带电粒子在磁场中运动综合计算题
专题三:带电粒子在电磁场中的运动(全国卷高考真题版)

专题三:带电粒子在电磁场中的运动(全国卷高考真题版)1、(2011年全国卷,25题,19分)★★★★如图,与水平面成45°角的平面MN 将空间分成I 和II 两个区域。
一质量为m 、电荷量为q (q >0)的粒子以速度0v 从平面MN 上的0p 点水平右射入I 区。
粒子在I 区运动时,只受到大小不变、方向竖直向下的电场作用,电场强度大小为E ;在II 区运动时,只受到匀强磁场的作用,磁感应强度大小为B ,方向垂直于纸面向里。
求粒子首次从II 区离开时到出发点0p 的距离。
(粒子的重力可以忽略。
)0021()v l q E B=+2、(2011年全国新课标卷,25题,19分)★★★★如图,在区域Ⅰ(0≤x ≤d )和区域Ⅱ(d ≤x ≤2d )内分别存在匀强磁场,磁感应强度大小分别为B 和2B ,方向相反,且都垂直于Oxy 平面。
一质量为m 、带电荷量q (q >0)的粒子a 于某时刻从y 轴上的P 点射入区域Ⅰ,其速度方向沿x 轴正向。
已知a 在离开区域Ⅰ时,速度方向与x 轴正方向的夹角为30°;因此,另一质量和电荷量均与a 相同的粒子b 也从p 点沿x 轴正向射入区域Ⅰ,其速度大小是a 的1/3。
不计重力和两粒子之间的相互作用力。
求:(1)粒子a 射入区域I 时速度的大小;(2)当a 离开区域II 时,a 、b 两粒子的y 坐标之差。
(1)2dqB m (2)23(3-2)d3、(2012年全国大纲版,24题,16分)★★如图,一平行板电容器的两个极板竖直放置,在两极板间有一带电小球,小球用一绝缘清线悬挂于O 点。
先给电容器缓慢充电,使两级板所带电荷量分别为﹢Q 和﹣Q ,此时悬线与竖直方向的夹角为π/6。
再给电容器缓慢充电,直到悬线和竖直方向的夹角增加到π/3,且小球与两极板不接触。
求第二次充电使电容器正极板增加的电荷量。
Q=2Q ∆4、(00年全国卷21题,13分)★★★如图,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a 、b 、c 和d ,外筒的外半径为r 0。
高考物理带电粒子在磁场中的运动基础练习题及解析

高考物理带电粒子在磁场中的运动基础练习题及解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBLv m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+-解得:58L R =或2LR = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=3.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。
带电粒子在磁场中的多解问题

应旳圆心角为 或 3
B
22
设圆弧旳半径为R,则有2R2=x2,可得:
R L 2n
v2 qvB m
R
v qBL 2m n
n=1、2、3、……(
n取奇数
⑶当n取奇数时,微粒从P到Q过程中圆心角旳总和为
1
n
2
n 3
2
2n
t1
2n
m qB
2 m
qB
n
其中n=1、3、5、……
当n取偶数时,微粒从P到Q过程中圆心角旳总和为
mv0 a 2mv0 L<b。试求磁场旳左边界距坐标原点 旳e可B能距离.(eB成果可用反三角函数表达)
解: 设电子在磁场中作圆周运动旳轨道半径为r, 则
解得
eBv0 r
m mv 0
v02 r
①
②
eB
y P v0
x
0
Q
⑴当r>L时,磁场区域及电子运动轨迹如图1所示,
由几何关系有 sin L eBL③
v0
c
(2)当v0最大时:
R1
R1
cos 60
L 2
得R1 = L
则
vmax
qBR1 m
qBL m
当v0最小时: R2 R2 sin 30
L 2
得R2 = L/3
则
vmin
qBR2 m
qBL 3m
a
600
O
qBL
qBL
b B
3m v0 m
300
d
v0
c
带电粒子从ab边射出磁场,当速度为 vmax 时,
运动时间最短,
150 5m
t min
T 360
高考物理带电粒子在磁场中的运动解题技巧及练习题及解析

高考物理带电粒子在磁场中的运动解题技巧及练习题及解析一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示.该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示.已知P 、Q 间的距离为L .若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P 运动到Q 点所经历的时间之比.【答案】22B qLE m=;2B E t t π= 【解析】 【分析】 【详解】(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,则有20v qv B m R= 由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为14圆周,故有2R =以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得 22B qL E m=且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π==所以2B E t t π=3.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d 的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO ’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t 0;:当在两板间加最大值为U 0、周期为2t 0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L ,电子的质量为m 、电荷量为e ,其重力不计.(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上, ①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm = 又:1mv R Be=解得:00U t B dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=4.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===g所以()(00tan 22H x x x y y θ=-=g 由数学知识可知,当(022x y y = 4.5y cm =时H 有最大值,所以max 9H cm =5.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-6.如图所示,虚线OL与y轴的夹角θ=450,在OL上侧有平行于OL向下的匀强电场,在OL下侧有垂直纸面向外的匀强磁场,一质量为m、电荷量为q(q>0)的粒子以速率v0从y轴上的M(OM=d)点垂直于y轴射入匀强电场,该粒子恰好能够垂直于OL进入匀强磁场,不计粒子重力。
高考物理带电粒子在磁场中的运动专题训练答案及解析

高考物理带电粒子在磁场中的运动专题训练答案及解析一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.如图所示,在竖直面内半径为R 的圆形区域内存在垂直于面向里的匀强磁场,其磁感应强度大小为B ,在圆形磁场区域内水平直径上有一点P ,P 到圆心O 的距离为2R,在P 点处有一个发射正离子的装置,能连续不断地向竖直平面内的各方向均匀地发射出速率不同的正离子. 已知离子的质量均为m ,电荷量均为q ,不计离子重力及离子间相互作用力,求:(1)若所有离子均不能射出圆形磁场区域,求离子的速率取值范围; (2)若离子速率大小02BqRv m=,则离子可以经过的磁场的区域的最高点与最低点的高度差是多少。
高中物理带电粒子在磁场中的运动试题(有答案和解析)及解析

O、O′在质子束的入射方向上,其连线与质子入射方向垂直且距离为 H= 7 R;整个装置处 2
于真空中,忽略粒子间的相互作用及相对论效应。
(1)试求质子束经过加速电场加速后(未进入磁场)的速度 ν 和磁场磁感应强度 B;
圆半径方向射出磁场;从
x
轴射出点的横坐标: xC
xA
R tan 53
xC 0.1425m .
由几何关系,过 A 点的粒子经 x 轴后进入磁场由 B 点沿 x 轴正向运动.
综上所述,粒子经过磁场后第二次打在 x 轴上的范围为: x 0.1425m
5.如图,平面直角坐标系中,在,y>0 及 y<- 3 L 区域存在场强大小相同,方向相反均平 2
(1)求第 I 象限内磁场的磁感应强度 B1;
(2)计算说明速率为 5v、9v 的粒子能否到达接收器;
(3)若在第Ⅱ象限内加上垂直于坐标平面的匀强磁场,使所有粒子均到达接收器,求所加磁
场的磁感应强度 B2 的大小和方向.
【答案】(1)
B1
mv qL
(2)故速率为 v
的粒子被吸收,速率为 9v
的粒子不能被吸收
速度偏转角的正切值均为: tan vy 37 v0
cos 37 v0 v
v 1106 m/s
即:所有的粒子射出极板时速度的大小和方向均相同.
qvB m v2 R
R r 0.03m
由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点 B 离开磁场.
由几何关系,恰好经 N 板右边缘的粒子经 x 轴后沿磁场圆半径方向射入磁场,一定沿磁场
第六节 带电粒子在磁场中的运动练习题 (答案详解)

第六节 带电粒子在磁场中的运动练习题一、多选择题1.如图所示,在 、 的长方形区域有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B ,坐标原点O 处有一粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子 重力不计 ,其速度方向均在xOy 平面内的第一象限,且与y 轴正方向的夹角分布在~ 范围内,速度大小不同,且满足,若粒子在磁场中做圆周运动的周期为T ,最先从磁场上边界飞出的粒子经历的时间为 ,最后从磁场中飞出的粒子经历的时间为 ,则下列判断正确的是A .B .C .D .【答案】BC【解析】带电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力:,可得半径:,又因为,可得粒子半径满足: ,而带电粒子做匀速圆周运动的周期为:。
分析可知最先从磁场上边界飞出的粒子运动轨迹如图所示:此时粒子半径 , 为圆心,此时粒子转过圆心角 ,根据几何关系可知,,所以可知 ,故最先从磁场上边界飞出的粒子经历的时间为:,故A 错误,B 正确;设磁场区域为OACB ,根据周期公式可知粒子在磁场中运动的周期相同,分析可知最后从磁场中飞出的粒子轨迹如图所示:此时粒子半径 ,恰好在C 点离开磁场,延长CB 至 使 , 即为圆心,连接 ,根据几何关系可知,此时粒子转过圆心角 最大为 ,所以最后从磁场中飞出的粒子经历的时间为:,故C 正确,D 错误。
所以BC 正确,AD 错误。
2.如图所示,虚线框MNQP 内存在匀强磁场,磁场方向垂直纸面向里。
a 、b 、c 是三个质量和电荷量都相等的带电粒子,它们从PQ 边上的中点沿垂直于磁场的方向射入磁场,图中画出了它们在磁场中的运动轨迹。
若不计粒子所受重力,则A . 粒子 a 带负电,粒子 b 、c 带正电B . 粒子 c 在磁场中运动的时间最长C . 粒子 c 在磁场中的动能最大D . 粒子 c 在磁场中的加速度最小 【答案】BD【解析】根据左手定则知粒子a 带正电,粒子b 、c 带负电,故A 错误;粒子在磁场中做圆周运动的周期:相同,粒子在磁场中的运动时间:,由于m 、q 、B 都相同,粒子c 转过的圆心角 最大,则射入磁场时c 的运动时间最大,故B 正确;粒子在磁场中做匀速圆周运动时,由洛伦兹力提供向心力,由牛顿第二定律得:,解得:,粒子的动能,由于:q 、B 、m 都相同,因此r 越大,粒子动能越大,由图示可知,b 的轨道半径r 最大,则b 粒子动能最大,故C 错误;由牛顿第二定律得: ,解得加速度:,三粒子q 、B 、m 都相等,c 在磁场中运动的半径最小,c 的加速度最小,故D 正确。
“带电粒子在电、磁场中的运动”90道计算题详解

(一)“带电粒子在电、磁场中的运动”90道计算题1.在图所示的坐标系中,x轴水平,y轴垂直,x轴上方空间只存在重力场,第Ⅲ象限存在沿y轴正方向的匀强电场和垂直xy平面向里的匀强磁场,在第Ⅳ象限由沿x轴负方向的匀强电场,场强大小与第Ⅲ象限存在的电场的场强大小相等。
一质量为m,带电荷量大小为q的质点a,从y轴上y=h处的P1点以一定的水平速度沿x点进入第Ⅲ象限,恰好做匀速圆周运轴负方向抛出,它经过x= -2h处的P动,又经过y轴上方y= -2h的P3点进入第Ⅳ象限,试求:⑴质点a到达P2点时速度的大小和方向;⑵第Ⅲ象限中匀强电场的电场强度和匀强磁场的磁感应强度的大小;⑶质点a进入第Ⅳ象限且速度减为零时的位置坐标解.2.如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向在x轴上空间第一、第二象限内,既无电场也无磁场,在第三象限,存在沿y轴正方向的匀强电场和垂直xy平面(纸面)向里的均强磁场,在第四象限,存在沿y轴负方向、场强大小与第三象限电场场强相等的匀强电场。
一质量为m、电荷量为q的带电质点,从y轴上y=h处的P1点以一定的水平初速度沿x轴负方向进入第二象限。
然后经过x轴上x= -2h处的P2点进入第三象限,带电质点恰好能做匀速圆周运动.之后经过y轴上y= -2h处的P3点进入第四象限。
已知重力加速度为g.求:(1)粒子到达P2点时速度的大小和方向;(2)第三象限空间中电场强度和磁感应强度的大小;(3)带电质点在第四象限空间运动过程中最小速度的大小和方向。
解:3.如图所示,在xoy平面的第一、第三和第四象限内存在着方向竖直向上的大小相同的匀强电场,在第一和第四象限内存在着垂直于纸面向里的匀强磁场。
一个质量为m,电量为+q的带电质点,在第三象限中以沿x轴正方向的速度v做匀速直线运动,第一次经过y轴上的M点,M点距坐标原点O的距离为L;然后在第四象限和第一象限的电磁场中做匀速圆周运动,质点第一次经过x轴上的N点距坐标原点O的距离为L3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图所示,跟水平面成370角且连接电源的光滑金属框架宽为20cm ,一根重为G 的金属棒ab 水平放在金属框架,磁感应强度B =0.6T ,方向垂直斜面向上,当通过金属棒的电流为5A 时,它刚好处于静止状态,试求:(1)金属棒的重力G 的大小(2)电流方向?如图所示,两平行光滑导轨相距为0.2m ,处于一匀强磁场中.金属棒MN 的质量为m =10—2㎏,电阻R =8Ω,水平放置在导轨上并与导轨接触良好.匀强磁场的磁感应强度B 大小为0.8T ,方向竖直向下.电源电动势E 为10V ,内阻r =1Ω.当开关S 闭合时,MN 处于静止状态.(设θ=45°,g = 10m/s 2) 求:(1)金属棒MN 受到的安培力多大? (2)变阻器R 1此时的电阻值为多少?37°37° ab将倾角为θ的光滑绝缘斜面放在一个足够大的匀强磁场中,磁场方向垂直纸面向里,磁感应强度为B,一个质量为m,带电量为q的小物体在斜面上静止开始下滑(设斜面足够长)如图所示,滑到某一位置离开斜面则:(1)、物块带何种电荷?(2)、物块离开斜面时的速度是多少?(3)、物块在斜面上滑行的最大距离是多少?如图所示,在光滑的水平地面上,有一质量为m A=2.0 kg的长木板,以v0=14 m/s的速度向右运动.若再在A板右端轻放一个带正电荷电荷量为0.20 C、质量为0.10 kg的物块B,A、B处在B=0.50 T的匀强磁场中,A、B间动摩擦因数为μ,相互绝缘,A板足够长,g取10 m/s2.试求:(1)B物块的最大速度;(2)A板的最小速度;(3)此过程中A、B系统增加的总内能. ××××××××ABv如图所示,矩形区域宽度为l,其内有磁感应强度为B、垂直纸面向外的匀强磁场.一带电粒子以初速度v0垂直左边界射入,飞出磁场时偏离原方向300.若撤去原来的磁场,在此区域内加一个电场强度为E、方向竖直向下的匀强电场(图中未画出),带电粒子仍以原来的初速度入射.不计粒子的重力,求:(1)带电粒子在磁场中的运动半径;(2)带电粒子在磁场中运动的时间;(3)带电粒子飞出电场后的偏转角.一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。
求匀强磁场的磁感应强度B和射出点的坐标。
电子自静止开始经M、N板间(两板间的电压为u)的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图所示.求匀强磁场的磁感应强度.(已知电子的质量为m,电量为e)如图,一电荷量为q的粒子从容器A下方小孔S1飘入电势差为U的加速电场。
然后让粒子垂直进入磁感应强度为B的匀强磁场中做匀速圆周运动,最后打到照相底片D上。
试求:(1)粒子进入磁场时的动能(2)从谱线位置可知圆周运动的半径为r,算出粒子的质量m如图所示,某区域有正交的匀强电场和匀强磁场,电场方向水平向右,磁场方向垂直纸面向里.场强E=10N/C.磁感应强度B=1T.现有一个质量m=2×10-6kg,带电量q=+2×10-6C的液滴以某一速度进入该区域恰能作匀速直线运动,求这个速度的大小和方向.(g取10m/s2)如图所示,某空间内存在着正交的匀强电场和匀强磁场,电场方向水平向右,磁场方向垂直于纸面向里。
一段光滑绝缘的圆弧轨道AC固定在场中,圆弧所在平面与电场平行,圆弧的圆心为O,半径R=1.8m,连线OA在竖直方向上,圆弧所对应的圆心角θ=37°。
现有一质量m=3.6×10-4kg、电荷量q=9.0×10-4C的带正电的小球(视为质点),以v0=4.0m/s的速度沿水平方向由A点射入圆弧轨道,一段时间后小球从C点离开圆弧轨道恰能在场中做匀速直线运动。
不计空气阻力,取g=10m/s2,sin37°=0.6,cos37°=0.8。
求:(1)匀强电场场强E的大小;(2)小球刚射入圆弧轨道瞬间对轨道压力的大小。
在平面直角坐标xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m 、电荷量为q 的带正电的粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图所示.不计粒子重力,求 (1)M 、N 两点间的电势差U MN . (2)粒子在磁场中运动的轨道半径r. (3)粒子从M 点运动到P 点的总时间t.如图所示,在y >0的区域内有沿y 轴正方向的匀强电场,在y <0的区域内有垂直坐标平面 向里的匀强磁场。
一电子(质量为m 、电量为e )从y 轴上A 点以沿x 轴正方向的初速度 v 0开始运动。
当电子第一次穿越x 轴时,恰好到达C 点;当电子第二次穿越x 轴时,恰好到达坐标原点;当电子第三次穿越x 轴时,恰好到达D 点。
C 、D 两点均未在图中标出。
已知A 、C 点到坐标原点的距离分别为d 、2d 。
不计电子的重力。
求 (1)电场强度E 的大小; (2)磁感应强度B 的大小;(3)电子从A 运动到D 经历的时间t .如图所示,在x 轴上方有垂直于xy 平面向里的匀强磁场,磁感强度为B ;在x 轴下方有沿y 轴负方向的匀强电场,场强为E ;一质量为m ,电量为-q 的粒子从坐标原点O 沿着y 轴正方向射出。
射出之后,第三次到达x 轴时,它与点O 的距离为L 。
求此粒子射出时的速度v 和运动的总路程s (重力不计)。
Eyxv 0O×× × × × × ×× × × × × × × ×××××× ×AB如图所示的平面直角坐标系xOy,在第Ⅰ象限内有平行于y轴的匀强电场,方向沿y正方向;在第Ⅳ象限的正方形abcd区域内有匀强磁场,方向垂直于xOy平面向里,正方形边长为L且ad边与x轴重合,ab边与y轴平行.一质量为m、电荷量为q的粒子,从y轴上的P(0,h)点,以大小为v0的速度沿x轴正方向射入电场,通过电场后从x轴上的a(2h,0)点进入第Ⅳ象限的磁场区域,不计粒子所受的重力.求:(1)电场强度E的大小;(2)粒子到达a点时速度的大小和方向;(3)磁感应强度B满足什么条件,粒子经过磁场后能到达y轴上,且速度与y轴负方向成450角?(4)磁感应强度B满足什么条件,粒子经过磁场后不能到达y轴上?如图所示,是一可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10-3T,在X轴上距坐标原点L=0.50m的P处为离子的入射口,在Y上安放接收器,现将一带正电荷的粒子以v=3.5×104m/s的速率从P处射入磁场,若粒子在 y轴上距坐标原点L=0.50m的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不记其重力。
试求:(1)求上述粒子的比荷qm(保留一位有效数字)(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;(3)为了在M处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形。
如图所示,两水平放置的平行金属板间存在相互垂直的匀强磁场和匀强电场,磁场的磁感应强度B1=0.40T,方向垂直纸面向里,电场强度E=2.0×105V/m,PQ为板间中线。
紧靠平行板右侧边缘xOy坐标系的第一象限内,有垂直纸面向外的匀强磁场,磁感应强度B2=0.25T,磁场边界AO和y轴的夹角∠AOy=45°。
一束带电量q=8.0×10-19C的正离子从P点射入平行板间,沿中线PQ做直线运动,穿出平行板后从y轴上的Q点垂直y 轴射入磁场区,=0.2mOQ,离子通过x轴时的速度方向与x轴正方向夹角在45°~90°之间。
求:(1)离子运动的速度v;(2)离子的质量m。
如图所示,空间分布着有理想边界的匀强电场和匀强磁场。
左侧匀强电场的场强大小为E、方向水平向右,电场宽度为L;中间区域和右侧匀强磁场的磁感应强度大小均为B,方向分别垂直纸面向外和向里。
一个质量为m、电量为q、不计重力的带正电的粒子从电场的左边缘的O点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O点,然后重复上述运动过程。
求:(1)中间磁场区域的宽度d;(2)带电粒子从O点开始运动到第一次回到O点所用时间t。
L dB BEO如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60°。
一质量为m,带电量为+q 的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30°角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场。
已知该粒子从射入到射出磁场所用的时间为t,(1)画出粒子运动的轨迹。
(2)求Ⅰ区和Ⅱ区中的磁感应强度的大小。
(忽略粒子重力)。
(提示:设入射速度为V,圆形区域半径r)空间存在垂直于纸面方向的均匀磁场其方向随时间作周期性变化,磁感应强度B 随时间t 变化的图线如图(甲)所示。
规定B>0时,磁场方向垂直纸面向外。
现在磁场区域中建立一与磁场方向垂直的平面直角坐标系xoy ,如图(乙)所示。
一电量7105-⨯=πq C 质量10105-⨯=m kg 的带正电粒子,位于原点O 处,在0=t 时刻以初速度πυ=0m/s 沿x 轴正方向开始运动,不计重力作用,不计磁场变化可能产生的一切其他影响。
试求:(1)带电粒子的运动半径;(2)带电粒子从O 点运动到)4,4(P 点的最短时间;(3)要使带电粒子过图中的P 点,则磁场的变化周期T 为多少?。