受弯正截面承载力计算

合集下载

03受弯构件正截面承载力计算

03受弯构件正截面承载力计算
越显
0.4
著,受压区应力图形逐渐呈曲线分
Mcr
xn=xn/h0
布。
0 0.1 0.2 0.3 0.4 0.5
15
3.2 梁的受弯性能
第三章 钢筋混凝土受弯构件正截面承载力
带裂缝工作阶段(Ⅱ阶段) ◆ 荷载继续增加,钢筋拉应力、挠度 变形不断增大,裂缝宽度也不断开展, 但中和轴位置没有显著变化。
M/Mu
1.0 Mu 0.8 My
0.6
0.4
Mcr
0
fcr
fy
3.2 梁的受弯性能
fu f
18
第三章 钢筋混凝土受弯构件正截面承载力
屈服阶段(Ⅲ阶段)
◆ 由于混凝土受压具有很长的下
降段,因此梁的变形可持续较长,
但有一个最大弯矩Mu。
◆ 超过Mu后,承载力将有所降低,
直至压区混凝土压酥。Mu称为极
增大,混凝土受压的塑性特征表现的更为充分。
◆ 同时,受压区高度xn的减少使得钢筋拉力 T 与混凝土压力C
之间的力臂有所增大,截面弯矩也略有增加。
◆ 由于在该阶段钢筋的拉应变和 受压区混凝土的压应变都发展很
快,截面曲率f 和梁的挠度变形f 也迅速增大,曲率f 和梁的挠度变
形f的曲线斜率变得非常平缓,这 种现象可以称为“截面屈服”。
限弯矩,此时的受压边缘混凝土
的压应变称为极限压应变ecu,对
应截面受力状态为“Ⅲa状态”。
M/Mu
1.0
Mu
◆ ecu约在0.003 ~ 0.005范围,超过
0.8 My
0.6
该应变值,压区混凝土即开始压
0.4
第三章 钢筋混凝土受弯构件正截面承载力
h0
分布筋

第三章 钢筋混凝土受弯构件正截面承载力计算

第三章 钢筋混凝土受弯构件正截面承载力计算

第三章钢筋混凝土受弯构件正截面承载力计算受弯构件(bendingmember)是指截面上通常有弯矩和剪力共同作用而轴力可以忽视不计的构件。

钢筋混凝土受弯构件的主要形式是板(Slab)和梁(beam),它们是组成工程结构的基本构件,在桥梁工程中应用很广。

在荷载作用下,受弯构件的截面将承受弯矩M和V的作用。

因此设计受弯构件时,一般应满意下列两方面的要求:(1)由于弯矩M的作用,构件可能沿弯矩最大的截面发生破坏,当受弯构件沿弯矩最大的截面发生破坏时,破坏截面与构件轴线垂直,称为正截面破坏。

故需进行正截面承载力计算。

(2)由于弯矩M和剪力V的共同作用,构件可能沿剪力最大或弯矩和努力都较大的截面破坏,破坏截面与构件的轴线斜交,称为沿斜截面破坏,故需进行斜截面承载力计算。

为了保证梁正截面具有足够的承载力,在设计时除了适当的选用材料和截面尺寸外,必需在梁的受拉区配置足够数量的纵向钢筋,以承受因弯矩作用而产生的拉力;为了防止梁的斜截面破坏,必需在梁中设置肯定数量的箍筋和弯起钢筋,以承受由于剪力作用而产生的拉力。

第一节受弯构件的截面形式与构造一、钢筋混凝土板的构造板是在两个方向上(长、宽)尺度很大,而在另一方向上(厚度)尺寸相对较小的构件。

钢筋混凝土板可分为整体现浇板和预制板。

在施工场地现场搭支架、立模板、配置钢筋,然后就地浇筑混凝土的板称为整体现浇板。

通常这种板的截面宽度较大,在计算中常取单位宽度的矩形截面进行计算。

预制板是在预制厂和施工场地现场预先制好的板,板宽度一般掌握在Inl左右,由于施工条件好,预制板不仅能采纳矩形实心板,还能采纳矩形空心板,以减轻板的自重。

板的厚度h由截面上的最大弯矩和板的刚度要求打算,但是为了保证施工质量及耐久性的要求,《大路桥规》规定了各种板的最小厚度;行车道板厚度不小于IOOmm人行道板厚度,就地浇注的混凝土板不宜小于80mm,预制不宜小于60mm。

空心板桥的顶板和底板厚度,均不宜小于80mm。

受弯构件正截面承载力计算

受弯构件正截面承载力计算

受弯构件正截面承载力计算受弯构件的正截面承载力计算是工程设计中重要的一部分,它用于确定材料的弯曲承载力和设计中的极限状态。

在进行正截面承载力计算时,需要考虑材料的弯矩、截面形状、材料的强度和应力分布等因素。

下面将详细介绍受弯构件正截面承载力计算的过程。

在进行受弯构件正截面承载力计算时,首先需要确定该构件所受的弯矩大小。

弯矩是指作用于构件截面上的力矩,它产生了构件的弯曲变形。

弯矩的大小可以通过施加在构件上的外部荷载和构件的几何形状来计算。

有了弯矩的大小后,下一步就是确定截面形状。

截面形状是影响受弯构件强度的一个重要因素,常见的截面形状有矩形、圆形、T形等。

不同的截面形状对受弯构件的承载力有着不同的影响,因此需要根据实际情况选择合适的截面形状。

确定了弯矩和截面形状后,接下来就是计算材料的强度。

材料的强度是指材料在承受外部荷载作用下所能承受的最大应力。

常见的材料强度有抗拉强度、抗压强度和屈服强度等。

在进行正截面承载力计算时,需要根据材料的强度来确定构件的极限状态。

最后,根据弯矩、截面形状和材料的强度,可以计算出受弯构件的正截面承载力。

计算的过程包括确定应力分布、求解最大应力和计算承载力。

根据不同的截面形状和材料的特性,计算方法也有所不同。

总的来说,受弯构件正截面承载力计算是一项综合性的工作,需要考虑多个因素的综合作用。

在实际工程设计中,需要准确计算受弯构件的承载力,以确保结构的安全性和可靠性。

因此,在进行计算时,需要充分考虑强度设计的要求和计算方法,以保证计算结果的准确性。

受弯构件正截面承载力计算是工程设计中重要的一部分,它用于确定材料的弯曲承载力和设计中的极限状态。

在进行正截面承载力计算时,需要考虑材料的弯矩、截面形状、材料的强度和应力分布等因素。

下面将详细介绍受弯构件正截面承载力计算的过程。

在进行受弯构件正截面承载力计算时,首先需要确定该构件所受的弯矩大小。

弯矩是指作用于构件截面上的力矩,它产生了构件的弯曲变形。

第四章 受弯构件正截面承载力计算

第四章 受弯构件正截面承载力计算

因此得出
b

1
1
fy
cu E s
第四章 受弯构件正截面承载力计算
由平衡条件: 1 fcbxb= fyAs
可得出 1fcbbh0fyAs,max ---(4-15)
可推出适筋受弯构件最大配筋率max与 b
的表达式
maxAbs,m 0 hax b
1fc fy
---(4-16)
fy h0
360 465
0.2% h 0.2% 500 0.215%,可以。
h0
465
例题2
第四章 受弯构件正截面承载力计算
已知一单跨简支板,计算跨L0=2.34m,承受均 布荷载qk=3kN/m2(不包括板自重);混凝土 强度等级为C30;钢筋采用HPB235级钢筋。可
最小配筋率ρmin
第四章 受弯构件正截面承载力计算
4.2.2适筋受弯构件截面受力的几个阶段
第一阶段 —— 截面开裂前阶段。
第二阶段 —— 从截面开裂到纵向受拉钢筋屈服前阶段。
第三阶段 —— 钢筋屈服到破坏阶段。
第四章 受弯构件正截面承载力计算
各阶段和各特征点的截面应力 — 应变分析:
第四章 受弯构件正截面承载力计算
由式(4-16)可知,当构件按最大配筋率配筋时,由式
M1fcb(xh02 x) (4-9a)
可以求出适筋受弯构件所能承受的最大弯矩为
M m a1 x fc b 0 2b h ( 1 0 .5 b )sb b 0 2h 1 fc
其中, sb ----截面最大的抵抗矩系数,可查表。
坏。
第四章 受弯构件正截面承载力计算
受弯构件的配筋形式
P
P

第三讲受弯构件正截面承载力计算精选全文

第三讲受弯构件正截面承载力计算精选全文

Mu
1.0
砼退出工作,拉力主要由钢筋 承担,单钢筋未屈服;
b. 受压区砼已有塑性变形,但 不充分;
c. 弯距-曲率关系为曲线,曲
0.8 My
0.6
0.4
II
M cr
0
f cr
fy
fu f
加载过程中弯矩-曲率关系
率与挠度增长加快。
(三)屈服阶段(钢筋屈服至破坏): 纵向受力钢筋屈服后,截面曲率
和梁的挠度也突然增大,裂缝宽度随 My 之扩展并沿梁高向上延伸,中和轴继 续上移,受压区高度进一步减小。弯 矩再增大直至极限弯矩实验值Mu时, 称为第Ⅲ阶段(Ⅲa)。
截面每排受力钢筋最好相同,不同时,直径差≥2mm,但 不超过4~6mm。
钢筋根数至少≥2,一排钢筋宜用3~4根,两排5~8根。 钢筋间的距离: ≥d,且≥30mm、且≥1.25倍最大骨料粒径。 自下而上布置钢筋,且要求上下对齐。
五.板内钢筋的直径和间距
❖钢筋直径通常为6~12mm;
板厚度较大时,直径可用16~25mm,特殊的用32、36mm ; 同一板中钢筋直径宜相差2mm以上,以便识别。
第二节 试验研究与分析
一、适筋受弯构件正截面的受力过程
1.梁的布置及特点 通常采用两点对称集中加荷,加载点位于梁跨度的
1/3处,如下图所示。这样,在两个对称集中荷载间的区 段(称“纯弯段”)上,不仅可以基本上排除剪力的影响 (忽略自重),同时也有利于在这一较长的区段上(L/3)布 置仪表,以观察粱受荷后变形和裂缝出现与开展的情况。 在“纯弯段”内,沿梁高两侧布置多排测点,用仪表量 测梁的纵向变形。
前无明显预兆,属脆性破坏。
第3种破坏情况——少筋破坏
配筋量过少: 拉区砼一出现裂缝,钢筋很快达到屈服,可能经

第4章-受弯构件正截面承载力计算精选全文

第4章-受弯构件正截面承载力计算精选全文

适筋梁的判别条件
max b
第4章 受弯构件正截面承载力计算
习题:矩形截面梁,b=250mm,h=500mm,承受 弯矩设计值M=160kN·m,采用C20级混凝土, HRB400级钢筋,截面配筋如图。复核该截面是否 安全。
第4章 受弯构件正截面承载力计算
超筋梁的极限承载力
关键在于求出钢筋的应力
m
应取:
in
m m
in in
0.002 0.45 ft
/
fy
第4章 受弯构件正截面承载力计算
回顾
的定义:
x
h0
x
M
C
h0
Ts
相对受压区高度
第4章 受弯构件正截面承载力计算
相对界限受压区高度b
xnb 根据右图三角形相似可得xnb
xnb
cu cu y
h0
回顾
cu
h0
y
根据的定义可得b(有屈服点的钢筋)
(1) 计算跨度l0
单跨板的l0可按有关规定等于板的净跨加板的厚度。有:
l0=l n+h=(2500-120×2)+80=2340mm
(P349)
(2)荷载设计值
恒载标准值g K:水磨石地面0.03×22×1=0.66KN/m 板的钢筋砼自重0.08×25×1=2.0KN/m
白灰砂浆粉刷0.012×17×1=0.204KN/m
任意位置处钢筋的 应变和应力
cu
xnb=x/b1
h0i h0
si s
si
h0i xnb xnb
cu
cu
(
h0i b1
x
1)
cu
(
h0i b1 h0

受弯正截面承载力计算

受弯正截面承载力计算

受弯正截面承载力计算
首先,对于抗弯能力的计算,需要考虑材料的截面特性,如截面形状、尺寸和材料的强度。

根据梁的受弯分析原理,材料在截面的上、下表面受
到不同的应力分布。

最大应力出现在截面的最远纤维上,称为最外纤维。

最外纤维的应力可以通过式子σ=My/I来计算,其中M是弯矩,y是距离
最外纤维距离,I是惯性矩。

弯矩的大小可以通过受力平衡和几何原理计算。

弯矩的计算方法有多种,例如对简单支座梁、跨越悬臂壁架梁等不同
受力条件下的梁都有相应的计算方法。

然后,需要考虑稳定性的计算。

稳定性主要是指截面在受弯加载时是
否会产生局部屈曲或整体屈曲。

局部屈曲主要发生在截面的一部分,例如
腹板的局部屈曲,而整体屈曲则是整个截面都发生屈曲。

对于不同截面形
状和材料,局部屈曲和整体屈曲的计算方法略有不同。

在计算受弯正截面承载力时,还需要考虑截面的边界条件,例如支座
和跨距。

这些边界条件对承载力的影响需要根据具体的受力情况进行考虑。

此外,还需要根据设计要求和规范要求,在承载力计算中引入安全系数。

总之,计算受弯正截面承载力需要综合考虑材料的抗弯能力和稳定性。

通过正确的弯矩计算和边界条件的考虑,可以得到准确的承载力计算结果。

为了确保结构的安全性,还需要根据设计要求和规范要求引入适当的安全
系数。

不同材料和截面形状的承载力计算方法略有差异,需要根据具体情
况进行。

受弯构件正截面受弯承载力计算

受弯构件正截面受弯承载力计算

受弯构件正截面受弯承载力计算
在进行受弯构件正截面受弯承载力计算时,首先需要了解构件的几何尺寸和材料特性。

几何尺寸包括构件的宽度、高度和长度,材料特性包括材料的抗弯强度和弹性模量等。

在进行受弯构件正截面受弯承载力计算时,一般采用等效应力法。

根据等效应力法,构件的正截面受弯承载力可以通过以下公式计算:M=σ×S
其中,M是受弯构件所受弯矩,σ是构件截面上的应力,S是截面的抵抗矩。

在计算截面上的应力时,可以使用以下公式:
σ=M×y/I
其中,M是受弯构件所受弯矩,y是距离截面中性轴距离,I是截面的惯性矩。

在计算截面的抵抗矩时,可以使用以下公式:
S=y×A×f
其中,y是距离截面中性轴距离,A是截面的面积,f是材料的抗弯强度。

综合以上公式,可以得到受弯构件的正截面受弯承载力公式:
N=σ×S=(M×y/I)×(y×A×f)
根据构件的几何尺寸和材料特性,可以计算出受弯构件的正截面受弯
承载力。

需要注意的是,在实际工程中,受弯构件的应力和截面的抵抗矩常常
不是均匀分布的,需要进行更加详细的计算和分析。

此外,由于材料的塑
性变形和结构的不完美性等因素的存在,实际承载能力可能小于理论计算值。

综上所述,受弯构件正截面受弯承载力计算是结构工程中的重要任务,它通过等效应力法来确定构件在受弯状态下的承载能力。

在实际工程中,
应该考虑到材料和结构的各种因素,进行更加精细的分析和计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1.05 ~ 1.1)
M
fyb
4.4 单筋矩形截面受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
选定材料强度 fy、fc,截面尺寸b、h(h0)后,未知数就 只有x,As,基本公式可解
问题? M a1 fcbh02 (1 0.5 ) as a1 fcbh02
4.5 双筋矩形截面受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
4.5.1 承载力计算公式
ecu
a’
A
’ s
e s¢
x
M
h0
Cs=s’As’ Cc=afcbx
As
a
>ey
T=fyAs
当相对受压区高度 ≤b时,截面受力的平衡方程为,
a1
fcbx


' s
As'

f y As
M
u
a1fcbx(h0
b
? 增加截面尺寸或 fc
? As
bh

m in
应取 As minbh
4.4 单筋矩形截面受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
★截面复核
已知:截面尺寸b,h(h0)、截面配筋As,以及材料强度fy、fc 求:截面的受弯承载力 Mu>M 未知数:受压区高度x和受弯承载力Mu

Ts= fy As
a1 fcbh0 f y As
M a1 fcbh02 1 0.5 asa1 fcbh02 f y Ash01 0.5 s f y Ash0
4.4 单筋矩形截面受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
◆适用条件 防止超筋脆性破坏
4.5 双筋矩形截面受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
As¢
As¢
As
A s1
A s2
fy'As'
fy'As'
ÊÜ Ñ¹ ¸Ö ½î
A s'
As
4.5 双筋矩形截面受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
一般来说采用双筋是不经济的,工程中通常仅在以下 情况下采用: ◆ 弯矩较大,按单筋矩形截面计算ξ >ξ b,而梁截面 尺寸受到限制,混凝土强度等级又不能提高时; ◆ 在不同荷载组合情况下,梁截面承受异号弯矩; ◆ 由于某种原因,在截面受压区预先布置了一定数量 的钢筋。
x bh0 或 b


As bh0

max


b
a1fc
fy
M M u,max a s,max a1fcbh02
或 as as,max
防止少筋脆性破坏
As minbh
4.4 单筋矩形截面受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
4.4.2 计算方法 ★截面设计
第四章 受弯构件正截面承载力
◆材料选用:
● 适筋梁的Mu主要取决于fyAs, 因此RC受弯构件的 fc 不宜较高。 现浇梁板:常用C15~C25级混凝土 预制梁板:常用C20~C30级混凝土
● 另一方面,RC受弯构件是带裂缝工作的, 由于裂缝宽度和挠度变形的限制,高强钢筋的强度也不能得 到充分利用。 梁:常用HRB335~HRB400级钢筋 板:常用HPB300~HRB335级钢筋。
已知:弯矩设计值M 求:截面尺寸b,h(h0)、截面配筋As,以及材料强度fy、fc
未知数:受压区高度x、 b,h(h0)、As、fy、fc
基本公式:两个
没有唯一解
设计人员应根据受力性能、材料供应、施工条件、使用 要求等因素综合分析,确定较为经济合理的设计。
4.4 单筋矩形截面受弯构件正截面承载力计算
4.4 单筋矩形截面受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
经济配筋率
•板:(0.4~0.8)%; •矩形截面梁:(0.6~1.5)%; •T形截面梁:(0.9~1. 8)%。
M

f y As (h0

x) 2


f ybh02(1 0.5 )
h0
1
1 0.5
M
fyb
4.4 单筋矩形截面受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
◆截面尺寸确定 ● 截面应具有一定刚度,满足正常使用阶段的验算能 满足挠度变形的要求。 ● 根据工程经验,一般常按高跨比h/L来估计截面高度 ● 简支梁可取h=(1/10 ~ 1/16)L,b=(1/2~1/3)h 估计 ● 简支板可取h = (1/30 ~ 1/35)L ● 但截面尺寸的选择范围仍较大,为此需从经济角度 进一步分析。

x) 2


¢
s
A¢s(h0

as¢)
4.5 双筋矩形截面受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
as’
A
’ s
h0
As as
ecu
e¢ s
xቤተ መጻሕፍቲ ባይዱ
M
>ey
Cs=s’As’ Cc= a1fcbx
T=fyAs
为使受压钢筋的强度能充分发挥,其应变不应小于0.002。 由平截面假定可得,
x 2a es¢

ecu(1
as' x
)

0.002 ecu=0.0033
' s
4.5 双筋矩形截面受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
◆基本公式
a1 fcbx f y¢ As¢ f y As
M

Mu
a1 fcbx(h0

x) 2
f y¢ As¢ (h0
as' )
ecu
as’
基本公式:
a1 fcbx f y As
M
a1 fcbx h0


x 2
f y As h0

x 2
4.4 单筋矩形截面受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
§ 4.5 双筋矩形截面受弯构件正截面承载力计算 双筋截面是指同时配置受拉和受压钢筋的情况。
第四章 受弯构件正截面承载力
§ 4.4 单筋矩形截面受弯构件正截面承载力计算 4.4.1 承载力计算公式 ◆基本公式 Basic Formulae
a1fc
a1 fcbx f y As
M
x=b1xc
C=a1fcbx
M
a1 fcbx h0


x 2


f y As h0

x 2
A
’ s

s
x
M
h0
Cs= fy’As’
Cc= a1fcbx
As
as
>ey
T=fyAs
4.5 双筋矩形截面受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
◆适用条件
● 防止超筋脆性破坏
x bh0


b
● 保证受压钢筋强度充分利用
x 2as¢
双筋截面一般不会出现少筋破坏情况, 故可不必验算最小配筋率。
相关文档
最新文档