初中数学教材例题的变式教学策略探究

合集下载

初中数学教研数学变式教学课题研究

初中数学教研数学变式教学课题研究

对学生学习成绩的影响
提高考试成绩
通过变式教学,学生能够 更好地理解和掌握数学知 识,从而在考试中取得更 好的成绩。
增强解题能力
变式教学让学生学会从不 同角度思考问题,有助于 提高学生的解题能力和应 试能力。
促进知识迁移
变式教学有助于学生将所 学知识应用于不同情境, 提高学生的知识迁移能力 和应用能力。
初中数学变式教学的实践效果
效果一
通过变式教学,学生能够更加深 入地理解和掌握数学知识,提高
数学成绩和自信心。
效果二
通过与实际生活和其他学科的结合 ,变式教学能够增强学生的学习兴 趣和动力,提高数学素养和应用能 力。
效果三
变式教学能够培养学生的创新思维 和实践能力,提高学生的自主学习 和探究能力,为未来的学习和工作 打下坚实的基础。
数学变式教学对教师的影响
对教师教学能力的要求
深入理解教材
教师需要具备对教材的深入理解,能够挖掘出不同知识点之间的 联系和区别,为变式教学提供基础。
灵活运用教学方法
教师需要掌握多种教学方法,能够根据不同的教学内容和目标选择 合适的方法,提高教学效果。
具备创新思维
教师需要具备创新思维,能够从不同的角度思考问题,设计出富有 创意的变式题目,激发学生的学习兴趣。
数学变式教学不是简单的变化题目,而是要遵循一定的原则和方法,有目的地变 化题目,以达到更好的教学效果。
数学变式教学的原则
目标导向原则
数学变式教学应以教学目标为 导向,通过变化题目来更好地
实现教学目标。
适度性原则
变化题目的难度和数量要适度 ,不能过于复杂或过多,以免 影响学生的学习兴趣和自信心 。
针对性原则
激励学生不断努力和提高。

例谈初中数学教学中变式题的应用技巧

例谈初中数学教学中变式题的应用技巧

例谈初中数学教学中变式题的应用技巧初中数学教学中,变式题是非常重要的一部分。

变式题能够帮助学生理解数学知识,并且提高他们的解决问题的能力。

本文将介绍一些关于初中数学教学中变式题的应用技巧,希望能够对教师和学生有所帮助。

一、培养学生的逻辑思维能力在教学过程中,教师应该注重培养学生的逻辑思维能力。

变式题往往需要学生进行逻辑推理,找出其中的规律。

教师可以通过分析变式题的解题思路,向学生展示逻辑推理的过程,引导学生学会从已知条件中推断出结果。

在课堂上,教师还可以设计一些有趣的逻辑推理游戏,帮助学生提高逻辑思维能力,从而更好地理解变式题的求解方法。

二、注重培养学生的解决问题能力变式题的求解过程往往需要学生进行灵活的思维和分析,教师在教学中应该注重培养学生的解决问题能力。

可以通过设计一些实际生活中的问题,让学生运用所学的知识去解决,帮助学生理解抽象的数学知识,并且提高他们的解决问题能力。

在课堂上,教师可以组织学生进行小组讨论,让学生通过交流和讨论,学会倾听他人的观点,发现问题的不同解决方法。

三、设计丰富多样的练习题目为了帮助学生更好地掌握变式题的求解方法,教师应该设计丰富多样的练习题目。

变式题的种类很多,包括代数式的变式、几何图形的变式等等,教师可以根据学生的实际情况,设计不同类型的练习题目。

教师还可以根据教材内容,设计一些拓展性的练习题目,帮助学生更加深入地理解变式题的求解方法。

四、注意引导学生发现问题的变化规律在变式题的教学中,教师应该注重引导学生发现问题的变化规律。

变式题的求解过程往往涉及到问题的变化规律,教师在引导学生解题的过程中,应该注重启发学生思维,帮助学生通过观察和分析,找出其中的规律。

在课堂上,教师可以通过举一反三的方式,设计一些相关的问题,让学生通过比较和分析,发现问题的变化规律。

五、关注学生的学习习惯和方法在变式题的教学过程中,教师还应该关注学生的学习习惯和方法。

变式题的学习需要学生有很好的思维习惯和解题方法,教师可以通过课堂讲解、作业布置等方式,引导学生建立正确的学习习惯和解题方法。

初中数学教学中变式题的应用技巧探究

初中数学教学中变式题的应用技巧探究

初中数学教学中变式题的应用技巧探究变式题通常是数学中比较常见的问题类型,也是中学数学教学中的关键内容,能够巩固基础知识,提高解决问题的能力。

变式题要求我们在给定的条件下找出一般情况下的规律,并应用这种规律得到特殊情况的解答。

本文从变式题的定义、解题方法以及应用技巧三个方面进行探究。

一、变式题的定义变式就是指一组含有多个量的代数式,在这些量中,有的是固定不变的,称为“已知量”,有的是不固定的,可以随意取值,这些量称为“未知量”。

变式题通常就是求这个代数式中未知量的值。

例如,一个水箱的高度为h,底面积为S,问如果水箱的深度为D,那么这个水箱最多能装多少水?解:在这个问题中,水箱的高度和底面积是已知量,而水箱深度是未知量。

因此,我们可以通过求解表达式来得到深度D的解答。

由于水箱的容积是高度和底面积的乘积,即V=hS。

当水箱的深度为D时,由几何关系可以得到h = S/D。

因此,我们可以将V=hS表示为V=S(Dh),代入h = S/D,得到V = S(D²/h)。

这个式子就是这个水箱最多能装多少水的表达式。

如果我们已知水箱的高度和底面积,那么我们就可以根据这个式子算出水箱最多能装多少水。

二、解题方法变式题的解题方法分两个步骤:第一步,确定未知量。

在解变式题的时候,首先需要确定未知量,只有这样才能根据已知量和表达式来求解未知量的值。

第二步,列出方程。

列出方程的时候需要注意以下几点:1.方程中的未知量需要用一个字母表示,并注明该字母代表什么量;3.方程中的等号两边的表达式一定要相等。

例如,有一道题,一块铁棒长L,质量m,宽a,高b,密度为d。

求铁棒的体积V。

解:在这个问题中,未知量是铁棒的体积V。

由于密度d=质量m/体积V,因此可以将体积V转化为V=m/d。

因此,我们可以得到方程V=m/d=L*a*b/d,代入已知量,即可求解未知量。

三、应用技巧1.找规律在解决变式题时,我们需要根据已知量和未知量的关系来找出规律。

初中数学教学中变式题的应用技巧探究

初中数学教学中变式题的应用技巧探究

初中数学教学中变式题的应用技巧探究初中数学教学中,变式题是一种非常重要的题型,通过变式题的应用可以有效地检验学生对知识点的掌握程度,培养学生的思维能力和解决问题的能力。

教师在教学中应该重视变式题的应用技巧,帮助学生更好地掌握和应用数学知识。

本文将就初中数学教学中变式题的应用技巧进行探究,希望能够给教师和学生一些启发和帮助。

一、变式题的基本概念变式题是指题目中的数值、字母或其他符号可以根据一定的规律或关系进行变化的题目。

变式题可以分为代数式、方程式、不等式等不同类型,需要学生根据题目的要求,灵活运用已有的知识和技巧进行解答。

在教学中,变式题的应用可以帮助学生理解和巩固知识,提高解决问题的能力,培养学生的逻辑思维和数学思维能力。

二、变式题的应用技巧1. 理解题意,抓住规律在解决变式题时,学生首先需要仔细阅读题目,理解问题的要求和条件。

然后,要进行分析和归纳,抓住题目中的规律和关系,找出变量之间的联系。

对于代数式的变式题,学生可以通过观察抓住数字间的运算规律,从而找出代数式的变化规律。

2. 灵活运用代数技巧在解决代数式的变式题时,学生需要灵活运用代数的加减乘除、因式分解、配方法、整理式子等技巧,将题目中的要求进行转化和处理。

对于一元二次方程的变式题,学生可以通过配方法或公式法来解题,将问题转化为标准的一元二次方程,然后求解。

3. 多种方法求解变式题的解题方法不是唯一的,学生可以根据题目的要求和自身的理解选择不同的方法来进行求解。

在教学中,教师可以引导学生多角度思考,多方法求解,培养学生的解决问题的能力。

对于不等式的变式题,学生可以通过图像法、试值法、代数法等多种方法来解题,从而提高对不等式的理解和运用能力。

4. 核对答案,总结归纳在完成变式题后,学生需要及时核对答案,检查解题过程中的错误和疏漏。

学生还要总结归纳解题的经验和方法,形成自己的解题技巧和方法。

教师可以引导学生在解题过程中注重方法的总结和归纳,从而提高学生的解题效率和技巧水平。

初中数学教材中“例习题的变式”教学研究

初中数学教材中“例习题的变式”教学研究

初中数学教材中“例习题的变式”教学研究初中数学教材中例习题是数学问题的精华,是训练学生的基本技能,培养学生分析和解决问题的重要途径。

通过这些题目的变式,对培养学生的思维,培养学生能力,提高学生素质都将起到积极的作用。

因此,教师在教学中要善于借题发挥,进行一题多解,一题多变,引导学生去探索数学问题的规律性和方法,以达到“做一题,通一类,会一片”的教学效果,让学生走出题海战术,真正做到减负。

如何做到举一反三,深入挖掘,充分演变呢?本文根据自己课堂实践中对课本例习题的变式的案例整理,谈谈如何进行课本例习题的变式。

1.模型变式,培养学生思维广阔性通过变式教学,不是解决一个问题,而是解决一类问题,遏制“题海战术”,开拓学生解题思路,培养学生的探索意识,实现“以少胜多”。

例1:(人教版七年级下册8.2解二元一次方程组例题)解下列二元一次方程组通过学习后,我们可以针对二元一次方程组的解的定义进行巩固训练,进行如下变式:变式1:若是方程组的解,求的值.变式2:已知方程组与同解,求的值.变式3:甲、乙两人解方程组甲看错了方程(1)中的而得到方程组的解为,乙看错了方程(2)中的而得到方程组的解为,求的值.在数学的学习中,我们发现很大一部分习题是以应用题的形式展现出来的,对于上述例题,我们也可以通过文字对它进行重新构建后,进行如下变式:变式4:已知与的和为10,且的2倍与的和为16,求与的值。

将二元一次方程组的学习与有理数的学习联系起来,于是有:变式5:若求与的值.变式6:若与互为相反数,求与的值.变式7:若数轴上的两个数与关于原点对称,求与的值。

与整式的加减学习联系,运用同类项的定义去判断两个单项式是否是同类项,又可作出如下变式:变式8:若单项式与是同类项,求与的值.变式9:若单项式与的和是0,求与的值.变式10:若单项式与的和是一个单项式,求与的值。

在近几年的中考试题中,常常出现一些规定新运算的试题,受这一思维的启发,将例题也可作如下变式:变式11:对于数,我们规定新运算:,已知和同时成立,求与的值.在这一系列变式训练中,学生从多角度接触二元一次方程组,通过知识点的迁移,达到巩固概念,掌握方法的效果,提高了学生学习的能力和水平。

初中数学中例题的变式教学

初中数学中例题的变式教学

初中数学中例题的变式教学摘要:初中数学教学实践中,例题变式教学不能单纯地寻求“变”而忽视“教学”的目的,最终目标是通过这一教学形式让学生更为牢固且有效地掌握所教的数学基础知识,以及可有效解决实际问题的能力,继而实现灵活多变的运用。

基于此,本文主要分析了初中数学中例题的变式教学。

关键词:初中数学;例题;变式教学引言在初中数学课堂教学中,围绕教材给出的例题,为学生设计一系列的变式题目,有重要的意义。

教师应为例题变式教学制订明确的目标,结合学生的学习基础、学习需求,围绕例题,给予学生一系列层层递进的变式题目,发展学生的数学思维能力,促进学生的持续成长。

1数学例题概述数学例题中应用变式教学,首先教师将例题讲明白,而后让学生仿照例题进行练习,提升学生的数学学习效率,与教师的单纯数学讲授更具意义,具有较大教学典型性。

在开展初中数学例题变式教学活动时,教师需精心选择、设计数学例题,结合教材教学的同时不断深入挖掘课本内容,可以实现一题多变的探究目的,充分激发、调动出学生的数学学习兴趣与能力。

譬在数学教学中进行例题变式教学,可促使学生将实践和理论进行更好地结合,以帮助学生更加灵活地解决相关数学问题,提高学生数学的学习和运用能力[1]。

2变式教学优势例题教学中的变式教学现阶段来看,数学教材给出的例题极具典型性,对学生而言,有良好的潜能开发价值。

在教学过程中,若教师仅沿用传统教学手段,让学生孤立、静止地解答这些习题,学生获得的学习体验,也仅是使用学过的数学知识,解决了一个问题而已。

但如果教师能够指引学生对例题展开深入研究,通过一题多解、一题多变等方式,挖掘题目更为深刻的学习价值,长此以往,学生思维的灵活性与深刻性将会得到质的提升,教学成效会更加显著。

同时,在教学过程中,为学生设计恰当合理的变式题目,也有助于在课堂中营造出民主、活跃、宽松的学习氛围,使学生对数学知识产生一定的亲近感,这有利于减初中生的学习压力,培育学生的创新精神,使学生逐步形成从多视角出发、自主探究数学题目的意识、习惯与能力[2]。

变式练习在初中数学教学中的应用策略研究

变式练习在初中数学教学中的应用策略研究

㊀㊀解题技巧与方法㊀㊀122㊀变式练习在初中数学教学中的应用策略研究变式练习在初中数学教学中的应用策略研究Һ莫兴展㊀(佛山市顺德区伦教汇贤实验学校,广东㊀佛山㊀528308)㊀㊀ʌ摘要ɔ变式练习是一种常规的数学教学方法,在素质教育背景下被广泛应用,它通过指导学生参与变式练习的方式组织初中数学教学活动,能帮助学生在解题过程中探寻知识规律,发展思维能力,逐渐构建完善的知识体系.为了更好地实现理想化的教育目标,文章在分析变式练习在初中数学教学中的应用意义的基础上,提出教师可以通过精心设计变式题组㊁构建生活情境㊁指导合作学习㊁引导全员参与等方式组织变式练习,为学生创设开放㊁自主的学习环境,促进学生的全面发展.ʌ关键词ɔ变式练习;初中数学;应用策略目前,部分学生在初中数学学习阶段经常出现理解某一问题,但对此类题型缺乏系统性理解的现象.产生这种现象的原因是学生并未理解知识的精髓与本质,从而导致无法灵活运用.为解决这一问题,发展学生的思维能力,教师需要积极探寻变式练习在初中数学教学中的意义,然后根据学生的实际学习情况与教学主题为学生提供丰富的练习资源,指导学生通过已有知识经验发散数学思维,提高核心素养,从而推动初中数学教育改革的发展.一㊁变式练习在初中数学教学中的应用意义变式练习就是从不同的角度改变已有的数学素材或问题的呈现方式,进而突出知识的本质特征.变式既是一种思想方法,也是创新的重要途径.变式练习包含解法变式和题目变式,将其运用于初中数学教学具有重要意义.第一,采用变式练习的方式,教师可以根据习题中蕴含的数学知识为学生提供与之相关的平行训练,鼓励学生从不同视角对问题进行分析,再利用所学知识解决问题.久而久之,学生会对知识产生更加全面的理解,并通过层层递进的变式推动思维的螺旋上升.第二,新课改倡导培育学生的核心素养,而在变式练习中,学生能逐渐摆脱对教师的依赖,结合教师提出的问题探究其中蕴含的本质特征,逐渐构建知识框架,发展自身思维能力,最终实现核心素养的发展,在深度学习中增进思维的灵活性与创新性.第三,借助变式练习,教师可以围绕教学目标与教学难点设计巩固练习,在题目训练中发现学生存在的普遍问题,从而深化对变式理论依据的理解,更好地掌握数学教学的基本方法,促进自身专业能力与专业素养的提高.二㊁变式练习在初中数学教学中的应用要点在组织变式练习的过程中,教师不能直接提供变式题目让学生进行练习,而需要从多角度出发考虑变式练习的适用性,这样才能保障教学活动得以顺利进行.为此,笔者对变式练习中需要关注的要点进行了总结:第一,变式练习的合理使用能帮助学生更好地掌握学科知识,发展核心素养,但任何事物都具有两面性,如果应用不当则可能影响学生的学习积极性,导致学生产生严重的心理负担.因此,在变式练习的内容设计方面,教师需要兼顾学生学习能力,把握好变式的 量 和 度 ,确保变式练习内容与学生最近发展区相吻合,难度适中,不会给学生造成较大的心理负担.第二,营造积极民主的课堂活动氛围很关键.教师需要充分发挥自身引导作用,结合学生的实际学习情况,巧妙运用语言引导的方式积极与学生进行沟通㊁交流,拉近师生之间的距离,消除学生对教师的恐惧感,使得学生在和谐平等的课堂中增强情感体验,愿意参与教师设计的变式练习.第三,变式练习的形式多种多样,教师在设计的过程中需要结合知识点以及题型进行综合考虑,以服务本节课教学目标为目的,注重数学思想与数学方法的渗透,避免变式练习出现功利趋向,确保学生能在思考中了解开展变式练习的真正目的.三㊁变式练习在初中数学教学中的应用策略变式练习是一项长期工作,教师需要做好 打持久战 的准备,充分发挥变式练习的潜在价值,激发学生的潜能.下面笔者将对变式练习的具体应用策略进行总结,以供广大教师参考借鉴.㊀㊀㊀解题技巧与方法123㊀㊀(一)围绕核心素养,精心设计变式题组核心素养是教育改革背景下的重点培育目标.在变式练习设计中,教师不仅要兼顾本课重点知识,而且要以核心素养为目标,借助变式练习发展学生的核心素养.因此,在课前准备阶段,教师应深入研读教材,基于核心素养设计变式题组,为后续教学活动的顺利进行奠定基础.以 整式的乘法 一课为例,本课教学目标是使学生经历探索整式乘法运算法则的过程,掌握乘法运算的算理,发展运算能力,并体会乘法分配律的作用与转化思想.在本课中,教师可以 抽象能力 推理意识 这两点展开设计练习.首先,围绕学生的数学抽象素养,教师可以借助生动的直观感知为学生提供理解的起点,引导学生思考:如图1是一个长和宽分别为m,n的长方形纸片,如果它的长和宽分别增加a,b,则所得长方形(如图2)的面积应该如何表示?教师可指导学生利用整式乘法与因式分解知识分析问题,引导学生类比数的运算,以运算律为基础得到整式乘法运算与因式分解之间的关系.图1㊀㊀图2在此基础上,教师可以设计与之相关的变式练习:为了扩大小区的绿地面积,现将其中一块长xm㊁宽ym的长方形绿地的长和宽分别增加am和bm,你能用几种方法表示扩大后绿地的面积?不同的表示方法之间又有什么关系?教师借助变式练习的方式帮助学生从单项式乘单项式迁移到多项式乘多项式问题中,发展了学生的抽象能力与推理意识,使得学生能更好地掌握整式乘法知识.设计说明:教师借助图形问题设计整式乘法计算问题能培养学生的数形结合思想,帮助学生在解决问题中生成核心素养,有效的变式题组设计还可以提升教学质量,确保学生能积极参与其中,并获得深层次发展.(二)构建生活情境,激发学生练习热情对学生而言,枯燥的学习方式难以激起其学习积极性,因此,教师需要以培养学生学习兴趣为目的设计变式练习.为确保学生顺利达成知识的迁移与运用目标,教师可以建立学科知识与生活的联系,借助情境创设的方式将数学变式练习转化为与生活息息相关的内容,帮助学生在练习中体会数学的重要价值,提高对数学学习的重视程度.以 求解一元一次方程 一课为例,在学生已经掌握一元一次方程的基本内涵后,教师需要指导学生利用所学知识解决实际问题,发展学生的运算能力,帮助学生了解一元一次方程在具体事件中的使用方法.结合本课重点内容,教师可为学生设计以下练习题目.练习1㊀某服装店搞促销活动,已知老板将一件冲锋衣按照成本价格提高40%后标价,又以八折的优惠方式卖出,经过计算,这种售卖方式仍能保障每件衣服获利15元,请计算每件冲锋衣的成本价格是多少元.变式1㊀小明在某公园售票处工作.一天结束后,他共售出了1000张票,已知公园的成人票价与学生票价分别为8元和5元,总票款为6950元,请帮助小明计算今日所售出的成人票与学生票各有多少张.变式2㊀小刚家距离学校1000m,小刚以80m/min的速度前进,5min后,妹妹以180m/min的速度骑车追赶小刚,并且在中途追上了他.求妹妹追上小刚花费了多长时间,以及在追上小刚后距离学校还有多远.设计说明:以上变式练习与学生的生活息息相关,商场促销㊁售票㊁路程问题均符合学生的最近发展区原则.在应用所学知识解决问题的过程中,学生可以首先寻找等量关系,然后结合生活经验对问题进行判断.以练习1为例,结合生活经验,学生可以利用利润率=利润成本=售价-成本成本的方式进行求解.这样的练习可以使学生顺利实现对知识的迁移运用,从而深化对一元一次方程的理解.(三)指导合作学习,培养学生发散思维合作学习是教育改革背景下大力倡导的一种新型学习方法.教师通过指导学生参与合作学习能帮助学生通过集中讨论的方式解决问题,同时培养良好的合作能力.因此,在指导学生参与变式练习的过程中,教师同样可以沿用合作学习的方式,为学生提供变式练习,并鼓励其在交流中给出不同的解决方法,从而积累学习经验,形成一题多解的能力.㊀㊀解题技巧与方法㊀㊀124㊀一题多解就是教师启发㊁引导学生对同一个数学问题从不同的角度㊁不同的解题思路㊁用不同的数学方法去解答.以 三角形的中位线 一课为例,结合本课重点内容,教师可基于学生学习表现合理划分小组,并为学生提供这样一个问题:如图4,在әABC,әADE中,øBCA=øDEA=90ʎ,A,C,E在一条直线上,且BC=DE,连接BD,M,N分别为AB,CE的中点,连接MN.求证:AD=2MN.图4根据教师提供的内容,各组成员积极参与讨论,利用所学知识解决问题.在学生讨论中,教师要有意识地指导学生从多种解法中找到适合自己的方法,然后在班级中进行分享,交流解法.设计说明:通过合作的方式,各组成员都能提出自己关于问题解决的思路与设想.例如,某组学生提出可以延长AE至F,使得EF=AC,连接BF,则MN=12BF,再证明BF=AD即可.还有小组成员提出可以取BD的中点G,连接MG,MC,由M为AB中点,得MG为әABD的中位线,MG=12AD,再证明әMCNɸәMBG即可.当学生完成讨论后,教师还可以为学生提供提示,让学生分析是否可以利用 直角三角形斜边上中线等于斜边一半 进行解答,由此帮助学生得到第三种解法,取AD中点O,连接OE,则OE=12AD,再连接OM,证明OMNE为平行四边形即可.教师利用变式练习指导学生参与一题多解,能发展学生的思维能力,帮助学生在解决问题中感受合作的价值,激发创新潜能.(四)引导全员参与,提升学生创新能力变式练习的目的是帮助学生在以不变应万变的过程中掌握数学知识,牢记基础理论.因此,为提高学生的参与度,教师可以在为学生提供变式练习的基础上,指导学生根据理论知识自主改变题目中的表述方法,设计变式练习,在班级中分享自己的题目并邀请其他同学回答.这样既能有效增强学生的情感体验,又能帮助学生更好地发展创新能力,掌握变式的精髓,逐步提高学习能力.以 用配方法求解一元二次方程 一课为例,在本课教学中,教师可带领学生整理解一元二次方程时应先将方程转化为(x+m)2=n的形式,再将两边同时开方转化为求解一元一次方程.在基础教学结束后,教师为学生设计问题 解方程x2+8x-9=0 ,指导学生利用配方法解决问题.接下来,为培养学生的创新能力,教师邀请学生尝试围绕配方法的基本法则自主设计问题并在班级中分享,由此深化学生对配方法解一元二次方程的了解.如下为学生自主设计的变式练习.变式1㊀解方程:x2-10x+25=7.变式2㊀健美操队伍有8行12列,后增加了69人,使得队伍增加的行㊁列数相同,求增加了多少行和多少列.变式3㊀一群猴子分两队,高高兴兴玩游戏,八分之一再平方,蹦蹦跳跳树林里,其余十二叽喳喳,伶俐活泼又调皮,两队猴子在一起,总数共多少只?设计说明:指导学生尝试自主设计变式练习的方式可以充分调动学生参与学习的积极性,在分析㊁实践中深化对理论知识的理解,最终养成良好的学习习惯,为后续参与高中阶段数学学习奠定坚实的基础.结㊀语综上所述,在教育改革背景下,优化初中数学教学方法㊁发展学生核心素养已经成为广大教师关心的焦点问题.在具体教学中,教师可以利用变式练习的方式指导学生学习数学知识.在更具自主性的课堂中,学生能完全地沉浸其中,感受数学的魅力,逐渐掌握基本的学习方法与解决问题的技巧,最终达成理想化的学习目标,形成完整的知识体系.ʌ参考文献ɔ[1]周新娣.精彩变换放飞思想:浅谈初中数学变式练习[J].现代中学生(初中版),2022(16):31-32.[2]张兰.初中数学变式练习的设计策略[J].数理天地(初中版),2022(10):36-38.[3]晏南飞.初中生提升数学运算能力的策略分析[J].现代中学生(初中版),2022(4):13-14.[4]简相国.初中数学问题导向型微课的设计与开发[J].新课程研究,2021(23):45-46.。

初中数学教学中变式题的应用技巧探究

初中数学教学中变式题的应用技巧探究

初中数学教学中变式题的应用技巧探究在初中数学教学中,变式题是一种常见的题型。

通过变式题,学生能够更充分地理解和掌握所学的知识。

变式题也给学生带来了一定的困惑和挑战。

以下是一些探究变式题的应用技巧。

理解变量的含义。

变式题中的变量通常用字母表示,代表着某个未知数或者可变的量。

学生应该明确变量的含义,弄清楚它所代表的是什么物理量,如何使用它来表示问题中的关系。

分析问题,找出变量的关系。

变式题通常涉及多个变量之间的关系,学生需要仔细分析问题,找出不同变量之间的联系和规律。

可以通过列举一些具体的例子或者尝试一些特殊情况来辅助分析,从而找到变量的关系式。

有一个变式题:“甲、乙两人的年龄之和是32岁,甲的年龄是乙的两倍,求甲、乙两人的年龄各是多少岁?”我们可以设甲的年龄为x岁,乙的年龄为y岁。

根据题意,我们可以列出以下两个方程:x + y = 32x = 2y通过解这个方程组,就可以求得甲、乙两人的年龄。

接下来,进行变量的替换和化简。

有时,变式题中的变量关系比较复杂,需要进行替换和化简,以便于进行进一步的推导和计算。

学生应该根据题目要求,将问题中的变量替换为更简单的形式,或者将多个变量的关系合并为一个简单的表达式,从而简化问题的处理过程。

以刚才的例子为例,我们可以将x = 2y替换为y = (1/2)x,然后将这个表达式代入到x + y = 32中,得到:通过合并同类项和化简,可以得到3/2x = 32,从而进一步求解出x的值。

带入到y = (1/2)x中,就可以求得y的值。

进行检验和解释。

在解决变式题之后,学生应该进行检验,确认所得的解是否符合题目要求和已知条件。

学生还应该解释所得的解的意义,将其与实际问题联系起来,从而加深对数学知识的理解和应用。

探究变式题的应用技巧是数学教学中的重要内容之一。

通过理解变量的含义、分析问题、替换和化简变量,进行检验和解释,学生可以更好地掌握变式题的解题方法和技巧,提高数学应用能力和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学教材例题的变式教学策略探究
随着教育经验的积累,我们渐渐发现,教材中的例题是教学的重点之一,而初中数学教学中的例题的变式教学是一项非常重要的策略,能够有效地帮助学生理解知识点,提高解题能力。

一、变式教学的定义
变式教学是指在教学中,针对同一知识点的例题进行改变或扩展,形成一类或多类相似的题型,并分别加以讲解和练习的教学方法。

通过变式教学,教师可以让学生更加深入地理解知识点的本质,掌握解题技巧,从而提高学生的解题能力和应用水平。

1.根据主要解题方法进行变式
初中数学教材中的例题往往采用了多种解题方法,例如代入法、等式法、图像法等,针对每种方法,可以进行相应的变式教学。

例如,当教师讲解方程解法时,可以将已知的方程变形后,让学生反推出原方程,从而让学生深入理解“等式两边可以加减乘除”的本质。

再例如,在讲解解析几何时,可以变化已知图形的位置和形状,引导学生灵活应用相关知识进行解题。

2.利用应用题进行变式教学
3.根据知识点的不同分类进行变式
初中数学知识点众多,同一知识点下还有不同的分类。

教师可以通过对同一知识点下的不同分类进行变式教学,让学生更加全面地掌握知识。

例如,在讲解三角形时,可以将三角形的类型、特征、定理等方面进行细致的教学,设计不同形式的练习题,让学生掌握三角形知识点的全貌。

三、变式教学的优势和作用
1.提高学生的解题能力
通过变式教学,能够让学生深入理解知识点的本质,并掌握灵活应用的技巧,从而提高学生的解题能力。

对于针对考试而学习的学生来说,能够在考试中举一反三,提高得分率。

2.激发学生学习兴趣
变式教学能够丰富教学内容,让学生在解题中感受学习的趣味性,激发学生的学习兴趣。

通过趣味性的教学方式,能够吸引学生的注意力,提高学生的学习积极性,增强学习效果。

通过变式教学,能够帮助学生形成系统和全面的知识结构,提高学生的自主学习能力和探究精神。

在教学过程中,应该鼓励学生自主思考,提出问题,并引导学生自我发现和探究,积极参与教学活动。

四、结语
初中数学教育是学生数学知识智能化发展的核心阶段,变式教学策略是提高学生数学解题能力、培养学生创新思维的重要途径之一。

教师可以通过设计多种形式的变式教学活动,让学生在探究中掌握知识,在实践中提高能力。

同时,在变式教学过程中,需要注重培养学生的思维能力和探究意识,让学生主动参与教学,从而形成学科全面发展的学生。

相关文档
最新文档