2022年河南省信阳市商城县中招数学一模试题及答案解析

合集下载

河南省信阳市2022年中考第一次模拟考试数学试题(含答案与解析)

河南省信阳市2022年中考第一次模拟考试数学试题(含答案与解析)
1. 的绝对值是()
A.3B. C. D.
2.信阳是中国毛尖之都,信阳毛尖是中国十大名茶之一,2021年信阳毛尖品牌价值达71.08亿元,连续12年位居全国前三位.数据“71.08亿”用科学记数法表示是()
A. 7.108×109B. 71.08×109C. 7.108×1010D. 71.08×1010
A.125°B.130°C.155°D.115°
【5题答案】
【答案】D
【解析】
【分析】由EG⊥AB得到∠AEG=90°,又∠FEG=25°,求得∠AEF的度数,再利用两直线平行,同旁内角互补得到∠CFE的度数.
【详解】解:∵EG⊥AB
∴∠AEG=90°
∵∠FEG=25°
∴∠AEF=∠AEG-∠FEG=65°
20.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.
(1)求证:DF是⊙O 切线;
(2)若CF=1,∠ACB=60°,求图中阴影部分的面积.
21.随着2022年北京冬奥会的进行,冬奥会吉样物“冰墩墩”和冬残奥会吉祥物“雪容融”深受广大人民的喜爱.某网店2021年12月份上架了“冰墩墩”和“雪容融”,当月售出了100个“冰墩墩”和40个“雪容融”,销售总额为14 800元.2022年1月售出了160个“冰墩墩”和60个“雪容融”,销售总额为23 380元.
三、解答题:本大题共8小题,共75分.解答应写出文字说明,证明过程或演算步骤.
16.先化简,再求值: ,其中x=-1.
17.国家实施“双减”政策后,学生学业负担有所减轻,很多家长选择利用周末时间带孩子去景区游玩.某调查小组从去过南湾湖和鸡公山的学生中各随机抽取了20名学生对这两个景区分别进行评分(满分10分),并通过整理和分析,给出了部分信息.南湾湖景区得分情况:

精品解析:2022年河南省信阳市商城县中招第三次模拟考试数学试题(解析版)

精品解析:2022年河南省信阳市商城县中招第三次模拟考试数学试题(解析版)
9.如图,在平面直角坐标系中,菱形OABC中,已知 , ,对角线AC、BO交点D,将菱形OABC绕点O逆时针方向旋转,每次旋转60°,若旋转n次后,点D的坐标是 ,则n的值可能是()
A.2019B.2020C.2021D.2022
【答案】D
【解析】
【分析】过点B作BE⊥x轴于点E,可得根据 ,OA=4,再由菱形的性质可得AB=OA=4,OD=BD,然后根据直角三角形的性质可得点 ,从而得到点 ,再根据旋转的规律可得每旋转6次一个循环,进而得到n是6的整数倍,即可求解.
【详解】解:如图,过点B作BE⊥x轴于点E,
∵ ,
∴OA=4,
在菱形OABC中,AB=OA=4,OD=BD,

∴AB=2AE,
∴AE=2,
∴ ,OE=6,
∴点 ,
∴点 ,
∵将菱形OABC绕点O逆时针方向旋转,每次旋转60°,
∴每旋转6次一个循环,
∵旋转n次后,点D的坐标是 ,
则样本的容量是5,选项A正确;
样本 中位数是4,选项B正确;
样本的平均数是 ,选项C正确;
样本的众数是3和4,选项D错误;
故选:D.
【点睛】题目主要考查了中位数与众数的定义、平均数与方差的计算公式等知识点,依据方差的计算公式正确得出样本数据是解题关键.
8.《九章算术》是人类科学史上应用数学的“算经之首”,其中记载了一个有趣的问题:“五只雀、六只燕,共重1斤(古代1斤=16两),雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少两?”现用列方程组求解,设未知数后,小明列出一个方程为 ,则另一个方程应为()
故选:A.
【点睛】本题考查了实数的大小比较以及绝对值的概念,解题的关键是求出各数的绝对值.

中考数学一模真题试卷含答案解析

中考数学一模真题试卷含答案解析

河南省信阳市中考数学一模试卷一、选择题:1.下列各组数中,互为倒数的是()A.2和﹣2 B.﹣2和C.﹣2和﹣D.﹣和22.下列不是三棱柱展开图的是()A.B. C.D.3.据统计,今年春节期间(除夕到初五),微信红包总收发次数达321亿次,几乎覆盖了全国75%的网民,数据“321亿”用科学记数法可表示为()A.3.21×108B.321×108C.321×109D.3.21×10104.如图,把等腰直角三角板的直角顶点放在刻度尺的一边上,若∠1=60°,则∠2的度数为()A.30°B.40°C.50°D.60°5.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民4月份用电量的调查结果:居民(户) 1 2 3 4月用电量(度/户) 30 42 50 51那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是50 B.众数是51 C.方差是42 D.极差是216.一次函数y=kx+b的图象如图,则当0<x≤1时,y的范围是()A.y>0 B.﹣2<y≤0 C.﹣2<y≤1 D.无法判断7.如图,▱ABCD中,AE平分∠BAD,若CE=3cm,AB=4cm,则▱ABCD的周长是()A.20cm B.21cm C.22cm D.23cm8.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为()A.2 B.﹣2 C.3 D.﹣3二、填空题:每小题3分,共21分.9.计算:﹣14+﹣4cos30°=.10.不等式组的解集为.11.某市初中毕业女生体育中招考试项目有四项,其中“立定跳远”、“1000米跑”、“篮球运球”为必测项目,另一项从“掷实心球”、“一分钟跳绳”中选一项测试.则甲、乙、丙三位女生从“掷实心球”或“一分钟跳绳”中选择一个考试项目的概率是.12.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=度.13.在平面直角坐标系中,点A(2,3),B(5,﹣2),以原点O为位似中心,位似比为1:2,把△ABO缩小,则点B的对应点B′的坐标是.14.如图,在矩形ABCD中,AB=4,BC=2,以A为圆心,AB的长为半径画弧,交DC于点E,交AD延长线于点F,则图中阴影部分的面积为.15.如图,有一张长为8cm,宽为7cm的矩形纸片ABCD,现要剪下一个腰长为6cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为cm2.三、解答题:本大题8个小题,共75分.16.先化简分式:(),若该分式的值为2,求x的值.17.如图,AB是⊙O的直径,C、D为半圆O上的两点,CD∥AB,过点C作CE⊥AD,交AD 的延长线于点E,tanA=.(1)求证:CE是⊙O的切线;(2)猜想四边形AOCD是什么特殊的四边形,并证明你的猜想.18.手机给人们的生活带来了很多的方便,但也出现了过度使用手机的现象,出现了所谓的“手机控”、“低头族”等,某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”这一现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)本次调查的学生家长有名,“很赞同”初中生带手机上学的家长所对应的圆心角度数是;(2)请补全报“无所谓”态度的家长所对应的条形统计图(标上柱高数值);(3)请你对初中生是否应该带手机上学提出一个合理化的建议.19.已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.20.如图1,被誉为“中原第一高楼”的郑州会展宾馆(俗称“玉米楼”)就坐落在风景如画的如意湖畔,也是来郑观光的游客留影的最佳景点.学完了三角函数后,刘明和王华决定用自己学到的知识测量“玉米楼”的高度.如图2,刘明在点C处测得楼顶B的仰角为45°,王华在高台上测得楼顶的仰角为30°.若高台高DE为5米,点D到点C的水平距离EC为187.5米,A、C、E三点共线,求“玉米楼”AB的高(,结果保留整数).21.“红星”中学准备为校“教学兴趣小组”购进甲、乙两种学习用具,已知5件甲种学习用具的进价与3件乙种学习用具的进价的和为231元,2件甲种学习用具的进价与3件乙种学习用具的进价的和为141元.(1)求每件甲种、乙种学习用具的进价分别是多少元?(2)如果购进甲种学习用具有优惠,优惠方法是:购进甲种学习用具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种学习用具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,学校决定在甲、乙两种学习用具中选购其中一种,且数量超过20件,请你帮助学校判断购进哪种学习用具更省钱.22.阅读并完成下面的数学探究:(1)【发现证明】如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,小颖把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.(2)【类比延伸】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.(3)【结论应用】如图(3),四边形ABCD中,AB=AD=80,∠B=60°,∠ADC=120°,∠BAD=150°,点E、F分别在边BC、CD上,且AE⊥AD,DF=40(),连E、F,求EF 的长(结果保留根号).23.如图,在平面直角坐标系中,一次函数y=﹣的图象与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c关于直线x=对称,且经过A、C两点,与x轴交于另一点为B.(1)①求点B的坐标;②求抛物线的解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA、PC,若△PAC的面积是△ABC面积的,求出此时点P的坐标.(3)在抛物线的对称轴上是否存在点D,使△ADC为直角三角形?若存在,直接写出点D的坐标;若不存在,请说明理由.河南省信阳市中考数学一模试卷参考答案与试题解析一、选择题:1.下列各组数中,互为倒数的是()A.2和﹣2 B.﹣2和C.﹣2和﹣D.﹣和2【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:2×(﹣)=1,故C正确;故选:C.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列不是三棱柱展开图的是()A.B. C.D.【考点】几何体的展开图.【分析】根据三棱柱的两底展开是三角形,侧面展开是三个四边形,可得答案.【解答】解:∵三棱柱展开图有3个四边形,2个三角形,∴C选项不是三棱柱展开图,故选:C.【点评】本题考查了几何体的展开图,注意两底面是对面,展开是两个全等的三角形,侧面展开是三个矩形.3.据统计,今年春节期间(除夕到初五),微信红包总收发次数达321亿次,几乎覆盖了全国75%的网民,数据“321亿”用科学记数法可表示为()A.3.21×108B.321×108C.321×109D.3.21×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:321亿=32100000000=3.21×1010,故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,把等腰直角三角板的直角顶点放在刻度尺的一边上,若∠1=60°,则∠2的度数为()A.30°B.40°C.50°D.60°【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.【解答】解:∵直尺的两边互相平行,∠1=60°,∴∠3=∠1=60°.∵∠3+∠2=90°,∴∠2=90°﹣∠3=90°﹣60°=30°.故选A.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.5.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民4月份用电量的调查结果:居民(户) 1 2 3 4月用电量(度/户) 30 42 50 51那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是50 B.众数是51 C.方差是42 D.极差是21【考点】方差;中位数;众数;极差.【专题】计算题.【分析】根据表格中的数据,求出平均数,中位数,众数,极差与方差,即可做出判断.【解答】解:10户居民4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,极差为51﹣30=21,方差为[(30﹣46.8)2+2(42﹣46.8)2+3(50﹣46.8)2+4(51﹣46.8)2]=42.96.故选C.【点评】此题考查了方差,中位数,众数,以及极差,熟练掌握各自的求法是解本题的关键.6.一次函数y=kx+b的图象如图,则当0<x≤1时,y的范围是()A.y>0 B.﹣2<y≤0 C.﹣2<y≤1 D.无法判断【考点】一次函数的性质.【分析】根据一次函数的图象与两坐标轴的交点直接解答即可.【解答】解:因为一次函数y=kx+b的图象与两坐标轴的交点分别为(1,0)、(0,﹣2),所以当0<x≤1,函数y的取值范围是:﹣2<y≤0,故选B【点评】本题考查的是用数形结合的方法求函数的取值范围,解答此题的关键是正确观察函数在平面直角坐标系内的图象,属较简单题目.7.如图,▱ABCD中,AE平分∠BAD,若CE=3cm,AB=4cm,则▱ABCD的周长是()A.20cm B.21cm C.22cm D.23cm【考点】平行四边形的性质.【分析】由平行四边形的性质得出AD=BC=4cm,AB=DC,AD∥BC,由平行线的性质和角平分线求出BE=AB=4cb,得出BC=7cm,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=10,AB=DC,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BCD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=4cm,∴BC=BE+CE=7cm,∴▱ABCD的周长=2(DC+BC)=2(4+7)=22cm;故选:C.【点评】本题考查了平行四边形的性质、等腰三角形的判定、平行线的性质;熟练掌握平行四边形的性质,证出BE=AB是解决问题的关键.8.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为()A.2 B.﹣2 C.3 D.﹣3【考点】反比例函数与一次函数的交点问题.【分析】想办法把C点坐标用a表示出来,然后代入y=﹣即可.【解答】解:作CE⊥x轴于E,∵AO∥CE,BA:AC=2:1,AO=OB=a,∴=,∴EB=,CE=,∴点C坐标(﹣,a),又∵点C在y=﹣上,∴﹣=﹣3,∵a>0,∴a=2.故选A.【点评】本题考查反比例函数与一次函数的有关知识,学会用转化的思想解决,把问题变成方程是解题的关键,属于中考常考题型.二、填空题:每小题3分,共21分.9.计算:﹣14+﹣4cos30°=﹣1.【考点】实数的运算;特殊角的三角函数值.【分析】首先化简二次根式以及利用特殊角的三角函数值代入求出答案.【解答】解:﹣14+﹣4cos30°=﹣1+2﹣4×=﹣1.故答案为:﹣1.【点评】此题主要考查了特殊角的三角函数值以及二次根式的性质,正确化简各数是解题关键.10.不等式组的解集为﹣3<x<﹣2.【考点】解一元一次不等式组.【分析】分别求得各不等式的解集,然后求出公共部分即可.【解答】解:,由①得:x>﹣3,由②得:x<﹣2,则不等式组的解集为﹣3<x<﹣2.故答案为:﹣3<x<﹣2.【点评】】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.某市初中毕业女生体育中招考试项目有四项,其中“立定跳远”、“1000米跑”、“篮球运球”为必测项目,另一项从“掷实心球”、“一分钟跳绳”中选一项测试.则甲、乙、丙三位女生从“掷实心球”或“一分钟跳绳”中选择一个考试项目的概率是.【考点】列表法与树状图法.【分析】首先分别用A,B代表“掷实心球”、“一分钟跳绳”,然后根据题意画树状图,继而求得所有等可能的结果与甲、乙、丙三位女生从“掷实心球”或“一分钟跳绳”选择同一个测试项目的情况,利用概率公式即可求得答案.【解答】解:分别用A,B代表“掷实心球”、“一分钟跳绳”,画树状图得:∵共有8种等可能的结果,甲、乙、丙三位女生从“掷实心球”或“一分钟跳绳”中选择一个考试项目的有2种情况,∴其概率是:=.故答案为:.【点评】此题考查了树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.12.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=52度.【考点】等腰三角形的性质.【分析】设∠ADC=α,然后根据AC=AD=DB,∠BAC=102°,表示出∠B和∠BAD的度数,最后根据三角形的内角和定理求出∠ADC的度数.【解答】解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=102°,∴∠DAC=102°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+102°﹣=180°,解得:α=52°.故答案为:52.【点评】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等.13.在平面直角坐标系中,点A(2,3),B(5,﹣2),以原点O为位似中心,位似比为1:2,把△ABO缩小,则点B的对应点B′的坐标是(,﹣1)或(﹣,1).【考点】位似变换;坐标与图形性质.【分析】由以原点O 为位似中心,位似比为1:2,把△ABO 缩小,直接利用位似图形的性质求解即可求得答案.【解答】解:∵以原点O 为位似中心,位似比为1:2,把△ABO 缩小,B (5,﹣2),∴点B 的对应点B ′的坐标是:(,﹣1)或(﹣,1).故答案为:(,﹣1)或(﹣,1).【点评】此题考查了位似图形的性质.注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k .14.如图,在矩形ABCD 中,AB=4,BC=2,以A 为圆心,AB 的长为半径画弧,交DC 于点E ,交AD 延长线于点F ,则图中阴影部分的面积为 8﹣4+π .【考点】扇形面积的计算.【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得∠AED=30°,进而求得∠1=60°;由勾股定理求出DE ,再根据阴影FDE 的面积S 1=S 扇形AEF ﹣S △ADE 、阴影ECB 的面积S 2=S 矩形﹣S △ADE ﹣S 扇形ABE 列式计算即可得解.【解答】解:∵在矩形ABCD 中,AB=4,BC=2,∴AB=2DA ,AB=AE (扇形的半径),∴AE=2DA ,∴∠AED=30°,∴∠1=90°﹣30°=60°,∵DA=2∴AB=2DA=4,∴AE=4,∴DE==2,∴阴影FDE 的面积S 1=S 扇形AEF ﹣S △ADE =﹣×2×2=π﹣2.阴影ECB 的面积S 2=S 矩形﹣S △ADE ﹣S 扇形ABE =2×4﹣×2×2﹣=8﹣2﹣π;. 则图中阴影部分的面积为=8﹣2﹣π+π﹣2=8﹣4+π.故答案为:8﹣4+π. 【点评】本题考查了矩形的性质,扇形的面积计算,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质并求出∠AED=30°是解题的关键,也是本题的难点.15.如图,有一张长为8cm ,宽为7cm 的矩形纸片ABCD ,现要剪下一个腰长为6cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为 18或3或12 cm 2.【考点】勾股定理;等腰三角形的判定;矩形的性质. 【专题】分类讨论. 【分析】因为等腰三角形腰的位置不明确,所以分三种情况进行讨论: (1)△AEF 为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE 边上的高BF ,再代入面积公式求解;(3)先求出AE 边上的高DF ,再代入面积公式求解.【解答】解:分三种情况计算:(1)当AE=AF=6时,如图:∴S△AEF=AE•AF=×6×6=18(cm2);(2)当AE=EF=6时,如图:则BE=7﹣6=1,BF===,∴S△AEF=•AE•BF=×6×=3(cm2);(3)当AE=EF=6时,如图:则DE=8﹣6=2,DF===4,∴S△AEF=AE•DF=×6×4=12(cm2);故答案为:18或3或12.【点评】本题主要考查了勾股定理的运用,矩形的性质,三角形的面积,要根据三角形的腰长的不确定分情况讨论,有一定的难度.三、解答题:本大题8个小题,共75分.16.先化简分式:(),若该分式的值为2,求x的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再由该分式的值为2,求出x的值即可.【解答】解:原式=•=,∵该分式的值为2,∴=2,即2(x+2)=4,解得x=0,经检验x=0是分式方程的解.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.如图,AB是⊙O的直径,C、D为半圆O上的两点,CD∥AB,过点C作CE⊥AD,交AD 的延长线于点E,tanA=.(1)求证:CE是⊙O的切线;(2)猜想四边形AOCD是什么特殊的四边形,并证明你的猜想.【考点】切线的判定;菱形的判定.【分析】(1)连接OD,由锐角三角函数得出∠A=60°,证出△OAD是等边三角形,得出∠ADO=∠AOD=60°,再证明△COD是等边三角形,得出∠COD=60°=∠ADO,证出OC∥AE,由已知条件得出CE⊥OC,即可得出结论;(2)由(1)得:△OAD和△COD是等边三角形,得出OA=AD=OD=CD=OC,即可证出四边形AOCD是菱形.【解答】(1)证明:连接OD,如图所示:∵tanA=,∴∠A=60°,∵OA=OD,∴△OAD是等边三角形,∴∠ADO=∠AOD=60°,∵CD∥AB,∴∠ODC=60°,∵OC=OD,∴△COD是等边三角形,∴∠COD=60°=∠ADO,∴OC∥AE,∵CE⊥AE,∴CE⊥OC,∴CE是⊙O的切线;(2)解:四边形AOCD是菱形;理由如下:由(1)得:△OAD和△COD是等边三角形,∴OA=AD=OD=CD=OC,∴四边形AOCD是菱形.【点评】本题考查了切线的判定、等边三角形的判定与性质、三角函数、菱形的判定;熟练掌握切线的判定方法,证明三角形是等边三角形是解决问题的关键.18.手机给人们的生活带来了很多的方便,但也出现了过度使用手机的现象,出现了所谓的“手机控”、“低头族”等,某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”这一现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)本次调查的学生家长有200名,“很赞同”初中生带手机上学的家长所对应的圆心角度数是36°;(2)请补全报“无所谓”态度的家长所对应的条形统计图(标上柱高数值);(3)请你对初中生是否应该带手机上学提出一个合理化的建议.【考点】条形统计图;扇形统计图.【分析】(1)根据赞同的人数和所占的百分比求出总人数,再乘以无所谓所占的百分比求出无所谓的人数,用总人数减去其它的人数求出很赞同的人数,然后乘以360°求出“很赞同”初中生带手机上学的家长所对应的圆心角的度数;(2)根据(1)求出无所谓的人数可直接画出条形统计图;(3)根据学生现在正需要好好地学习,不应该带手机,网络这么发达,会影响学习.【解答】解:(1)本次调查的学生家长有=200(名),无所谓的人数是:200×20%=40(人),很赞同的人数是:200﹣50﹣40﹣90=20(人),则“很赞同”初中生带手机上学的家长所对应的圆心角度数是360°×=36°;故答案为:200,36°;(2)根据(1)求出的无所谓的人数是40,补图如下:(3)初中生不应该带手机,影响学习.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.【考点】根的判别式;三角形三边关系;等腰三角形的性质.【分析】(1)求出根的判别式,利用偶次方的非负性证明;(2)分△ABC的底边长为2、△ABC的一腰长为2两种情况解答.【解答】(1)证明:△=(k+3)2﹣4×3k=(k﹣3)2≥0,故不论k取何实数,该方程总有实数根;(2)解:当△ABC的底边长为2时,方程有两个相等的实数根,则(k﹣3)2=0,解得k=3,方程为x2﹣6x+9=0,解得x1=x2=3,故△ABC的周长为:2+3+3=8;当△ABC的一腰长为2时,方程有一根为2,方程为x2﹣5x+6=0,解得,x1=2,x2=3,故△ABC的周长为:2+2+3=7.【点评】本题考查的是一元二次方程根的判别式、等腰三角形的性质,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.20.如图1,被誉为“中原第一高楼”的郑州会展宾馆(俗称“玉米楼”)就坐落在风景如画的如意湖畔,也是来郑观光的游客留影的最佳景点.学完了三角函数后,刘明和王华决定用自己学到的知识测量“玉米楼”的高度.如图2,刘明在点C处测得楼顶B的仰角为45°,王华在高台上测得楼顶的仰角为30°.若高台高DE为5米,点D到点C的水平距离EC为187.5米,A、C、E三点共线,求“玉米楼”AB的高(,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【分析】作DM⊥AB于M,交BC于F,作CG⊥DM于G,设BM=x米,根据题意和正切的定义表示出DM、FM,列出方程,计算即可.【解答】解:作DM⊥AB于M,交BC于F,作CG⊥DM于G,设BM=x米,由题意得,DG=187.5米,CG=5米,∠BFM=45°,∠BDM=30°,则GF=CG=5米,DF=DG+GF=192.5米,FM=BM=x米,∴DM==x,∵DM﹣FM=DF,∴x﹣x=192.5,解得,x=≈275,275+5=280(米).答:“玉米楼”AB的高约为280米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,正确理解仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21.“红星”中学准备为校“教学兴趣小组”购进甲、乙两种学习用具,已知5件甲种学习用具的进价与3件乙种学习用具的进价的和为231元,2件甲种学习用具的进价与3件乙种学习用具的进价的和为141元.(1)求每件甲种、乙种学习用具的进价分别是多少元?(2)如果购进甲种学习用具有优惠,优惠方法是:购进甲种学习用具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种学习用具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,学校决定在甲、乙两种学习用具中选购其中一种,且数量超过20件,请你帮助学校判断购进哪种学习用具更省钱.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设每件甲种学习用具的进价是a元,每件乙种学习用具的进价是b元,根据花费钱数=单价×数量,结合两种不同购进方式可列出关于a、b的二元一次方程组,解方程组即可得出结论;(2)结合优惠政策对x进行分段考虑,由花费钱数=单价×数量,可得出y关于x的函数关系式;(3)找出购进乙种学习用具x件的花费,令乙种的花费<甲种的花费找出关于x的一元一次不等式,解出不等式即可得出结论.【解答】解(1)设每件甲种学习用具的进价是a元,每件乙种学习用具的进价是b元,根据题意得:,解得:.答:每件甲种学习用具的进价是30元,每件乙种学习用具的进价是27元.(2)当0<x≤20时,y=30x;当x>20时,y=20×30+0.7×30(x﹣20)=21x+180.(3)购买x件乙种学习用具的花费为27x元,购买x件甲种学习用具的花费为(21x+180)元,令27x<21x+180,解得:x<30.即:当20<x<30时,购进乙种学习用具更省钱;当x=30时,两种学习用具的花费一样;当x>30时,购买甲种学习用具更省钱.【点评】本题考查了解二元一次方程组、一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据已知列出关于a、b的二元一次方程组;(2)结合优惠政策分段寻找函数解析式;(3)令购买乙种的花费<购买甲种的花费找出此时的x的取值范围.本题属于中档题,难度不大,解决该类型题目时,把握住数量关系是关键.22.阅读并完成下面的数学探究:(1)【发现证明】如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,小颖把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.(2)【类比延伸】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系∠EAF=∠BAD时,仍有EF=BE+FD.(3)【结论应用】如图(3),四边形ABCD中,AB=AD=80,∠B=60°,∠ADC=120°,∠BAD=150°,点E、F分别在边BC、CD上,且AE⊥AD,DF=40(),连E、F,求EF 的长(结果保留根号).【考点】四边形综合题.【分析】(1)根据旋转变换的性质和正方形的性质证明△EAF≌△GAF,得到EF=FG,证明结论;(2)把△ABE绕点A逆时针旋转至△ADH,使AB与AD重合,证明△EAF≌△HAF,证明即可;(3)延长BA交CD的延长线于P,连接AF,根据四边形内角和定理求出∠C的度数,得到∠P=90°,求出PD、PA,证明∠EAF=∠BAD,又(2)的结论得到答案.【解答】(1)证明:由旋转的性质可知,△ABE≌△ADG,∴BE=DG,AE=AG,∠BAE=∠DAG,∠ADG=∠ABE=90°,∴G、D、F在同一条直线上,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAG=90°,又∠EAF=45°,∴∠FAG=45°,在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∴EF=BE+FD;(2)当∠EAF=∠BAD时,仍有EF=BE+FD.证明:如图(2),把△ABE绕点A逆时针旋转至△ADH,使AB与AD重合,则BE=DH,∠BAE=∠DAH,∠ADH=∠B,又∠B+∠D=180°,∴∠ADH+∠D=180°,即F、D、H在同一条直线上,当∠EAF=∠BAD时,∠EAF=∠HAF,由(1)得,△EAF≌△HAF,则EF=FH,即EF=BE+FD,故答案为:∠EAF=∠BAD;(3)如图(3),延长BA交CD的延长线于P,连接AF,∵∠B=60°,∠ADC=120°,∠BAD=150°,∴∠C=30°,∴∠P=90°,又∠ADC=120°,∴∠ADP=60°,∴PD=AD×cos∠ADP=40,AP=AD×sin∠ADP=40,∴PF=PD+DF=40,∴PA=PF,∴∠PAF=45°,又∠PAD=30°,∴∠DAF=15°,∴∠EAF=75°,∠BAE=60°,∴∠EAF=∠BAD,由(2)得,EF=BE+FD,又BE=BA=80,∴EF=BE+FD=40().【点评】本题考查的是正方形的性质、旋转变换的性质、全等三角形的判定和性质,掌握正方形的四条边都相等、四个角都是直角,旋转变换的旋转角相等、旋转后的三角形与原三角形全等是解题的关键.23.如图,在平面直角坐标系中,一次函数y=﹣的图象与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c关于直线x=对称,且经过A、C两点,与x轴交于另一点为B.(1)①求点B的坐标;②求抛物线的解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA、PC,若△PAC的面积是△ABC面积的,求出此时点P的坐标.(3)在抛物线的对称轴上是否存在点D,使△ADC为直角三角形?若存在,直接写出点D的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)①由直线过点A,可得出点A的坐标,由A、B关于直线x=对称可找出B点的坐标;②由直线经过点C可求出点C的坐标,利用待定系数法即可求出抛物线的解析式;(2)由△PAC的面积是△ABC面积的,结合同底三角形的面积公式即可得出点P到直线AC的距离为点B到直线AC的距离的,设出P点坐标,由点到直线的距离可列出关于m的一元二次方程,解方程即可得出结论;(3)假设存在,设出D点坐标,由两点间的距离公式用n表示出各边长度,结合勾股定理分别讨论即可得出结论.【解答】解:(1)①令y=﹣=0,解得:x=4,即点A的坐标为(4,0).∵A、B关于直线x=对称,∴点B的坐标为(﹣1,0).②令x=0,则y=2,∴点C的坐标为(0,2),∵抛物线y=ax2+bx+c经过点A、B、C,∴有,解得:.故抛物线解析式为y=﹣++2.(2)直线AC的解析式为y=﹣,即x+y﹣2=0,。

2021-2022学年度河南省信阳市中考数学一模试卷及答案解析

2021-2022学年度河南省信阳市中考数学一模试卷及答案解析

河南省信阳市中考数学一模试卷一、选择题(每小题3分,共30分)1.﹣5的相反数是()A.B.5 C.﹣D.﹣52.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A.3.2×107B.3.2×108C.3.2×10﹣7D.3.2×10﹣83.如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A.200 cm2B.600 cm2C.100πcm2D.200πcm24.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x,3,4,6.已知他们平均每人捐5本,则这组数据的众数、中位数和方差分别是()A.5,5,B.5,5,10 C.6,5.5,D.5,5,5.下列二次根式中,与是同类二次根式的是()A.B.C.D.6.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.27.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A.m≥5 B.m>5 C.m≤5 D.m<58.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a ≠0)的两根之和()A.小于0 B.等于0 C.大于0 D.不能确定9.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.B.C.D.10.如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P 从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.计算的结果是.12.如图,在△ABC中,∠C=90°,若BD∥AE,∠DBC=20°,则∠CAE的度数是.13.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为.14.如图,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O的半径为2,则圆中阴影部分的面积为.15.如图,在R△ABC中,∠ACB=90°,BC=3,AC=4,点M为边AC的中点,点N为边BC上任意一点,若点C关于直线MN的对称点C′恰好落在△ABC的中位线上,则CN的长为.三、解答题(共75分)16.先化简,再求值:(a+1﹣)÷(﹣),其中a=2+.17.如图,⊙O的直径AB=4,点C为⊙O上的一个动点,连接OC,过点A作⊙O的切线,与BC的延长线交于点D,点E为AD的中点,连接CE.(1)求证:CE是⊙O的切线;(2)填空:①当CE=时,四边形AOCE为正方形;②当CE=时,△CDE为等边三角形.18.家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.(1)下列选取样本的方法最合理的一种是.(只需填上正确答案的序号)①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:①m=,n=;②补全条形统计图;③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.19.如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG =125°),脚与洗漱台距离GC=15cm(点D,C,G,E在同一直线上).(cos80°≈0.018,sin80°≈0.98,≈1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?20.如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x 的取值范围.21.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?22.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C 的坐标是(0,﹣3),动点P在抛物线上.(1)b=,c=,点B的坐标为;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.河南省信阳市淮滨县中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣5的相反数是5,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000032=3.2×10﹣7;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【分析】首先判断出该几何体,然后计算其面积即可.【解答】解:观察三视图知:该几何体为圆柱,高为2,底面直径为1,侧面积为:πdh=2×π=2π,∵是按1:10的比例画出的一个几何体的三视图,∴原几何体的侧面积=100×2π=200π,故选:D.【点评】本题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体.4.【分析】根据平均数,可得x的值,根据众数的定义、中位数的定义、方差的定义,可得答案.【解答】解:由5,7,x,3,4,6.已知他们平均每人捐5本,得x=5.众数是5,中位数是5,方差=,故选:D.【点评】本题考查了方差,利用方差的公式计算是解题关键.5.【分析】直接利用同类二次根式的定义分别化简二次根式求出答案.【解答】解:A、=3,与不是同类二次根式,故此选项错误;B、=,与,是同类二次根式,故此选项正确;C、=2,与不是同类二次根式,故此选项错误;D、==,与不是同类二次根式,故此选项错误;故选:B.【点评】此题主要考查了同类二次根式,正确化简二次根式是解题关键.6.【分析】要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:===2,然后用待定系数法即可.【解答】解:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴==,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y=的图象上,则mn=1,∵点B在反比例函数y=的图象上,B点的坐标是(﹣2n,2m),∴k=﹣2n•2m=﹣4mn=﹣4.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.7.【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了即可确定m的范围.【解答】解:解不等式2x﹣1>3(x﹣2),得:x<5,∵不等式组的解集为x<5,∴m≥5,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为m,n再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为m,n,则m+n=﹣=﹣+,∵a>0,∴>0,∴m+n>0.故选:C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.9.【分析】如图,过D作DF⊥AF于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明△AEO∽△ADF,而AD=AB=3,接着利用相似三角形的性质即可求出DF、AF的长度,也就求出了D的坐标.【解答】解:如图,过D作DF⊥AF于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3﹣x)2=x2+12,∴x=,又DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,而AD=AB=3,∴AE=CE=3﹣=,∴,即,∴DF=,AF=,∴OF=﹣1=,∴D的坐标为(﹣,).故选:A.【点评】此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.10.【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP 面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:A.【点评】本题考查了反比例函数图象性质、锐角三角函数性质,解题的关键是明确点P在O→A、A→B、B→C三段位置时三角形OMP的面积计算方式.二、填空题(每小题3分,共15分)11.【分析】首先化简,然后根据实数的运算法则计算.【解答】解:=2﹣=.故答案为:.【点评】本题主要考查算术平方根的开方及平方根的运算,属于基础题.12.【分析】求出∠ABD,根据两直线平行,内错角相等可得∠BAE=∠ABD,然后根据∠CAE=∠BAC+∠BAE 代入数据计算即可得解.【解答】解:∵∠DBC=20°,∴∠ABD=60°﹣∠DBC=60°﹣20°=40°,∵BD∥AE,∴∠BAE=∠ABD=40°,∴∠CAE=∠BAC+∠BAE=30°+40°=70°.故答案为:70°.【点评】本题考查了平行线的性质,三角板的知识,熟记性质以及三角板的度数是解题的关键.13.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽签后每个运动员的出场顺序都发生变化的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,抽签后每个运动员的出场顺序都发生变化有2种情况,∴抽签后每个运动员的出场顺序都发生变化的概率=,故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】过点O作OE⊥AC,交AC于D,连接OC,BC,证明弓形OC的面积=弓形BC的面积,这样图中阴影部分的面积=△OBC的面积.【解答】解:过点O作OE⊥AC,交AC于D,连接OC,BC,∵OD=DE=OE=OA,∴∠A=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B=60°,∵OB=OC=2,∴△OBC是等边三角形,∴OC=BC,∴弓形OC面积=弓形BC面积,∴阴影部分面积=S△OBC=×2×=.故答案为:【点评】本题考查了折叠问题、扇形的面积.解决本题的关键是把阴影部分的面积转化为△OBC的面积.15.【分析】取BC、AB的中点H、G,理解MH、HG、MG.分三种情形:①如图1中,当点C′落在MH 上时;②如图2中,当点C′落在GH上时;③如图3中,当点C′落在直线GM上时,分别求解即可解决问题;【解答】解:取BC、AB的中点H、G,理解MH、HG、MG.如图1中,当点C′落在MH上时,设NC=NC′=x,由题意可知:MC=MC′=2,MH=,HC′=,HN=﹣x,在Rt△HNC中,∵HN2=HC′2+NC′2,∴(﹣x)2=x2+()2,解得x=.如图2中,当点C′落在GH上时,设NC=NC′=x,在Rt△GMC′中,MG=CH=,MC=MC′=2,∴GC′=,∵△HNC′∽△GC′M,∴=,∴=,∴x=.如图3中,当点C′落在直线GM上时,易证四边形MCNC′是正方形,可得CN=CM=2.此时点C′在中位线GM的延长线上,不符合题意舍弃.综上所述,满足条件的线段CN的长为或.故答案为为或.【点评】本题考查轴对称、三角形的中位线、勾股定理、相似三角形的判定和性质、正方形的判定和性质等知识,解题的关键是学会用分类讨论的扇形思考问题,属于中考常考题型.三、解答题(共75分)16.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=÷=•=a(a﹣2)=a2﹣2a,当a=2+时,原式=7+4﹣4﹣2=3﹣2.【点评】此题考查了分式的化简求值,以及分式的值,熟练掌握运算法则是解本题的关键.17.【分析】(1)连接AC、OE,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得到EA=EC,则可证明△OCE≌△OAE,得到∠OCE=∠OAE=90°,于是可根据切线的判定定理得到CE是⊙O的切线;(2)①由C为边BD的中点,而E为AD的中点,则CE为△BAD的中位线,得到CE∥AB,CE=AB=OA,则可先判定四边形OAEC为平行四边形,加上∠OAE=90°,OA=OC,于是可判断四边形OCEA是正方形,易得CE=OA=2;②连接AC,根据等边三角形的性质得∠D=60°,∠ABD=30°,在Rt△ABC中,利用含30度的直角三角形三边的关系得AC=AB=2,然后在Rt△ACD中,利用∠D的正切函数可计算出CD,即可得出CE的长.【解答】(1)证明:连接AC、OE,如图(1),∵AB为直径,∴∠ACB=90°,∴△ACD为直角三角形,又∵E为AD的中点,∴EA=EC,在△OCE和△OAE中,,∴△OCE≌△OAE(SSS),∴∠OCE=∠OAE=90°,∴CE⊥OC,∴CE是⊙O的切线;(2)解:①C在线段BD的中点时,四边形AOCE为正方形.理由如下:当C为边BD的中点,而E为AD的中点,∴CE为△BAD的中位线,∴CE∥AB,CE=AB=OA,∴四边形OAEC为平行四边形,∵∠OAE=90°,∴平行四边形OCEA是矩形,又∵OA=OC,∴矩形OCEA是正方形,∴CE=OA=2,故答案为:2;②连接AC,如图(2),∵△CDE为等边三角形,∴∠D=60°,∠ABD=30°,CE=CD,在Rt△ABC中,AC=AB=2,在Rt△ACD中,∵tan∠D=,∴CD===,∴CE=,故答案为:.【点评】本题考查了圆的综合题:考查了圆周角定理、全等三角形的判定与性质、切线的判定定理、平行四边形的判定、正方形的判定、等边三角形的性质、三角函数等知识;本题综合性强,有一定难度.18.【分析】(1)根据抽样调查时选取的样本需具有代表性即可求解;(2)①首先根据A类有80户,占8%,求出抽样调査的家庭总户数,再用D类户数除以总户数求出m,用E类户数除以总户数求出n;②用总户数分别减去A、B、D、E、F类户数,得到C类户数,即可补全条形统计图;③根据调査数据,即可知道该市市民家庭处理过期药品最常见的方式是B类;④用180万户乘以样本中送回收点的户数所占百分比即可.【解答】解:(1)根据抽样调查时选取的样本需具有代表性,可知下列选取样本的方法最合理的一种是③.①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)①抽样调査的家庭总户数为:80÷8%=1000(户),m%==20%,m=20,n%==6%,n=6.故答案为20,6;②C类户数为:1000﹣(80+510+200+60+50)=100,条形统计图补充如下:③根据调査数据,即可知道该市市民家庭处理过期药品最常见的方式是B类;④180×10%=18(万户).若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体以及抽样调查的可靠性.19.【分析】(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断;【解答】解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100•sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66•cos45°=33≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66•sin45°≈46.53,∴PH≈46.53,∵GN=100•cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.【点评】本题考查直角三角形的应用,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.20.【分析】(1)由C的坐标求出菱形的边长,利用平移规律确定出B的坐标,利用待定系数法求出反比例函数解析式即可;(2)由菱形的边长确定出A坐标,利用待定系数法求出直线AB解析式即可;(3)联立一次函数与反比例函数解析式求出交点坐标,由图象确定出满足题意x的范围即可.【解答】解:(1)由C的坐标为(1,),得到OC=2,∵菱形OABC,∴BC=OC=OA=2,BC∥x轴,∴B(3,),设反比例函数解析式为y=,把B坐标代入得:k=3,则反比例解析式为y=;(2)设直线AB解析式为y=mx+n,把A(2,0),B(3,)代入得:,解得:,则直线AB解析式为y=x﹣2;(3)联立得:,解得:或,即一次函数与反比例函数交点坐标为(3,)或(﹣1,﹣3),则在第一象限内,当一次函数的图象在反比例函数的图象下方时,自变量x的取值范围为2<x<3.【点评】此题考查了待定系数法求反比例函数解析式与一次函数解析式,一次函数、反比例函数的性质,以及一次函数与反比例函数的交点,熟练掌握待定系数法是解本题的关键.21.【分析】(1)设A种货物运输了x吨,设B种货物运输了y吨,根据题意可得到一个关于x的不等式组,解方程组求解即可;(2)运费可以表示为x的函数,根据函数的性质,即可求解.【解答】解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.【点评】本题考查二元一次方程组的应用和一元一次不等式组以及一次函数性质的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出方程组和不等式即可求解.22.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1:先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2:先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD =14,即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大.23.【分析】(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;(2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P 2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;(3)连接OD.先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标.【解答】解:(1)∵将点A和点C的坐标代入抛物线的解析式得:,解得:b=﹣2,c=﹣3.∴抛物线的解析式为y=x2﹣2x﹣3.∵令x2﹣2x﹣3=0,解得:x1=﹣1,x2=3.∴点B的坐标为(﹣1,0).故答案为:﹣2;﹣3;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP1=90°.由(1)可知点A的坐标为(3,0).设AC的解析式为y=kx﹣3.∵将点A的坐标代入得3k﹣3=0,解得k=1,∴直线AC的解析式为y=x﹣3.∴直线CP1的解析式为y=﹣x﹣3.∵将y=﹣x﹣3与y=x2﹣2x﹣3联立解得x1=1,x2=0(舍去),∴点P1的坐标为(1,﹣4).②当∠P2AC=90°时.设AP2的解析式为y=﹣x+b.∵将x=3,y=0代入得:﹣3+b=0,解得b=3.∴直线AP2的解析式为y=﹣x+3.∵将y=﹣x+3与y=x2﹣2x﹣3联立解得x1=﹣2,x2=3(舍去),∴点P2的坐标为(﹣2,5).综上所述,P的坐标是(1,﹣4)或(﹣2,5).(3)如图2所示:连接OD.由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=3,OD⊥AC,∴D是AC的中点.又∵DF∥OC,∴.∴点P的纵坐标是.∴,解得:.∴当EF最短时,点P的坐标是:(,)或(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、矩形的性质、垂线的性质,求得P1C和P2A的解析式是解答问题(2)的关键,求得点P的纵坐标是解答问题(3)的关键.。

2022年河南省中招考试数学试题及答案

2022年河南省中招考试数学试题及答案

相切于点D,取值范畴是( ).中华人民共和国中东部大某些地区持续浮现雾霾天气,某市记者为了理解、为顶点四边形是直角梯形.需对原水库大坝进行混凝土培厚加品牌和3个B品牌计算器共需重叠放置,其中∠C=90°,∠B=∠E=30°数量关系是__________;AC.若AB =4,AC =6,则BD长是( )(B) 9 (C)10 (D)11Rt △ABC中,∠C=900,AC=1cm,BC=2cm,点延长线上一点,过点P作⊙O切线PA、PB,切点分A3.据记录,国内高新产品出口总额达40570亿元,将数据40570亿用科学记数法表达为( )A.4.0570×109 B. 0.40570×1010 C. 40.570×1011 D. 4.0570×10124.如图,直线a,b 被直线c,d 所截,若∠1=∠2,∠3=1250,则∠4度数为( )A.550B.600 C .700 D.7505.不等式组解集在数轴上表达为( )x 503x 1+≥⎧⎨-⎩>GURUILINDCBAO 2-5O 22O -5-5O 26.小王参加某公司招聘测试,她笔试,面试,技能操作得分分别为85分,80分,90分,若依次按照2:3:5比例拟定成绩,则小王成绩是( )A.255分 B.84分 C.84.5分 D.86分7.如图,在平行四边形ABCD 中,用直尺和圆规作∠BAD 平分线AG,交BC 于点E,若BF=6,AB=5,则AE 长为( ) A.4 B.6 C.8 D.108.在平面直角坐标系中,半径均为1个单位长度半圆O 1,O 2,O 3…构成一条平滑曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒个2π单位长度,则秒时,点P 坐标是( )A.(,0) B.(,-1) C.(,1) D.(,0)PO 3O 2O 1Oy x二、填空题(每小题3分,共21分)9.计算:(-3)0+3-1= 。

2021-2022学年河南省中招模拟考试数学试卷河南省名校联考数学试卷(解析版)

2021-2022学年河南省中招模拟考试数学试卷河南省名校联考数学试卷(解析版)
∴AT=TB=5,
设OA=x,∵OD2=AD2﹣OA2=DT2﹣OT2,
∴52﹣x2=82﹣(x+5)2,
解得x=1.4,
∴OB=OA+AB=1.4,
∵将四边形ABCD向左平移m个单位后,点B恰好和原点O重合,
∴m=OB=11.4,
故选:A.
10.如图,已知△ABC.
(1)以点A为圆心,以适当长为半径画弧,交AC于点M,交AB于点N.
∴此时E′B+E′D的值最小,
∴阴影部分周长的最小值为4+ π.
故答案为4+ π.
三、解答题(本大题共8个小题,满分75分)
16.(10分)(1)先化简,再求值:(2x+1)(2x﹣1)﹣(2x﹣3)2,其中x=﹣1.
【分析】由题意可知,在化简的过程中可以运用平方差公式(a+b)(a﹣b)=a2﹣b2和完全平方差公式(a﹣b)2=a2﹣2ab+b2快速计算,再把x=﹣1代入化简后得到的式子中求值.
选项C:俯视图是正方形,主视图是正方形,故选项C正确;
选项D:俯视图是三角形,主视图是长方形,故选项D错误.
故答案为:C.
【点睛】本题考查了视图,主视图是指从前面往后面看,俯视图是指从上面往下看,左视图是指从左边往右边看,熟练三视图的概念即可求解.
3.某校有4000名学生,随机抽取了400名学生进行体重调查,下列说法错误的是()
A. B.1C. D.4
【分析】利用作法得AD平分∠BAC,EF垂直平分AD,所以∠EAD=∠FAD,EA=ED,FA=FD,再证明四边形AEDF为菱形得到AE=AF=2,然后利用平行线分线段成比例定理计算CD的长.
【解答】解:由作法得AD平分∠BAC,EF垂直平分AD,

河南省2022数学中考一模试卷(I)卷

河南省2022数学中考一模试卷(I)卷

河南省2022数学中考一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020七上·咸安期末) 如图,一个几何体由5个大小相同的正方体搭成,则这个立体图形从左面观察得到的平面图形是()A .B .C .D .2. (2分)(2017·磴口模拟) 在网络上用“Google”搜索引擎搜索“中国梦”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为()A . 451×105B . 45.1×106C . 4.51×107D . 0.451×1083. (2分)(2019·定兴模拟) 如图,边长为4的等边△ABC中,D、E分别为AB , AC的中点,则△ADE的面积是()A .B .C . 5D . 24. (2分)数据5,7,5,8,6,13,5的中位数是()A . 5B . 6C . 7D . 85. (2分)设(a+b)2=(a﹣b)2+A,则A=()A . 2abB . 4abC . abD . ﹣4ab6. (2分) (2018九上·硚口期中) 如图,AB,AC,BC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,若MN=1,则BC的值为()A . 1B . 2C . 3D . 47. (2分)(2020·宜宾) 学校为了丰富学生的知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学书的本数相等,设文学类图书平均每本x元,则列方程正确的是()A .B .C .D .8. (2分)(2019·河南) 如图,在中,顶点,,,将与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转,则第70次旋转结束时,点D的坐标为()A .B .C . )D .二、填空题 (共6题;共6分)9. (1分) (2020七上·苏州月考) 的相反数与的绝对值的和是________.10. (1分)(2020·昆明模拟) 如图,直线,的直角顶点落在直线上,若,则的大小为________11. (1分) (2018八上·河口期中) 代数式有意义的条件________.12. (1分) (2020九上·江都月考) 如果方程kx2+3x+1=0有两个不等实数根,则实数k的取值范围是________13. (1分) (2020八下·滨州月考) 如图所示,矩形ABCD两条对角线夹角为60°,AB=2,则对角线AC长为________。

河南省信阳市中考数学一模试卷(含解析)

河南省信阳市中考数学一模试卷(含解析)

中考数学一模试卷、选择题下列各小题均有四个答案,其中只有一个是正确的,将正确答案前的字母填入 题后的括号内12的倒数是( ) 11A. —B. 2C. _ ~ D . - 22.太阳半径约为 696000km,将696000用科学记数法表示为( )A. 696 X 103 B . 69.6 X 104C. 6.96 X 105 D . 0.696 X 106 3•—个几何体零件如图所示,则它的俯视图是()A. 40° B . 50° C . 60° D . 70°5. 学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:则学生捐款金额的中位数是( )A. 13 人B. 12 人C. 10 元D. 20 元6.若关于x 的方程x 2+2x+a=0不存在实数根,则 a 的取值范围是( )A. a < 1 B . a > 1 C . a < 1 D . a > 1«!****«7. 如图,BD 是O O 的直径,点 A 、C 在O O 上,=丨,/ AOB=60,则/ BDC 的度数是 ( )nnA.长度,得到的抛物线的解析式是(甲和乙的概率为(C.O 为坐标原点,点 A 的坐标为(1,-),将线段 OA 绕原点O 逆时针旋转30°,得到线段 OB 则点B 的坐标是(C . ( 1,- :_)D . (- 1 ,:_)二、填空题11 .计算 tan45 ° = ___ .12 .若a=2b z 0,则.二j 的值为 _________ .13 5 7 913 .观察下列一组数: 订,「,U ,匚二,〒,…,它们是按一定规律排列的,那么这一 组数的第n 个数是 ______ .14 .如图,点 B C 把:分成三等分,ED 是O O 的切线,过点 B C 分别作半径的垂线段, 已知/ E=45,半径 OD=1则图中阴影部分的面积是 _________ .A. 60° B . 45° C . 35° D . 30° &在平面直角坐标系中,将抛物线y=- x 2向下平移1个单位长度,再向左平移 1个单位1 2A. y= - —x - x -B • y=<. x 2+x -:Cy= — x 2+x -31 2 1D. y= -p x -x- —9•共甲、乙、丙、4名三好学生中随机抽取 2名学生担任升旗手,则抽取的2名学生是10.如图,在平面直角坐标系中,15. 如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C'上,点D落在D'处,C D'交AE于点M 若AB=6, BC=9,贝U AM的长为三、解答题(本题有8个小题,共75分)—x’T 垃+4 x+°16. (8分)先化简,再求值:(1 —':)+,」_ —」,其中X2+2X- 15=0.17. (9分)如图,△ ABC中, AB=AC Z BAC=40 ,将厶ABC绕点A按逆时针方向旋转100°.得到厶ADE连接BD, CE交于点F.(1)求证:△ ABD^A ACE(2)求证:四边形ABFE是菱形.18. (9分)某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12W m< 15), B 类(9< mr< 11), C类(6< me 8),。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022年河南省信阳市商城县中招数学一模试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. −2022的倒数是( )A. −12022B. 12022C. −2022D. 20222. 下列问题中,适合抽样调查的是( )A. “双十一”期间某网店的当日销售额B. 神舟十三号飞船的零部件检查C. “7⋅20”特大暴雨河南省受损的农作物面积D. 东京奥运会乒乓球比赛用球的合格率3. 下列几何体的三视图中,俯视图与主视图一定一致的是( )A. B. C. D.4. 如图所示,AB//CD,∠α=35°,∠C=∠D,则∠A的度数是( )A. 35°B. 145°C. 155°D. 55°5. 新型冠状病毒呈球形或椭圆形,有包膜,直径大约是100nm.新型冠状病毒是一种先前未在人类中发现的冠状病毒,显微镜下看呈皇冠形,所以称为冠状病毒.既往已知感染人的冠状病毒有六种,新型冠状病毒属于β属的冠状病毒,属于第七种冠状病毒.将100nm(1nm= 10−9m)用科学记数法表示为( )A. 1×10−7mB. 1×10−8mC. 1×10−9mD. 1×10−6m6. 《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为( )A. {x +12y =5023x +y =50B. {x +12y =50x +23y =50C. {12x +y =5023x +y =50D. {12x +y =50x +23y=507. 将分别标有“文”“明”“长”“垣”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“长垣”的概率是( )A. 18B. 16C. 14D. 128. 函数y =kx +b 的图象如图所示,则关于x 的一元二次方程x 2+bx +k −1=0的根的情况是( )A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 无法确定9. 如图,在平面直角坐标系中放置一菱形OABC ,已知∠ABC =60°,点B 在y 轴上,OA =1,将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2021次,点B 的落点依次为B 1,B 2,B 3,…,则B 2021的坐标为( )A. (1010,0)B. (1345,√32)C. (26932,√32)D. (1346,0)10. 如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2√2,CD ⊥AB 于点D.点P 从点A 出发,沿A →D →C 的路径运动,运动到点C 停止,过点P 作PE ⊥AC 于点E ,作PF ⊥BC 于点F.设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A. B.C. D.二、填空题(本大题共5小题,共15.0分)11. 写出一个大于3小于5的无理数______ .12. 某函数满足当自变量x=1时,函数值y=0.写出一个满足条件的一次函数表达式:______.13. 如图所示,在△ABC中,∠B=90°,AB=BC=4,D,E,F分别是AC,BC,AB边上的点,且∠EDF=45°,DE=DF,则AF+CE=______.14. 图①是由若干个相同的图形(图②)组成的美丽图案的一部分,图②中,图形的相关数据:半径OA=2cm,∠AOB=120°,则图①中图形(实线部分)的周长为______cm(结果保留π).15. 在矩形ABCD中,AB=4,BC=2,点E在线段BC上,连接AE,过点B作BF⊥AE交线段CD于点F.以BE和BF为邻边作平行四边形BEHF,当点E从B运动到C时,点H运动的路径长为______.三、解答题(本大题共8小题,共75.0分。

解答应写出文字说明,证明过程或演算步骤)16. (本小题8.0分)(1)计算:√9−(√3−1)0+(−2)−2;(2)化简:a2a2−4÷a2−aa+2−aa−2.17. (本小题8.0分)2021年秋季教育部明确提出,要减轻义务教育阶段学生的作业负担,学生的校外培训负担.依据政策要求,初中书面作业平均完成时间不超过90分钟,学生每天的完成作业时长不能超过2小时.某中学为了积极推进教育部的新政策实施,对本校学生的作业情况进行了抽样调查,统计结果如图所示:(1)这次抽样共调查了______名学生,并补全条形统计图;(2)计算扇形统计图中表示作业时长为2.5小时对应的扇形圆心角度数;(3)若该中学共有学生3000人,请据此估计该校学生的作业时间不少于2小时的学生人数;(4)通过本次调查,你认为该学校作业布置是否满足教育部的“双减”政策要求?请说明理由,并给出相应的建议.18. (本小题9.0分)弦切角定理(弦切角等于它所夹的弧所对的圆周角)在证明角相等、线段相等、线段成比例等问题时,有非常重要的作用,为了说明弦切角定理的正确性,小明同学进行了以下探索过程:问题的提出:若一直线与圆相交,过交点作圆的切线,则此切线与直线的交角中的任意一个称为直线和圆的交角,其中所夹弧为劣弧的角为劣交角,所夹弧为优弧的角为优交角.直线和圆的交角有以下性质:直线和圆的交角等于所夹弧所对的圆周角.问题的证明:(只证明劣交角即可)已知:如图1,直线l与⊙O相交于点A,B,过点B作______.求证:∠ABD=______.任务:(1)请将不完整的已知和求证补充完整,并写出证明过程;(2)如图2,直线l与⊙O相交于点A,B,AD为⊙O的直径,BC切⊙O于点B,交DA的延长线于点C,若AD=BC,AC=2,求⊙O的半径.19. (本小题9.0分)如图,点P为函数y=12x+1与函数y=mx(x>0)图象的交点,点P的纵坐标为4,PB⊥x轴,垂足为点B.(1)求m的值;(2)点M是函数y=mx (x>0)图象上一动点,过点M作MD⊥BP于点D,若tan∠PMD=12,求点M的坐标.20. (本小题9.0分)某汽车贸易公司销售A、B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用不超过300万元资金,采购A、B两种新能源汽车共22台,问最少需要采购A 型新能源汽车多少台?21. (本小题10.0分)小明根据学习函数的经验,对函数y=|x2−2x|−2的图象与性质进行了探究,下面是小明的探究过程,请补充完整:x…−2−101234…y…6m−2−1−2n6…(1)在给定的平面直角坐标系中;画出这个函数的图象,①列表,其中m=______,n=______.②描点:请根据表中数据,在如图所示的平面直角坐标系中描点:③连线:画出该函数的图象.(2)写出该函数的两条性质:______.(3)进一步探究函数图象,解决下列问题:①若平行于x轴的一条直线y=k与函数y=|x2−2x|−2的图象有两个交点,则k的取值范围是______;②在网格中画出y=x−2的图象,直接写出方程|x2−2x|−2=x−2的解为______.22. (本小题11.0分)如图,直线y=−23x+a与x轴交于点A(3,0),与y轴交于点B,抛物线y=−43x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的表达式;(2)P(x1,y1),Q(4,y2)两点均在该抛物线上,若y1≥y2,求P点的横坐标x1的取值范围;(3)点M为直线AB上一动点,将点M沿与y轴平行的方向平移一个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标的取值范围.23. (本小题11.0分)在△ABC中,∠ACB=90°,AC=BC,点D是直线AB上的一动点(不与点A,B重合)连接CD,在CD的右侧以CD为斜边作等腰直角三角形CDE,点H是BD的中点,连接EH.【问题发现】(1)如图(1),当点D是AB的中点时,线段EH与AD的数量关系是______.EH与AD的位置关系是______.【猜想论证】(2)如图(2),当点D在边AB上且不是AB的中点时,(1)中的结论是否仍然成立?若成立,请仅就图(2)中的情况给出证明;若不成立,请说明理由.【拓展应用】(3)若AC=BC=2√2,其他条件不变,连接AE、BE.当△BCE是等边三角形时,请直接写出△ADE的面积.答案和解析1.【答案】A.【解析】解:−2022的倒数是−12022故选:A.根据倒数的定义即可得出答案.本题考查了倒数,掌握乘积为1的两个数互为倒数是解题的关键.2.【答案】A【解析】解:A、“双十一”期间某网店的当日销售额,应采用抽样调查,故此选项符合题意;B、神舟十三号飞船的零部件检查,应采用全面调查,故此选项不合题意;C、“7⋅20”特大暴雨河南省受损的农作物面积,应采用全面调查,故此选项不合题意;D、东京奥运会乒乓球比赛用球的合格率,应采用全面调查,故此选项不合题意;故选:A.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.【答案】B【解析】解:长方体的俯视图与主视图都是矩形,但两个矩形的宽不一定相同,因此A不符合题意;球的俯视图与主视图都是圆,因此B符合题意;圆锥的主视图是等腰三角形、俯视图都是带圆心的圆,因此选项C不符合题意;圆柱的主视图是矩形,俯视图是圆,因此D不符合题意;故选:B.根据圆锥、圆柱、正方体、三棱柱的主视图、俯视图进行判断即可.本题考查简单几何体的三视图,理解三视图的意义,明确各种几何体的三视图的形状是正确判断的前提.4.【答案】B【解析】解:∵AB//CD,∴∠D=∠α=35°,∵∠C=∠D,∴∠C=35°,∵AB//CD,∴∠C+∠A=180°,∴∠A=145°,故选:B.根据AB//CD得出∠D=∠α=35°,再根据∠C=∠D,∠C+∠A=180°,得出∠A的度数即可.本题主要考查平行线的性质,熟练掌握两直线平行同位角相等,两直线平行同旁内角互补是解题的关键.5.【答案】A【解析】解:∵1nm=10−9m,∴100nm=100×10−9m=1×10−7m.故选:A.首先把100nm化成以m为单位的量,然后根据:绝对值小于1的小数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定,将100nm(1nm=10−9m)用科学记数法表示即可.此题主要考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.【答案】A【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题设甲的钱数为x ,人数为y ,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x ,y 的二元一次方程组,此题得解.【解答】 解:设甲的钱数为x ,乙的钱数为y ,依题意,得:{x +12y =5023x +y =50. 故选:A . 7.【答案】B【解析】【分析】本题考查了树状图法:利用树状图法展示所有等可能的结果n ,再从中选出符合事件A 结果数目m ,然后利用概率公式计算事件A 的概率.画树状图展示所有12种等可能的结果数,再找出两次摸出的球上的汉字组成“长垣”的结果数,然后根据概率公式求解.【解答】解:画树状图:共有12种等可能的结果数,其中两次摸出的球上的汉字组成“长垣”的结果数为2,所以两次摸出的球上的汉字组成“长垣”的概率=212=16. 故选B . 8.【答案】C【解析】【分析】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2−4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数图象.先利用一次函数的性质得k <0,b <0,再计算判别式的值得到△=b 2−4(k −1),于是可判断△>0,然后根据判别式的意义判断方程根的情况.解:根据y=kx+b的图象可得k<0,b<0,所以b2>0,−4k>0,因为△=b2−4(k−1)=b2−4k+4>0,所以△>0,所以方程有两个不相等的实数根.故选:C.9.【答案】C【解析】解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2021=336×6+5,∴点B5向右平移1344(即336×4)到点B2021.∵B5的坐标为(52,√32),∴B2021的坐标为(26932,√32),故选:C.连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2021=336×6+5,因此点B5向右平移1344(即336×4)即可到达点B2021,根据点B5的坐标就可求出点B2021的坐标.本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.10.【答案】A【解析】解:∵在Rt△ABC中,∠ACB=90°,AC=BC=2√2,∴AB=4,∠A=45°,∵CD⊥AB于点D,∴AD=BD=2,∵PE⊥AC,PF⊥BC,∴四边形CEPF是矩形,∴CE=PF,PE=CF,∵点P运动的路程为x,∴AP=x,则AE=PE=x⋅sin45°=√22x,∴CE=AC−AE=2√2−√22x,∵四边形CEPF的面积为y,∴当点P从点A出发,沿A→D路径运动时,即0<x<2时,y=PE⋅CE=√22x(2√2−√22x)=−12x2+2x=−12(x−2)2+2,∴当0<x<2时,抛物线开口向下;当点P沿D→C路径运动时,即2≤x<4时,∵CD是∠ACB的平分线,∴PE=PF,∴四边形CEPF是正方形,∵AD=2,PD=x−2,∴CP=4−x,y=12(4−x)2=12(x−4)2.∴当2≤x<4时,抛物线开口向上,综上所述:能反映y与x之间函数关系的图象是:A.故选:A.根据Rt△ABC中,∠ACB=90°,AC=BC=2√2,可得AB=4,根据CD⊥AB于点D.可得AD= BD=2,CD平分角ACB,点P从点A出发,沿A→D→C的路径运动,运动到点C停止,分两种情况讨论:根据PE⊥AC,PF⊥BC,可得四边形CEPF是矩形和正方形,设点P运动的路程为x,四边形CEPF的面积为y,进而可得能反映y与x之间函数关系式,从而可以得函数的图象.本题考查了动点问题的函数图象,解决本题的关键是掌握二次函数的性质.11.【答案】√11【解析】解:一个大于3小于5的无理数如:√11;故答案为:√11.根据已知和无理数的定义写出一个无理数即可.本题考查了对估算无理数的大小的应用,注意:无理数是指无限不循环小数,此题是一道开放型的题目,答案不唯一.12.【答案】y=x−1(答案不唯一)【解析】解:由题意可得,x=1时,y=0,∴满足条件的一次函数表达式可以是y=x−1,故答案为:y=x−1(答案不唯一).根据题意可以得到x=1时,y=0,从而可以写出一个符合题意的函数解析式.本题考查一次函数的性质,解答本题的关键是明确题意,写出相应的函数解析式.13.【答案】4√2【解析】解:∵∠B=90°,AB=BC,∴∠A=∠C=45°,∴∠AFD+∠ADF=135°,∵∠EDF=45°,∴∠ADF+∠EDC=135°,∴∠AFD=∠EDC,∵DE=DF,∴△AFD≌△CDE(AAS),∴AF=CD,CE=AD,∴AF+CE=CD+AD=AC,∴AB=BC=4,∴AC=√AB2+BC2=√42+42=4√2,∴AF+CE=4√2.故答案为:4√2.证明△AFD≌△CDE(AAS),由全等三角形的性质得出AF=CD,CE=AD,由勾股定理求出AC的长,则可得出答案.本题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理,证明△AFD≌△CDE是解题的关键.14.【答案】32π3【解析】解:由图①得:AO⏜的长+OB⏜的长=AB⏜的长,∵半径OA=2cm,∠AOB=120°,则图②的周长为:240π×2180=8π3(cm).∵图①中有4个完整的图②,∴图①中图形(实线部分)的周长为故8π3×4=32π3,故答案为:32π3.根据弧长公式可得结论.本题考查了弧长公式的计算,根据图形特点确定各弧之间的关系是本题的关键.15.【答案】√5【解析】解:如图,连接CH.∵四边形ABCD是矩形,∴∠ABC=BCF=90°,∵BF⊥AE,∴∠ABF+∠EBF=90°,∠ABF+EAB=90°,∴∠EAB=∠CBF,∴△ABE∽△BCF,∴AB CB =EBCF=2,∵四边形BEHF是平行四边形,∴FH=BE,FH//BE,∴∠HFC=∠BCF=90°,∴FHCF=2,∴tan∠HCF=2,∴∠HCF是定值,∴点H的运动轨迹是线段CH,当当点E从B运动到C时,∴FH=BC=2,∴CF=1,∴CH=√22+12=√5.故答案为:√5.如图,连接CH.证明△ABE∽△BCF,推出ABCB =EBCF=2,由四边形BEHF是平行四边形,推出FH=BE,FH//BE,推出∠HFC=∠BCF=90°,推出FHCF=2,推出tan∠HCF=2,推出∠HCF是定值,推出点H的运动轨迹是线段CH,求出CH,可得结论.本题考查矩形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是确定点H的运动轨迹,属于中考常考题型.16.【答案】解:(1)√9−(√3−1)0+(−2)−2=3−1+14=214;(2)a2a2−4÷a2−aa+2−aa−2=a2(a+2)(a−2)⋅a+2a(a−1)−aa−2=a(a−2)(a−1)−aa−2=a−a(a−1)(a−2)(a−1)=a(2−a)(a−2)(a−1)=−aa−1.【解析】(1)根据算术平方根、零指数幂、负整数指数幂可以解答本题;(2)根据分式的除法和减法法则可以解答本题.本题考查分式的混合运算、实数的运算,熟练掌握运算法则是解答本题的关键.17.【答案】500【解析】解:(1)这次抽样共调查的学生有:140÷28%=500(名),每天作业所需时间1.5小时的人数有:500×36%=180(名),补全统计图如下:故答案为:500;(2)扇形统计图中表示作业时长为2.5小时对应的扇形圆心角度数是:360°×80=57.6°;500(3)根据题意得:=1320(人),3000×140+80500答:估计该校学生的作业时间不少于2小时的学生人数有1320人;(4)不满足,建议减少作业量,根据学生的能力分层布置作业.(1)根据2小时的人数和所占的百分比,求出总人数,再用总人数减去其他人数,求出每天作业所需时间1.5小时的人数,从而补全统计图;(2)用360°乘以作业时长为2.5小时的人数所占的百分比即可;(3)用该校的总人数乘以作业时间不少于2小时的学生人数所占的百分比即可;(4)根据实际情况给出合理的建议,答案不唯一.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.18.【答案】圆的切线BE∠C【解析】解:已知:如图1,直线l与⊙O相交于点A,B,过点B作圆的切线BE,求证:∠ABD=∠C.故答案为:圆的切线BE,∠C.(1)证明:如图,连接BO并延长交⊙O于F,连接AF.∵BF是⊙O的直径,∴∠BAF=90°,∠FBD=90°.∴∠ABF+∠F=90°.∴∠ABD+∠ABF=90°,∴∠ABD=∠F.∵∠F=∠C,∴∠ABD =∠C ;(2)解:如图,连接BD ,∵∠ABC =∠D ,∠C =∠C ,∴△ABC∽△BDC . ∴BC CD =AC BC , ∴BC 2=CD ⋅AC ,设⊙O 的半径为r ,则BC =AD =2r ,CD =AD +AC =2r +2,∴(2r)2=2×(2r +2),解得r 1=1+√52,r 2=1−√52(不合题意,舍去), ∴⊙O 的半径为1+√52. (1)连接BO 并延长交⊙O 于F ,连接AF ,根据圆周角定理得到∠BAF =90°,余角的性质得到∠ABD =∠F ,于是得到结论;(2)连接BD ,根据相似三角形的性质得到BC 2=CD ⋅AC ,设⊙O 的半径为r ,列方程即可得到结论. 本题考查了切线的判定和性质,圆周角定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.19.【答案】解:∵点P 为函数y =12x +1图象的点,点P 的纵坐标为4,∴4=12x +1,解得:x =6,∴点P(6,4),∵点P 为函数y =12x +1与函数y =m x (x >0)图象的交点, ∴4=m 6, ∴m =24;(2)设点M 的坐标(x,y),∵tan∠PMD =12,∴PD DM =12,①点M在点P右侧,如图,∵点P(6,4),∴PD=4−y,DM=x−6,∴4−y x−6=12,∵xy=m=24,∴y=24x,∴2(4−24x)=x−6,解得:x=6或8,∵点M在点P右侧,∴x=8,∴y=3,∴点M的坐标为(8,3);②点M在点P左侧,∵点P(6,4),∴PD=y−4,DM=6−x,∴y−4 6−x =12,∵xy=m=24,∴y =24x , ∴2(4−24x)=x −6,解得:x =6或8,∵点M 在点P 左侧, ∴此种情况不存在; ∴点M 的坐标为(8,3).【解析】(1)根据点P 为函数y =12x +1图象的点,点P 的纵坐标为4,可以求得点P 的坐标,进而求得m 的值;(2)设点M 的坐标(x,y),分两种情况:点M 在点P 右侧,点M 在点P 左侧,根据tan∠PMD =12得PD DM=12,根据点P 的坐标求出x 、y 的值,即可得出答案.本题考查一次函数和反比例函数图象和性质;熟练掌握用待定系数法求函数的表达式,利用三角函数解题是关键.20.【答案】解:(1)设销售一台A 型新能源汽车的利润是x 万元,销售一台B 型新能源汽车的利润是y 万元,依题意得:{2x +5y =3.1x +2y =1.3,解得:{x =0.3y =0.5.答:销售一台A 型新能源汽车的利润是0.3万元,销售一台B 型新能源汽车的利润是0.5万元. (2)设需要采购A 型新能源汽车m 台,则采购B 型新能源汽车(22−m)台, 依题意得:(12+0.3)m +(15+0.5)(22−m)≤300, 解得:m ≥121316, 又∵m 为整数,∴m 可以取的最小值为13.答:最少需要采购A 型新能源汽车13台.【解析】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式. (1)设销售一台A 型新能源汽车的利润是x 万元,销售一台B 型新能源汽车的利润是y 万元,根据“销售2台A 型车和5台B 型车,可获利3.1万元,销售1台A 型车和2台B 型车,可获利1.3万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设需要采购A型新能源汽车m台,则采购B型新能源汽车(22−m)台,根据总价=单价×数量,结合总价不超过300万元,即可得出关于m的一元一次不等式,解之取其中的最小整数值即可得出结论.21.【答案】11①函数的图象关于直线x=1对称;②函数有最小值−2;k=−2或k>−1x=0或x=1或x=3【解析】解:(1)将x=−1,代入到y=|x2−2x|−2中,得:y=|1+2|−2=1;将x=3,代入到y=|x2−2x|−2中,得:y=|9−6|−2=1;∴m=1,n=1,如图:故答案为:1,1;(2)观察图象,①函数的图象关于直线x=1对称;②函数有最小值−2;故答案为:①函数的图象关于直线x=1对称;②函数有最小值−2;(3)①由图形可知,若平行于x 轴的一条直线y =k 与函数y =|x 2−2x|−2的图象有两个交点,则k 的取值范围是k =−2或k >−1, ②在网格中画出y =x −2的图象如图:由图形可知,直线y =x −2与函数y =|x 2−2x|−2的图象有三个交点,分别为(0,−2)、(1,−1)、(3,1),∴方程|x 2−2x|−2=x −2的解为x =0或x =1或x =3, 故答案为:①k =−2或k >−1;②x =0或x =1或x =3.(1)将x =−1和x =3分别代入y =|x 2−2x|−2中,可求出y 的值,即可求得m 、n 的值;按要求描点,画出图象即可;(2)写出两条合理的性质即可,答案不唯一; (3)观察图象,可得答案.本题考查二次函数的图象和性质,二次函数图象上点的坐标特征,数形结合是解决本题的关键.22.【答案】解:(1)把点A 坐标代入y =−23x +a 得:0=−23×3+a ,解得:a =2,故直线的表达式为:y =−23x +2,令x =0,则y =2,故点B(0,2),将点A 、B 的坐标代入二次函数表达式得:{−12+3b +c =0c =2,解得:{b =103c =2,故抛物线的表达式为:y =−43x 2+103x +2; (2)当x =4时,y =−6, 令y =−6=−43x 2+103x +2,解得x =4或x =−32,∵y 1≥y 2,且−43<0, ∴−32≤x 1≤4.(3)由(1)知,直线AB 的表达式为:y =−23x +2, 设点M 的横坐标为x M =m ,∴M(m,−23m +2),N(m,−23m +2+1)或N(m,−23m +2−1), 由题意可知,−43m 2+103m +2≤−23m +2+1或−23m +2−1≤−43m 2+103m +2, 解得,3−2√32≤m ≤3−√62或3+√62≤m ≤3+2√32.即3−2√32≤x M ≤3−√62或3+√62≤x M ≤3+2√32. 【解析】(1)把点A 坐标代入y =−23x +a 得:0=−23×3+a ,解得:a =2,故直线的表达式为:y =−23x +2,令x =0,则y =2,故点B(0,2),将点A 、B 的坐标代入二次函数表达式,即可求解;(2)当x =4时,可求得y =−6;令y =−6,求出x ,结合二次函数的性质可得结论; (3)分类求解确定MN 的位置,进而求解.本题考查的是二次函数综合运用,涉及到一次函数、二次函数的性质等,其中(3)要注意点N 可能在M 上方也可能在M 的下方,避免遗漏.23.【答案】EH =12AD , EH ⊥AB【解析】解:(1)如图1中,∵CA=CB,∠ACB=90°,AD=BD,∴CD⊥AB,CD=AD=DB,∴∠A=∠B=45°,∠DCB=∠ACD=45°,∵∠DCE=45°,∴点E在线段CB上,∵DE⊥BC,∴∠EDB=∠B=45°,∵DH=HB,∴EH⊥DB,EH=12DB=12AD,故答案为EH=12AD,EH⊥AD.(2)结论仍然成立:理由:如图2中,延长DE到F,使得EF=DE,连接CF,BF.∵DE=EF.CE⊥DF,∴CD=CF,∴∠CDF=∠CFD=45°,∴∠ECF=∠ECD=45°,∴∠ACB=∠DCF=90°,∴∠ACD=∠BCF,∵CA=CB,∴△ACD≌△BCF(SAS),∴AD=BF,∠A=∠CBF=45°,∵∠ABC=45°,∴∠ABF=90°,∴BF⊥AB,∵DE=EF,DH=HB,BF,EH//BF,∴EH=12∴EH⊥AD,EH=1AD.2(3)如图3−1中,当△BCE是等边三角形时,过点E作EH⊥BD于H.∵∠ACB=90°,∠ECB=60°,∴∠ACE=30°,∵AC=CB=CE=EB=DE=2√2,∴∠CAE=∠CEA=75°,∵∠CAB=45°,∴∠EAH=30°,∵∠DEC=90°,∠CEB=60°,∴∠DEB=150°,∴∠EDB=∠EBD=15°,∵∠EAH=∠ADE+∠AED,∴∠ADE=∠AED=15°,∴AD=AE,设EH=x,则AD=AE=2x,AH=√3x,∵EH2+DH2=DE2,∴x2+(2x+√3x)2=8,∴x=√3−1,∴AD=2√3−2,∴S△ADE=12⋅AD⋅EH=12×(2√3−2)⋅(√3−1)=4−2√3.如图3−2中,当△BCE是等边三角形时,过点E作EH⊥BD于H.同法可求:EH=√3+1,AD=2√3+2,∴S△ADE=12⋅AD⋅EH=12×(2√3+2)(√3+1)=4+2√3,综上所述,满足条件的△ADE的面积为4−2√3或4+2√3.(1)利用等腰直角三角形的判定和性质解决问题即可.(2)结论仍然成立:如图2中,延长DE到F,使得EF=DE,连接CF,BF.证明△ACD≌△BCF(SAS),再利用三角形的中位线定理即可解决问题.(3)分两种情形:如图3−1中,当△BCE是等边三角形时,过点E作EH⊥BD于H.如图3−2中,当△BCE是等边三角形时,过点E作EH⊥BD于H.分别求出AD,EH即可解决问题.本题属于四边形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

相关文档
最新文档