ,BC 于点F ,D ,AE BE =若依据“HL ”说明AEF BEC ≌,则下列所添条件合理的是( )A .EF CE =B .AFEC ∠=∠ C .BD AD ⊥ D .AF BC =6.如图,已知AB ∥CD ,AB =CD ,AE =FD ,则图中的全等三角形有( )对.A .4B .3C .2D .17.如图,AD ,BE ,CF 是ABC 的三条中线,以下结论正确的是( )A .2BC AD =B .12AF AB =C .AD CD = D .BE CF = 8.如图,在ABC 中,AD BC ⊥于点D ,BE AC ⊥与点E ,BE 与AD 交于点F ,若5AD BD == CD=3,则AF 的长为( )A .3B .3.5C .2.5D .2二、填空题:9.用尺规做一个角等于已知角的依据是 .10.如图,AE=AD ,请你添加一个条件: 或 ,使△ABE ≌△ACD (图中不再增加其他字母).11.如图,已知△ABC 为等边三角形,点D ,E 分别在边BC ,AC 上,且BD =CE ,若BE 交AD 于点F ,则∠AFE 的大小为 (度).12.如图,在Rt ABC 中90BAC ∠=︒,AB AC =分别过点B 、C 作过点A 的直线的垂线BD 、CE ,若4cm BD =,3cm CE =则DE = cm .13.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD =CD ,AB =CB ,晓明同学在探究筝形的性质时,得到如下结论:①△ABD ≌△CBD ;②AO =CO =12AC ;③AC ⊥BD ;其中,正确的结论有 个.三、解答题:14.如图,已知AB CD =,AD BC ⊥垂足O 是BC 的中点.求证:AO OD =.15.如图,已知在ABC 和DBE 中,12AB DB A D =∠=∠∠=∠,,求证:BC BE =.16.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC=CE ,BC=DE .(1)求证:∠ACD=∠B ;(2)若∠A=40°,求∠BCD 的度数.17.如图,在△ABC 中,AB =AC ,点D 、E 分别在AC 及其延长线上,点B 、F 分别在AE 两侧,连结CF ,已知AD =EC ,BC =DF ,BC ∥DF .(1)求证:△ABC ≌△EFD ;(2)若CE =CF ,FC 平分∠DFE ,求∠A 的度数.18.如图,在ABC 中,D 为AB 上一点,E 为AC 中点,连接DE 并延长至点F ,使得EF ED =,连接CF .(1)求证:CF AB ;(2)若50ABC ∠=︒,连接BE BE ,平分ABC AC ∠,平分BCF ∠,求A ∠的度数.参考答案:1.D 2.C 3.D 4.B 5.D 6.B 7.B 8.D9.SSS10.AB=AC ;∠B=∠C11.6012.713.314.证明:AD BC ⊥90AOB DOC ∴∠=∠=︒ABO ∴与DCO 都是直角三角形点O 是BC 的中点OB OC ∴=在Rt ABO 与Rt DCO 中AB DCOB OC =⎧⎨=⎩()Rt Rt HL ABO DCO ∴≌AO DO ∴=.15.证明:∵12∠=∠∴12ABE ABE ∠+∠=∠+∠即ABC DBE ∠=∠.在ABC 和DBE 中ABC DBEAB DB A D∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABC DBE ASA ≌∴BC BE =.16.(1)证明:∵AC ∥DE∴∠ACB=∠E ,∠ACD=∠D在△ACB 和△CDB 中AC CEACB E BC DE=⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CDE∴∠B=∠D∴∠ACD=∠B(2)解:∵△ABC ≌△CDE ∴∠A=∠DCE=40°∴∠BCD=180°﹣∠ECD=140°17.(1)证明:∵AD=EC ∴AC=ED∵BC ∥DF∴∠ACB=∠EDF在△ABC 和△EFD 中BC FDACB EDF AC ED⎧⎪∠∠⎨⎪⎩===∴△ABC ≌△EFD (SAS )(2)解:∵△ABC ≌△EFD ∴AB=EF ,AC=ED∵AB=AC∴ED=EF∴∠EDF=∠EFD∵CE=CF∴∠CEF=∠CFE∵CF 平分∠DFE∴∠EFD=2∠CFE=2∠E∵∠EDF+∠EFD+∠E=180° ∴2∠E+2∠E+∠E=180° ∴∠E=36°∵△ABC ≌△EDF∴∠A=∠E=36°.18.(1)证明:∵E 为AC 中点 ∴AE CE =在ADE 和CFE 中AE CEAED CEF DE EF=⎧⎪∠=∠⎨⎪=⎩∴ADE CFE ≌∴A ECF ∠=∠∴CF AB ;(2)解:由(1)得:A ECF ∠=∠ ∵AC 平分BCF ∠∴ACB ECF ∠=∠∴ACB A ∠=∠∵50ABC ∠=︒∴︒=∠1302A∴︒=∠65A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.2第3课时角边角(ASA)与角角边(AAS)
一、选择题
1.如图,玻璃三角板摔成三块,此刻到玻璃店在配一块相同大小的三角板,最
省事的方法()
A. 带①去
B.带②去
C.带③去
D.带①②③去
2.如图,已知∠ 1=∠ 2,则不必定能使△ ABD≌△ ACD的条件是()
A. AB=AC
B. BD=CD
C.∠ B=∠C
D. ∠ BDA=∠ CDA
第1题图第2题图第3题图
3.如图,给出以下四组条件:
①AB DE,BC EF,AC DF;
② AB DE,B E,BC EF ;
③B E,BC EF,C F ;④ AB DE,AC DF,B E .
此中,能使△ ABC ≌△ DEF 的条件共有()
A.1组B.2组C.3组D.4组
4. 如图,E F 90o,B C , AE AF ,结论:① EM FN ;
② CD DN ;③FAN EAM ;④ △ACN≌△ ABM.
此中正确的有()
A.1 个B.2 个C.3个D.4 个
C
E
M
D
A N B
F
第4题图
5. 如图,在以下条件中,不可以证明 △ABD ≌△ ACD 的是()
BD DC , A B AC B. ∠ ADB ∠ ADC ,BD DC A. = = = = C.∠ B=∠ C ,∠ BAD=∠ CAD D.∠B=∠ C ,BD=DC
6. 如图,已知 △ ABC 中, ABC 45o , F 是高 AD 和 BE 的
交点, CD
4 ,则线段 DF 的长度为( ).
A .2 2
B . 4
C
. 3 2
D .4 2
第5题图 第6题图
7. 如图,点 B 、 C 、 E 在同一条直线上,△ ABC 与△ CDE 都是等边
三角形,则以下结论不必定建立的是(

A. △ ACE ≌△ BCD
B. △BGC ≌△ AFC [根源
:]
C. △ DCG ≌△ ECF
D. △ADB ≌△ CEA
8. 如图,在△ ABC 中, AB=AC ,∠ ABC .∠ ACB 的均分线 BD , CE 订交于 O 点,且
BD 交 AC 于点 D ,CE 交 AB 于点 E .某同学剖析图形后得 出以下结论:
①△ BCD ≌△ CBE ;②△ BAD ≌△ BCD ;③△ BDA ≌△ CEA ;④△ BOE ≌△ COD ;
⑤△ ACE ≌△ BCE ;上述结论必定正确的选项是(

A .①②③
B .②③④
C .①③⑤
D .①③④
第7题图
第8题图
二、填空题
9.如图,已知△ ABC的六个元素,则以下甲、乙、丙三个三角形中和△ ABC全等
的图形是
第9题图
10. 如图,△ ABC中,BD=EC,∠ADB=∠AEC,∠B=∠C,则∠CAE= .
[ 根源:] 11.如图,点 B、E、F、C在同向来线上 , 已知∠ A =∠D,∠B =∠C,要使△ ABF≌△ DCE,
以“ AAS”需要增补的一个条件是(写出一个即可).
[根源 : ZXXK]
A
A B
O
B D E
C C D
第10题图第11题图第 12题图
12. 如图, AD=BC,AC=BD,则图中全等三角形有对.
13.如图,已知 AB∥CF, E 为 DF的中点 . 若 AB=9 cm,CF=5 cm,则 BD的长度
为cm.
14.如图,∠ A =∠D,OA=OD,∠DOC=50°,则∠ DBC=度.
A
D
C A
D
E
F O
D O
B
A 第13 C B
第 14 题图
C
第 15 题图
题图 B
15.(2008·黑河中考)如图,BAC ABD ,请你增添一个条件:,
使 OC OD (只添一个即可).
16.如图, Rt△ABC中,∠ BAC=90°, AB=AC,分别过点 B,C作过点 A 的直线的
垂线 BD,CE,垂足分别为点 D,E. 若 BD=2,CE=3,则 AE=,
AD=.
17.如图,有一块边长为 4 的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角极点落在 A 点,两条直角边分别与 CD 交于点 F ,与 CB 延伸线
交于点 E .则四边形 AECF 的面积是.
C
A D
B
F
E C
B
D A E
第16 题图第17题图第 18题图
18.如图,两块完整相同的含 30°角的直角三角板叠放在一同,且∠ DAB=30°.有以
下四个结论:①AF 丄 BC;②△ ADG≌△ ACF;③ O为 BC的中点;④AG:
DE= 错误 ! 未找到引用源。

:4,此中正确结论的序号是.
三、解答题
19.已知:如图,∠ ABC=∠ DCB,BD、CA 分别是∠ ABC、∠ DCB的均分线.求证:
AB=DC
20.如图,已知AD 是△ ABC的角均分线,在不增添任何协助线的前提下,要使△AED≌△ AFD,需增添一个条件是: _______________,并赐予证明 .
A
E
F
B D C
[根源: 学§科§网 Z§X§X§K]
21.如图,已知点 E, C 在线段 BF 上, BE CF ,请在以下四个等式中,
①AB= DE,②∠ ACB=∠ F,③∠ A=∠ D,④AC=DF.选出两个作为条件,推
..
出△ ABC ≌△ DEF .并予以证明.(写出一种即可)
已知:,.
求证:△ ABC ≌△ DEF .
证明:
AD
[根源 :Z,xx,]
B E
C F
22.如图,在△ AEC和△ DFB中,∠ E=∠F,点 A,B,C,D 在同向来线上,犹如
下三个关系式:① AE∥DF,② AB=CD,③ CE=BF。

(1)请用此中两个关系式作为条件,另一个作为结论,写出你以为正确的所
有命题(用序号写出命题书写形式:“假如,,那么”);
(2)选择( 1)中你写出的一个命题,说明它正确的原因。

[根源 : ZXXK]
23.如图,在△ ABC中,∠ ACB=90°, AC=BC,BE⊥CE于点 E. AD⊥CE于点 D.求证:△ DEC≌△ CDA.
第 3 课时角边角 (ASA) 与角角边 (AAS) 一、选择题[ 根源: Z
XXK]
1. C
2. B
3.C
4.C
5.D
6.B
7.D 8 . D
二、填空题
9. 乙和丙10. ∠BAD 11. AF=DE或 BF=CE或 BE=CF 12. 3 13. 4 14. 25
15. C D或 ABC BAD 或 AC BD 或 OADOBC
16. 2, 3 17. 16 18. ①②③④.
三、解答题
19.证明:在△ ABC与△ DCB中
ABC DCB (已知)
ACB DBC
BC BC(公共边)
∴△ ABC≌△ DCB
∴AB=DC
20.解法一:增添条件: AE=AF,
证明:在△ AED与△ AFD中,
∵AE=AF,∠ EAD=∠ FAD,AD=AD,
∴△ AED≌△ AFD(SAS) .
解法二:增添条件:∠ EDA=∠ FDA,
证明:在△ AED与△ AFD中,
∵∠ EAD=∠ FAD,AD= AD,∠ EDA=∠ FDA ∴△ AED≌△ AFD( ASA).
21.解:已知:①④(或②③、或②④)
A D
证明:若选①④
∵BE CF
B E
C C
∴ BE EC CF EC,即BC EF .
在△ ABC和△ DEF中
AB=DE,BC= EF,AC= DF.
∴△ABC≌△DEF .
22.解:(1)命题 1:假如①,②,那么③;
命题 2:假如①,③,那么②。

( 2)命题 1 的证明:
∵① AE∥DF,∴∠ A=∠D。

∵② AB=CD,∴ AB+BC=CD+BC,即 AC=DB。

在△ AEC和△ DFB中,
∵∠ E=∠F,∠ A=∠D, AC=DB,∴△ AEC≌△ DFB( AAS)。

[根源:学科
网]
∴CE=BF③
23.证明:∵ BE⊥CE于 E, AD⊥CE于 D,
∴∠ BEC=∠ CDE=90°,
在 Rt△BEC中,∠ BCE+∠ CBE=90°,
在Rt△BCA中,∠BCE+∠ACD=
90°,∴∠ CBE+∠ ACD=90°,
∴∠ CBE=∠ ACD,
在△ BEC和△ CDA中,
∠BEC=∠ CDA,∠ CBE=∠ ACD, BC
=AC,∴△ BEC≌△ CDA.
[ 根源:学| 科|网]。

相关文档
最新文档